
PHYSICAL REVIEW E VOLUME 52, NUMBER 3 SEPTEMBER 1995

Phase separation of binary fluids in porous media:
Asymmetries in pore geometry and fluid composition
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Phase separation of a binary Lennard-Jones fluid confined in a variety of two-dimensional pores is
studied using molecular dynamics simluations. We consider a simple strip pore, an uneven single pore,
and a junction made out of two pores. We have studied dynamics of phase separation for both critical
and ofF-critical composition of the binary fluid. We find the existence of long-lived metastable states in
the presence of asymmetries both in the geometry and the composition of the fluid. The results are com-
pared with theoretical predictions and with experimental observations.

PACS number(s): 68.45.Gd, 64.60.—i, 47.55.Mh

I. INTRODUCTION

Binary Quid mixtures inside porous media have been
extensively studied recently by both experimentalists and
theoretists due to their rich phase behavior and potential
materials applications [1—7]. In contrast to the macro-
scopic phase separation that characterizes bulk mixtures
inside the miscibility gap, the general feature found in
liquid mixtures inside porous media is metastability and
slow kinetics of phase separation. For example, during
the phase separation of binary Quids imbibed in Vycor
glasses [1,2], the two phases do not separate completely
even deep inside the coexistence region; instead, they
form many long-lived microdomains, rich in one phase or
the other. Although theoretical understanding of phase
separation in these systems is far from complete, two
different interpretations have been introduced. In one in-
terpretation, the metastability and the slow dynamics are
explained in terms of the conserved dynamics of a ran-
dom field Ising model [8], which is obtained from a
coarse-grained description of the phase separation pro-
cess in the presence of the random convolutions of the
pore surface [8]. It has been critized, however, that such
a mapping onto the random field Ising model is not appli-
cable for low-porosity media such as Vycor glasses [3,4].
The second interpretation is to relate the metastability to
the geometric confinement of the binary mixture inside a
pore [3]. Such a single-pore model without any random-
ness has been used as a model system [3,4,6,7] to under-
stand various effects observed in experiments with Vycor
glasses [1,2,9]. In the original work introducing the
single-pore model [3], it was argued that the wetting
behavior of the Quids at pore surfaces plays a major role
in preventing macroscopic phase separation. In the same
work the wetting phase diagram for a single-pore model
with a long-ranged wetting potential is derived using a
mean-field approach [3]. Except at low surface fields, the
wetting phase diagram is qualitatively verified by Monte
Carlo simulation studies of an Ising model confined in a
pore [4], in which only a short-range interaction is in-
volved. A more quantitative estimate of the breakdown

of the power-law growth of domains (which is seen in
bulk mixtures) is obtained using Langevin simulations
[6]. The recent molecular-dynamics simulation study [7]
provides strong evidence to show that long-lived metasta-
bles states exist even in the presence of hydrodynamic
modes. Although these numerical work employ different
range of interactions and different dynamical evolution
process, they all start with a binary liquid mixture
confined in a single small pore and find that it is the
confinement in a small pore that leads to the slowing
down of the domain growth process. However, the
molecular-dynamics study indicates, as the Monte Carlo
simulation studies also do, that the details of the mean-
field calculations may not be valid in more realistic situa-
tions.

In a true porous medium like Vycor, there are pore
junctions and variations in the pore radius. Effects of
these geometrical asymrnetries on the phase separation
process is the main concern of this paper. Recent studies
have addressed this question by carrying out simulations
in a Vycor-like geometry in two dimensions. It has been
found that the kinetics of domain growth dramatically
slows down as the average size of the domains become
comparable to the average radius of the pores [10—12].
Although the results of the simulations support the appli-
cability of the single-pore model in a general sense, the
important role played by the pore junctions on the
domain formation has not been studied in detail in these
previous simulations. With an eye to this direction, we
carry out molecular-dynamics simulations of a model
two-dimensional binary Quid confined in pores that have
asyrnrnetries in their geometrical shape. We also consider
asymmetries in the composition of the fiuid (off-critical
composition of the fiuid mixture). The single-pore model
allows for various long-lived metastable configurations
(called "plugs" and "capsules" ) whose stability depends
on the temperature and the strength of the interaction of
the pore surface with one of the components of the mix-
ture. However, at low temperatures and for weak surface
interaction, the plug configuration is always expected. In
this paper, we study the stability of this plug phase in the
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presence of asymmetries both in geometry and in compo-
sition of the binary Quid mixture.

