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The spherical perceptron with N inputs and a linear output does not present optimal general-
ization if trained by minimization of the standard quadratic cost function

where b„and h„are the outputs from the rule (teacher) and hypothesis (student) networks for
the example p, and there are o.N examples. We derive an optimal algorithm for on-line learning of
examples which outperforms the iterative (og-line) standard algorithm for o, up to 0.71. The on-line
optimized algorithm suggests a class of cost functions for off-line learning, which we then proceed
to study using the replica method. The optimized cost function within that class has the suggestive
form

E = nN I'(1/a. N) ) [
—lnP(b„( h„)] —I' lnZ

where Z is a normalization constant, P(b„~ h„) is the conditional probability of the output data 5„
given the hypothesis output h„, and I' is a learning parameter analogous to a temperature which
decreases in a well defined manner along the learning process.

PACS number(s): 87.10.+e, 02.50.—r, 05.90.+m

I. INTRODUCTION

The ability of generalization is a fundamental cogni-
tivelike property presented by artificial neural networks.
Generalization (rule extraction) occurs when the proba-
bility of acting successfully on a previously unseen exem-
plar is larger than just random guessing. This led sev-
eral authors to study the ability of generalization within
the framework of supervised learning [1,2]. The sim-
plest model where this property can be studied systemat-
ically is the linear perceptron with no hidden units. This
has been done using a statistical dynamical approach [3]
and through the use of equilibrium statistical mechanics
[4-7].

Given such 6xed architecture it seems natural to try to
answer questions such as what is the best possible algo-
rithm in the sense of maximizing generalization. The aim
of this paper is to study this problem of optimal gener-
alization algorithms, within two possible scenarios of su-
pervised learning. In the first one, we consider the case of
singLe presentation of exampLes, or what has been called
on-line learning or even incrementaL learning [8—12]. In
this case each example is used sequentially, in a manner
as prescribed by the learning algorithm, and then thrown
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away. The synaptic changes made at a given stage of the
learning procedure depend specifically only on the exam-
ple being presented and possibly on the current state of
the net. The well known Hebb algorithm [13] for Boolean
output perceptrons is a simple instance of on-line learn-
ing where all examples receives the same weight inde-
pendently of the network state. Allowing a modulation
mechanism on the Hebbian term has proven to be a very
cheap scheme, from a computational cost point of view,
for obtaining the same power law decay of the general-
ization error as standard iterative algorithms [10].

On-line learning is also the natural procedure for time
varying rules [11,14] where the examples might not be
available all at once, or even when old examples may not
be any longer representative of the present state of the
rule which has to be inferred. In some cases it might
even reduce the "overfitting" efFect typical of some it-
erative methods [15]. It is also the natural scheme for
"learning by queries" [8,10], since the criterion for select-
ing examples depends on the stage of learning. Finally,
we observe that on-line learning has been extended to
some multilayer networks leading to very interesting re-
sults [16—19].

The second scenario of supervised learning to be con-
sidered is the so called off Line learning. In this -case,
the synaptic changes depend on the whole set of learning
examples defining a global cost function. The examples
are used repeatedly until minimization of this cost func-
tion is achieved. In this manner the problem of learning
has been presented as a problem of equilibrium statisti-
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cal mechanics [2,4]. All the works on linear perceptrons
cited above refer to this off-line scenario. The present
study on the optimal linear perceptron complements our
previous work on optimal generalization in Boolean per-
ceptrons [10,20].

A further distinction which appears in the case of lin-
ear perceptrons is between constrained and unconstrained
learning [3]. In the former case the norm of the percep-
tron weight vector is kept constant throughout the learn-
ing procedure. In the latter, this norm can depend on the
learning stage or the number of examples.

For the case of unconstrained learning our results re-
duce to previous findings [5—7], with perhaps a different
point of view on the nature of the cost function. For the
case of constrained learning, however, our results are sur-
prising: better generalization is achieved with an incon-
sistent algorithm, that is, without minimizing the em-
Ipirical error (the quadratic difFerence between the two
network outputs). We show that, in this case of con-
strained learning, minimization of the empirical error
leads to overfitting even if the examples are noiseless.

In the next section we present the model and discuss
the performance measures. In Sec. III, the dynamics of
on-line learning is presented and the optimal algorithm
determined. The optimized dynamics can be thought of
as a gradient descent method which at every time step
decreases a cost (energy) function which depends explic-
itly on only the last presented example. This on-line cost
function suggests a global cost function, which depends
on all the exaxnples of the learning set, to be used in an
off-line manner. In Sec. IV the equilibrium statistical
mechanics results for this energy function are obtained
using the, by now standard, replica method.

The power of single presentation of examples is perhaps
best illustrated by the fact that the popular quadratic
error energy function with iterative learning, which in
practice means substantial computational cost, is outper-
formed by the computationally cheap optimized on-line
algorithm for o. up to 0.71, where n is the number of
examples per number of adjustable weights. It is outper-
formed by the off-line optimized algorithm for o. up to l.
For o. ) 1 both iterative methods lead to perfect gener-
alization. Section V presents some concluding remarks
concerning our results from a point of view of maximum
log-likelihood methods.

o~ = g(b), b= vNB S", (2)

where b is the rule local field.
Usually, the learning process is thought of as an itera-

tive minimization (say, by gradient descent) of some cost
function defined by the total data set (off-line learning).
This presupposes the storage and repetitive presentation
of the learning set (the so called learning epochs). How-
ever, a simpler learning process (on-line leariiing) has
been considered where examples are presented only once
and sequentially, the change in the perceptron weights
being done along the gradient of a cost function defined
only by the new example p, and the present network state
J(V —1).

B. Performance measures

Different cost functions define learning algorithms with
different generalization performances. The generalization
performance can be measured through the achieved cor-
relation (or overlap) between the hypothesis and rule vec-
tors, which we write as

B.J
QMQ

for the scalar product of N-dimensional vectors has been
used; g(x) is the perceptron transfer function and it de-
fines the type of machine under study, e.g. , we may have
a linear perceptron [g(x) = x], a graded response per-
ceptron [g(x) is a sigmoidal function like tanh(x)], or a
Boolean perceptron [g(x) = sgn(x)].

Here we consider the realizable generalization task
where the rule to be inferred by the student (or hy-
pothesis) perceptron J is the map performed by a
teacher (or rule) perceptron with unknown weights
B = (B~) but the same architecture and trans-
fer function. Then, the training (or data) set
((Si, cr&i), . . . , (S",o&), . . . , (S,o&)) is composed of
P = nN input-output pairs (S",o&) where the input
vectors have some probability measure de(S) and the
desired output is given by

II. THE MODEL

A. Learning from examples in perceptrons

og(S) = g(h), h=) =V%J S,
N

where h is the perceptron local field, S = (S~) (j
1, . . . , N) is an N-dimensional input vector, J = (Ji) is
the perceptron weight vector, and the convention

The single-layer perceptron output is a function of a
weighted sum of N inputs,

where Q = J J and M—:B B are the student and
teacher norms, respectively, and. 0 is the angle between
the two N-dimensional vectors (see Fig. 1). We want to
calculate the average value of this correlation p(o.) as a
function of the number of examples per degree of freedom
n = P/N.

The usual performance measure is the generalization
error

eg = dv7- S —b S —h S

1 M+ —2p M

where de. (S) is the measure of random input vectors
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where 0„ is a decay parameter (which we may allow to
depend on the example p) and F(p) is a function to be
variationally determined later. At this point it is worth
mentioning that we do not know on what variables it
depends, much less its form.

From the corresponding evolution of the scalar prod-
ucts R(y, ) = B J(p) and Q(p) = J(p,) . J(y, ) we obtain
a difference equation (up to order 1/N) for the evolution
of the overlap p(p) = R(p)/QQ(p)M [10,14]

FIG. 1. Geometrical interpretation of the learning prob-
lem: the overlap p is the cosine of the angle 8 between the
vectors B and J. In the constrained case (dashed) the per-
ceptron must lie in the external circle [which represents an
(N —I)-dimensional spherical surface]. In the unconstrained
case (solid) the optimal perceptron is found to lie in the in-
ternal surface.

whose components are drawn &om a distribution with
zero mean and unit variance. We observe that this test
set measure dv7- may be di8'erent &om the training set
measure de.