In Sec. II we define the models and describe the com-
putational method used in the paper. The results are
presented in Sec. III, and the paper is concluded in Sec.
IV by a discussion of the results in relation to previous
theoretical work and experiments.

II. MODEL AND COMPUTATIONAL METHODS

r(t+5t) =r(t)+5tv(t)+ —,'5t'a(t),

v(t +5t) =v(t)+ ,'5[a(t)+a-(t +5t )], (3)

where r, v, and a are positions, velocities, and accelera-
tions, respectively. The accelerations a(t) are calculated
from the potentials described in Eqs. (1) and (2) for given
positions r(t). The potentials are truncated at 2 5cr to.
save computer processing unit times for numerically solv-
ing the equations of motion.

The simulations are carried out at constant volume
(area) with a reduced fluid number density
p'=Ncr /V=O. 8, where N is the total number of mole-
cules in the system of volume (area) V. A hexagonal lat-
tice of molecules of one species was used to generate the
initial configuration with the same number density. The
initial velocities of molecules were generated from the
Maxwell-Boltzmann velocity distribution at a very high
temperature. We then let the system melt at this high
temperature until the potential energy is equilibrated and
a large value for the mean squared displacements of mol-
ecules from their initial lattice positions are observed. A
quench at a reduced temperature T =1.4, in units of e,
below the bulk consolute temperature is performed after

Our model system consists of two species A and 8
confined in two-dimensional pore junctions and single
pores with variations in the pore radius. The molecules
move in the two-dimensional confined region and interact
via Lennard-Jones potentials. The potential energies of
the molecules are of forms

Uzz(r) = U&&(r) =4e[(cr/r)' (cr/r) —],
U„~(r)=4m[(o/r)' ]

for the molecules of the same species and different
species, respectively. The parameters e and o. are used as
units of energy and distance in our simulations.

There are three types of simplified pores we study in
the paper: a simple strip pore, an uneven single pore, and
a junction of pores. The first one is made of a single nar-
row strip, the uneven single pore consists of a rhombus
connected to the two ends of a strip pore, and the junc-
tion consists of two strip pores that cross and are perpen-
dicular to each other. The periodic boundary condition
is applied in the direction of their long symmetric axes.

We study the two-dimensional Quid using the
molecular-dynamics simulation method. The algorithm
we used in our simulations is the so-called "velocity Ver-
let" algorithm, which has an advantage of updating posi-
tions, velocities, and accelerations all at the same time t
[13]. The velocity Verlet algorithm takes the form

the initial equilibration [14,15]. We do not know accu-
rately the consolute temperature in the two-dimensional
system. However, based on the fact that we observed
clear phase separation processes at T =1.4 in a bulk
two-dimensional (2D) mixture, we believe this tempera-
ture is well below the consolute temperature of the binary
mixture system. However, we observed strong Auctua-
tions in the 2D simulation data, in contrast to the corre-
sponding 3D simulation ones, which indicates that a
quench at T*=1.4 in 2D is shallower than that in 3D
simulations [7]. The system is then evolved isothermally
by rescaling velocities of the molecules every time step by
a factor of ( T /A)'~, where % is the current kinetic en-
ergy per molecule. Being rescaled, the current kinetic en-
ergy per molecule then is the same as given by the desired
thermodynamic temperature T*. After the system
reaches equilibrium at the temperature T, the molecules
are labeled A and B randomly. Then a phase separation
starts because of strong repulsive interactions between
the different species as described in Eq. (2) [14,15]. The
process of phase separation is studied by monitoring the
decay of the total interaction potential energy between
the two species and the configurations of molecular posi-
tions.