Note that when M and Q are fixed (say, M = Q = 1
as in [4]) then maximization of p is equivalent to min-
imization of e~ and we have ez ——1 —p. If, however,

Q also can be adjusted, then it is trivial to see from (4)
that eg can be further minimized by choosing Q such that

i/Q = pi/M (see Fig. 1) giving e~ = (1 —p2)/2. Since
eg depends not only on the angle between J and B but
also on the modulus of J it seems to us that it is not
a complete measure for describing the learning process
because J vectors at diferent angles &om the rule vector
B will be characterized by the same eg.

We think that it is important to assign difFerent per-
formance measures to vectors at diBerent angles from the
rule. This is the case for Boolean perceptrons where
the error measure e+ depends univocally on p through
e = vr arccos p [2]. We observe that e can also be
used to characterize the linear perceptron: it measures
the probability that the hypothesis produces a response
with a wrong sign. Perceptrons presenting the same value
for eg may have diAerent values for e

We thus prefer to concentrate our attention on the evo-
lution of the overlap p(n) as a function of the number of
examples, and to consider separately the case with con-
strained (that is, hypothesis norm Q fixed) and uncon-
strained learning, as is done by Krogh and Hertz [3].

III. ON-LINE LEAR.NINA

I„(F(&)5
2 EVQ&

where h„—:i/N J(p, —1) S" is the hypothesis local field
and I„=S" S~ is the input vector norm. Note that 6„
is defined by using the new example p with the previous
state J(p —1).

Prom Eq. (6) we can obtain, in the limit N ~ oo,
a differential equation for the overlap evolution in the
"continuous" time n = p/N [8,10,14],

dp (1 b„h„b F(p) I„(F(p)i

(7)

where ()„denotes an average over the latest example.
The evolution of the norm ~Q is obtained by the same
procedure, giving

dQ h„F(IJ) I„(F(p))

These equations can be used to determine p and Q
(and then eg) for any distribution of examples for any
algorithm F. The decay factor O„can be used to make

dQ/dn = 0. If we start from the initial condition Q(0) =
1 we can mimic the spherical perceptron constraint. If
0„=0 we have the case of unconst'rained learning.

B. Optimal on-line learning procedure

From a variational analysis applied to Eq. (7) we find
that the function F(p) which maximizes the overlap in-
crement per example dp/dn is

A. The learning equations

A general form for on-line learning procedures can be
written as Without loss of generality the input vector can be nor-

malized such that I~ = 1; if, however, this is not done
the full Eq. (9) should be kept. The optiinal learning
algorithm then assumes the form
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( A„lJ;(p)= ~1 — "~ J;(p, —1)N)
~Q ~(l b„h„)
~ qp/M ~Qy

P(b„[ h„) =
/2m(1 —p')

( (b„/QM —ph„/~Q) 2 l
2 1 —p

We can define a cost (or energy) function such that
the learning dynamics Eq. (5) can be regarded as the
instantaneous gradient descent in the space of normalized
vectors J; = J;/~Q,

~'(V) =
I

1 —~ ~ J'(p —1)+ g
( O„b - 1 BE"(J)

N )
' N Bg,.

where Ei"(J) is the cost function provided by example p, .
Since in general we may have E" depending on Q(p —1),
only in the case of constrained learning Q = const will
the derivatives in J; and J, be equivalent.

We will show below that the training energy which
generates the optimal function (9) can be written in the
suggestive form [10,14]

Introducing this in Eq. (12) we obtain the desired cost
function

1 ( 1 b„h„ t

2 ip(~) v'M VQ)

if we use (12) with Z = [2n(1 —p2)]i~2. Note that the
original dynamics (10) is recovered only after changing
&om the J to the J variables, which imply the appear-
ance of a Q term necessary to get the expression for
E(p), Eq. (9). This energy function naively resembles
the standard quadratic error function, but the 1/p factor
has a non-negligible effect which leads to improved per-
formances. We observe that the cost function prescrip-
tion (12) is also valid for Boolean perceptrons, enabling
a unified approach to the generalization problem. In the
Boolean case we have Z = 1 and

E"„i(J)= —I'lnP(o&
~
h„) —I'ln Z (12)

E"„,= —I'1 P( "
/ h„) = —I'1 H

/

( a~~ h„l—.

E Ql'&
where Z is a constant, I' is a parameter discussed below,
and P(a&~ h„) is t'he conditional probability of the new
output data given the field h„[that is, given the present
hypothesis J(p, —1) and the input S&]. Although irrel-
evant for the learning process (since it depends only on
the derivative of E"„,), we conserve the constant term Z
for later discussion.

This cost function is reminiscent of maximum log-
likelihood methods, but the new element here is the pa-
rameter

1 —p =tan 0
p2

which can be regarded as a time dependent (or, better,
a performance dependent [14]) learning rate parameter
which decreases to zero as J gets closer to B. Although
we are in a noiseless learning case, I' plays the role, in a
formal sense, of a temperaturelike quantity and will thus
be dubbed the hypothesis temperature, since it is zero if
the hypothesis J is in the "ground state" B and is infinite
if there is no correlation between them. This "tempera-
ture, " which is a measure of the similarity between rule
and hypothesis, should not be confused with the learning
temperature usual in the statistical mechanics approach,
which describes the noise level of a stochastic learning
process.

We now show that the prescription given by Eq. (12)
leads indeed to Eq. (10). Consider input vectors whose
components are independent identically distributed ran-
dom variables with zero mean and unit variance. The
conditional probability P(o& [ h„) is determined by the
law of large numbers and by geometry, and depends only
on p (which is the cosine of the angle between the vectors
B and J). For linear perceptrons where og = b„we have

H(*) —= f" e /2

This case has been studied in our previous
works [10,14,20].

C. Optimal performance for uniform distributions

We consider now the cases where the components of S
are drawn from a uniform distribution in the hypercube
(+1)~ or Rom a Gaussian distribution with zero mean
and unit variance. We have (b ) = M, (h ) = Q, and
(bh) = p/MQ, leading to the simple differential equa-
tions

1—
80! 2p

"Q = Q ~" p'~ 2Qn,
p )

(17)

where we assumed 0 constant. Note that the equation
for p is now decoupled &om the equation for ~Q and can
be directly integrated leading to

p~, (a) = gi —e-

This is a theoretical upper bound for p(o.) for any al-
gorithm used in on-line mode. In this form it does not
correspond to a practical algorithm because the optimal
function P given by Eq. (9) depends on the unknown
parameters M and p. The form for the optimal weight
function suggests that we should estimate (in an on-line
manner) these parameters from the data set. A possible
way to do this will be discussed in the next section, and
for now we will assume the simpler case, usual in the
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literature, where M is known.
In the case of constrained learning Q = M = 1 the

algorithm can be used by substituting in a self-consistent
manner the value p(p) by the theoretical value p(a). The
optimal function is then

1.0—

0.8

Fon-line
opt (20) E 0.6

CL.

For unconstrained learning (0„= 0) we can write
Eq. (18) as

VQ ds

dcx p dcx

0.4

0.2

0.0'
0.0

I

1.0
I

2.0
M/9

3.0 4.0

By choosing the tabula rasa Q(0) = 0 as initial condi-
tion, we have ~Q = cp for some constant c which can
be set to l. In this case the optimal algorithm reduces
to E = 6 —h, , that is, the optimal algorithm for uncon-
strained learning is equivalent to the standard one (with
a prenormalization of the data b = b/gM)

It is important to stress the fact that the distribution
of examples P(S) was used to calculate the correspond-
ing evolution of the overlap p(n) but it is not necessary to
know it exactly in order to determine the optimal on-line
algorithm Eq. (9), which depends on the less specific con-
ditional probability P(b]h). Several distributions P(S)
can generate the same conditional distribution P(b~h)
with, say, difFerent forms for P(h). In the case of Boolean
perceptrons the distribution P(h) afFects the evolution of
p(Q. ) and controlling it may be a good learning strategy
(learning by queries [10,14]). It is easy to show from
Eq. (7) that, in the case of linear perceptrons, selection
of examples leads to no improvement.

D. The standard algorithm

The same calculation can be done for the standard
algorithm which uses

FIG. 2. Asymptotical overlap p „as a function of the
ratio M/q.

e (standard) =—1 (M —Q)
2 +
1

e (optimal) = —(V'M —p q)

e (standard) =
~

1+
~

e (optimal).
2/MQ )
M+

(25)

Even in the realizable case (Q = M = 1), we obtain
for the standard algorithm the obviously worst result

—cx 2p=1 —e =p (26)

o. ifo. &1
(27)

By choosing an appropriate decay factor 0„,the norm
Q can be held constant, say Q = M = 1, enabling a com-
parison with the results for oK-line learning in a spherical
perceptron. The equilibrium properties for the standard
algorithm 8 =

2 g„(b„—h„) have been obtained pre-
viously by Seung et aL [4]. The overlap achieved after
o.N examples is

leading to

I'(p) = b„—h„, (22) which clearly is not optimal since the result for optimal
on-line learning Eq. (19) gives, for small n,

dp ~ M/Q+ 1
(23)

Popi ~ ~cl + O(ck) . (28)

The specific learning curve depends on the ratio M/Q,
supposed constant in the constrained case. The overlap
stops increasing (dp/dn = 0) for the maximum value

2/M/Q
1+M/Q

The standard algorithm produces p „= 1 only when
Q = M (see Fig. 2), contrasting with the optimal pro-
cedure which achieves p = 1 even for unrealizable tasks
where Q g M. The corresponding asymptotical values
(n -+ oo) for the generalization error are

1
E(p) = ——g '(o") —h

M p
(29)

where g(x) is the perceptron transfer function. Recently,

In Fig. 3 we compare the overlap produced by the vari-
ous algorithms. It is very interesting that optimal on-line
learning, with a negligible computational cost, presents
better results than og-line learning with the standard
algorithm up to n 0.71.

Concerning specifically on-line learning procedures,
the bounds obtained above are also valid for the graded
response perceptrons, since in this case the optimal algo-
rithm utilizes the weight function
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1.0

0.8

~ 0.6
CL
0$

I
0 04

The constant ur, is an integration time which, from pre-
vious findings [14] and numerical simulations, we suggest
to be used with the value ~, 2 for a good compromise
between accumulating enough data for reliable statistics
and minimizing the lag from the drifting rule. The norm
Q is a measurable (although nonlocal) quantity.

In the case of an unknown teacher length, the depen-
dence on M can be remediated by using a similar on-line
estimator

0.2
M(p) = (1 —

) M(p —I) + b„ (35)

0.0 '
0.0

I

0.2
I

0.4
I I

0.6 0.8
u=P/N

1.0
I

1.2

FIG. 3. Overlap p(n) versus number of examples for the
constrained case: optimal algorithm (solid) and standard al-
gorithm (dashes). Upper curves for off-line and lower curves
for on-line learning.

Biehl and Schwarze [12] obtained an asymptotical decay
(n -+ oo)

1 —pocc (30)

for on-line learning with the standard quadratic algo-
rithm with an optimized learning step, which must be
compared with the lower bound given by Eq. (19),

(31)

E. Practical algorithms for stationary
and drifting rules

By practical algorithms we mean procedures which de-
pend only on accessible quantities. Here we examine if
the optimal performance can be approximated by some
practical learning algorithm. The optimal function F is
given by

for the true value of M. If we use uM = 1/n we have
efFectively that M(p, ) is an estimate of the teacher length
M calculated from the entire learning set. If we use a
constant cuM the average is done only over a time span
so that the estimator can be used, with the aid of the
previous estimator ez, for the tracking of a drifting rule
B which changes not only its direction but also its length.

This use of on-line estimators for unknown learning
quantities is by now usual in the literature [14,21,22]. Al-
though somewhat involved, these estimative procedures
not only provide a method for using the optimal algo-
rithm but also give a very interesting robustness to the
perceptron behavior. There is no separation between
training and performance phases, the estimator e~ for the
generalization error being a vigilance parameter which
detects changes in the environment. If e~ increases due
to changes in the rule, the parameter A.(eg) decreases
leading to a higher attention paid to the examples as
measured by the function F.

Along with the versatility of incremental learning
(which naturally forgets old examples no longer represen-
tative of the actual environment B&~ this model provides
a simple and analytically solvable example of an artifi-
cial neural network behaving as a truly adaptive system
(and not only as a parametric one). Since it has been
demonstrated recently [16,12,18,19] that on-line learning
is efFective for multilayer machines, we expect that fu-
ture on-line adaptive multilayer nets constructed from
the same principles will substitute for the traditional on'-

line backpropagation nets for real world problems with
changing environments.

(32) IV. OFF-LINE LEARNING

For stationary rules we have already observed that the
dependence on p can be lifted if we use, in the function
I", the theoretical value p(n) given by Eq. (19) instead
of the "true" (and inaccessible) value p(p). For nonsta-
tionary rules we can use the approach used in [14] and
approximate the parameter A()(b) by using Eq. (4),

A. The statistical mechanics approach

Now we present a variational calculation for oK-line
learning with a global energy function defined. over the
whole learning set that is suggested by the on-line re-
sults of the previous section. The statistical mechanics
approach [4] considers a stochastic version of the learning
algorithm

with an on-line estimator for the generalization error

bg(p) = (I ——') bg(p —I)+ —' —(b„—b„) . (34)
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where white noise with variance (g q) = 2T has been
added, E(J) is the cost function specific for each algo-
rithm, and V(J) is a potential which assures the spherical
normalization. The index t denotes a complete presenta-
tion of the learning set (often called a training epoch).

It is well known that this Langevin equation leads,
in equilibrium, to a Gibbs distribution for the variables

(J;). The partition function is

=1 q —R /M
P—f = — ln(1 —q/Q) + —n ln [1 ~ P(Q —q)]

2 Q —q

q + Q/r2 —2RQQ/Mr 2
—o.P 1+P(Q —q)

(42)

It is useful to write the &ee energy as a function of the
normalized quantities

Z~ —— dv J e-~ ~'~, (37) R
i/QM

'
Q 1P= —==,T T' (43)

di/(J) = ( N

) J,' —QX~":.i/2meQ~

( N

(38)

The Gibbs distribution is used to perform averages
over the a posteriori distribution of the weights, the
thermal averages denoted by ()T. Since this distribu-
tion, and so the partition function, still depends on the
specific realization of the learning set l: (which is a set
of random quenched variables), we need to perform a
quenched average over the possible learning sets by us-
ing the replica method. The formalism of replicas is by
now standard [1,2,4] and we present only the results.

Our calculations will be done for a training energy sug-
gested by the optimal on-line algorithm,

where P = 1/T (T is usually called the learning temper-
ature). The measure di/(J) refers to the a priori distri-
bution produced by V(J) which, in the case of spherical
constraint J J = Q, reads

f-1 P—P—= — ln(1 —q) + —n ln 1 + P(1 —q)
Q 2 1 —g

- q + 1/r2 —2p/rnP—
1+P(1 —q)

(44)

The order parameters p and q are given by the saddle
point equations Of/Op = 0 and Of/Oq = 0. After some
simple algebra we obtain

A X

r 1+x'
Q! X (x —1)
r' (1 + x)' —o.x' (x + 1)

(45)

(46)

which are the hypothesis-rule overlap, the interhypoth-
esis overlap, and the ratio between the noise variance
and the weight vector length, respectively. The relative
quantity T is clearly the relevant measure of the "tem-
perature, " and not the absolute noise variance itself. The
&ee energy assumes the more transparent form

(39)

R = (J . B)T, Q i =(J J')T (40)

have a natural interpretation in the learning problem.
The first is the (non-normalized) average overlap between
the hypothesis and the rule perceptrons and the second
is the typical overlap between two possible hypotheses or
students; a and b are replica indices.

where the paraineter r(n), which if our prescription (12)
is correct will be found to be the overlap p(n), is by now
considered an arbitrary function to be optimized at the
final stage of our calculations.

The replica formalism is very attractive because the
order parameters which appear in the calculations

with the shorthand x = P(l —q).
In the limit of zero learning temperature (x —i oo) we

obtain simply

(47)

C. The effect of the parameter r(n)

~opt 0! = 0! (48)

The correlation between hypotheses depends on the
function r(n) used in the algorithm, and p(n) can be op-
timized if we choose the minimal r(n) possible. Since the
maximum value for the overlap between the hypotheses
isq=l, wefind

B. Replica symmetric results
which leads to

p~i(ii) = V~
If we assume replica symmetry

R =R, Q b=Qb i, +q(1 —h i), (41)

which is a valid assumption for the case of noiseless ex-
amples [7], we obtain the &ee energy density as

It is important to observe that the same result may be
obtained if we extremize f with respect to r The condi-.
tion Of/Or = 0 gives directly r~i ——p.

The result r~i(n) = p~i(n) corroborates our prescrip-
tion (12) derived &om the optimal on-line algorithm. We
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aN aN
~ = ) 0(—~a&~) = —).(&a —~~)'

ps=1 p, =l
(50)

being very similar to the standard algorithm for the lin-
ear case. Both are called consistent algorithms in the
literature because they produce zero error in the train-
ing set.

It is important to note that the optimized algorithm
does not minimize the empirical error. It is possible to
show by standard methods that its average empirical er-
ror is

(51)

which is clearly nonzero even for noiseless examples and
zero temperature (it is an inconsistent algorithm).

Summarizing, for the realizable case Q = M = 1, we
have

eg(opt) = 1 —~n,
1

e, (opt) = (1 —~n)',
20!

es(std) = 1 —n,
e, (std) = 0,

(52)

(53)

(54)
(55)

which means that eq(std) ( e&(opt) but es(opt)
eg(std).

conjecture that this prescription leads, indeed, to an op-
timal off-line algorithm, although this has not been rig-
orously proven. For now, we will call this algorithm
the "optimal" one (within quotes). The value q = 1
means that there is only one "optimal" generalization
vector which is determined by the learning set. Seung et
al. [4], in contrast, obtain that q = aM/Q for the overlap
between the hypotheses produced by the standard algo-
rithm (which is obtained using r = gQ/M). We observe
that all these results are valid for o, & 1. For o, ) 1 we
have perfect generalization p = 1.

It is curious that in both the ofF-line and on-line cases
the simple relation p~q —~p emerges, where p~q is the
"optimal" algorithm result, while p is the result obtained
by using the empirical error as a cost function. A similar
relation p~ „„=~p occurs in the case of a Boolean per-
ceptron [23,20] between the optimal "Bayes" overlap and
that obtained by the "Boltzmann" algorithm for T = 0.
The Boltzmann algorithm also minimizes the empirical
error

Fig. 1 by the internal circle, where QQ(a) = QM cos 0 =
QMp. In this case (but only in this case) the "optimal"
algorithm Eq. (39) coincides with the standard one, pro-
ducing the so called pseudoinverse solution which has the
same p = ~n behavior. From Eq. (51) we see that the
pseudoinverse has zero training error.

We observe that in the case of constrained learning
the solution vector (which we have found to be unique,

q = 1) lies in the direction of the pseudoinverse vector,
difFering only in its length. It is important to note that
the pseudoinverse solution is not a solution for the realiz-
able constrained case where the hypothesis space contains
only vectors with Q = M.

V. CONCLUSIONS

We have used a variational approach to study learning
in the linear perceptron. The advantage of this method is
twofold: it gives an upper bound for the performance of
learning algorithms in various learning situations; it also
gives an ideal E~& modulation function which may be
approximated by practical learning algorithms. We thus
presented a comparison between the standard algorithm
and the optimal one found by the variational procedure
for various scenarios: on-line and ofF-line learning with
constrained or unconstrained hypothesis spaces.

While for the unconstrained case the standard algo-
rithm is equivalent to the optimal one, this is not true
when Q is constrained to be, say, equal to M. In this
last case it holds that p zq

——gp, qg for both on-line and
ofF-line learning.

The on-line optimal curve p zh ' ——gl —exp( —n) is
an upper bound for any on-line algorithm used to train
a linear perceptron as well as any other single-layer ma-
chine with a continuous monotonic transfer function.

The off-line optimal performance p ~f '"' = ~n is
the same as that produced by the pseudoinverse vector,
which solves the unconstrained case. The standard algo-
rithm has zero training error and is thus called consis-
tent. It has a nonunique ground state solution (q = a).
The optimal constrained vector is unique (q = 1) and
is an inconsistent algorithm (its training error is always
nonzero .

The ofF-line optimal algorithm suggested by the opti-
mal on-line procedure is equivalent to a synaptic dynam-
ics that minimizes the cost function

AN

E(J, t)/Q = aN I' ) [—lnP(b„~ b,„)]—I 1nZ
p,=1

. ( b„h„)
2 ); (p(t)QM ~Qy

D. Unconstrained learning

In the case of unconstrained learning [3,5,7] there is an
obvious choice for the perceptron norm which minimizes
the distance D = B—J. This condition is represented in

where I'(t) = [1 —p2(t)]/p2(t). We can estimate p(t) by
some method or, if we are interested only in the equilib-
rium performance (without caring about learning times),
we can use the equilibrium value p(t ~ oo) = v n as has
been done in the previous section.

This can be regarded as a maximum log-likelihood
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method with an optimally decreasing learning rate I'(t).
But if we consider the function E(J, t) as the true cost
function [that is, I'(t) being an essential part of the al-
gorithm], then this cost function is more an energylike
than an entropylike quantity as usually regarded in the
optimization literature.

The parameter I' has a non-negligible effect in the on-
line case. However, since the effect of a learning step
vanishes for the equilibrium properties when minimizing
a cost function, the above considerations (entropy versus
energy interpretation) would seem to be irrelevant for the
off-line case. An interesting possibility suggested by the
above results is, however, that even for iterative learning,
the step parameter has a nontrivial effect on the learning
times.

We conjecture that the minimal characteristic learn-
ing time (a lower bound) will be obtained by using a
learning rate given by I'(t). This could be checked by
using the dynamical approach of Krogh and Hertz [3]. If
this is true, these results suggest rethinking maximum-
likelihood methods by incorporating the learning rate pa-
rameter (the "hypothesis temperature") as an essential
and nontrivial component of the cost function E which
has "energy" (and not "entropy") as its physical ana-
logue.

Finally, we stress the fact that this constrained learn-

ing scenario provides a simple and clear example where
the naive minimization of the empirical error leads to
overfitting even with a realizable task (the rule pertains
to the hypothesis space) and noise-free data. The "opti-
mal" algorithm is an inconsistent one, but has better gen-
eralization than consistent algorithms. If the data have
insufficient information for determining the rule (a ( 1)
it is not a good strategy to choose the best-Gtting model.
Since the prediction is imperfect, a perfect hindsight sig-
nals that the model is biased to those particular past
data.

We have also shown that the proper choice of the cost
function leads to an on-line performance better than the
brute force off-line learning with the standard algorithm
for 0. & 0.71. These results are consistent with previ-
ous 6ndings on the generalization properties of Boolean
perceptrons [10,20]. We are presently extending this ap-
proach to multilayer networks [19].
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