Infinite hard wall interaction is introduced for all of
the situations considered in the paper. If a molecule with
a velocity v collides on the wall at the position r where
the normal to the wall is n(r), it will bounce at the veloci-
ty of v'=v —2(v, n)n, where (v, n) refers to the scalar
product of the two vectors. An integration time step of
5t =0.001~ is used in most of our simulations. Test runs
using other values of 5t showed that the chosen value is
small enough for our purpose. Time is measured in units
of r = ( m o /e) ', where m is the mass of the Quid mole-
cule.

III. RESULTS

We shall mainly concentrate on the symmetric case
(equal area fraction of species A and 8) and only present
some selected results for the nonsymmetric (off-critical)
case for the purpose of comparison. After the initial
equilibration at T*= 1.4, quenches start with the
configurations in which the species A and 8 were well
mixed. An instability against infinitesimal long-
wavelength fluctuations in the ordering leads to the for-
mation of small domains, rich in species either A or 8,
and their subsequent temporal growth. The growth fol-
lows a simple and generic form, R(t)-t, where R (t)
corresponds to the average size of the ordering domains,
and the growth exponent cz is believed to be characteris-
tic of the dynamical universality class to which the sys-
tem belongs, which depends on few general constraints
such as conservation laws [16] and the presence or the ab-
sence of hydrodynamic modes [17]. Dynamical scaling is
a consequence of the presence of one dominant length
scale in the system. The growth exponent for a binary al-
loy is —,', characteristic of the bulk diffusion of molecules
between the ordering domains [18,19]. However, in the
presence of hydrodynamics modes, the growth exponent
for binary Quid mixtures in three dimensions crosses over
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from —,
' to unit at late times [17,20]. In two dimensions

the value of the late-time (hydrodynamic) growth ex-
ponent seems to be less than unity (=—,') [21]. To monitor
the domain growth, the repulsive potential energy be-
tween two species, U„~(t) in Eq. (2), is computed after
the quenches. It measures the reduction of interfaces be-
tween the species A and B, and, therefore, is a good indi-
cator of the phase separation process. The domain
growth exponent in the late stage a can be estimated
from the data for Uz~(t) in combination with the rela-
tion of U„~ —t [14,15]. We believe that the growth
exponent obtained in this way is an effective exponent
since its value is dependent on the size of the pores under
study. However, the exponent is still useful for under-
standing the dynamics of domain growth of the Quid mix-
tures confined in finite geometries.

In Fig. 1 we present the configuration snapshots, taken
at several instants, of the symmetric species confined
within a simple strip pore of radius R =5.6o. and length
L = 112o. The system starts to form a plug
configuration at t —100~, at which time there are rough
interfaces between the different species. The interfaces
then move due to the diffusion of molecules driven by the
surface tension and the domain size grows slowly. At a
later time, t-800~, the interfaces become sharper and
the plug configuration becomes stable up to a very late
time, which we have checked in our simulations until
t-2000~. The diffusion process can be observed even
clearly in the case of the off-critical composition of the
fiuid mixture. We filled up the same strip pore with
80% A and 20%B and then did the same quench as that
in the previous case. In Fig. 2 we show the configuration
snapshots of the off-critical mixture at several instants.
Small domains of the species B are formed in the vicinity
of the pore surface in order to reduce the interface with
the species A. Then the small domains move along the
pore surface and grow through combining with each oth-
er. When the domain size is compatible to the pore size,
a plug is formed. As soon as the plug is formed, the
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FIG. 2. The configuration snapshots of a 80-20 Quid mixture
confined in the same strip pore as shown in Fig. 1 at t =0, 200r,
2000r, 3000r, and 3800r after a quench at T =1.4. The re-
duced number density of the mixture is p*=0.8. The minority
component is shown as o, the other one is not shown for clari-
ty.

domain hardly moves and its shape becomes stable.
However, it takes a much longer time to have a plug
phase in this case than in the previous one because of a
low density of the species B. In this case, we observed
stable plugs until t -4000~. In Fig. 3, we show a log-log
plot of the repulsive potential energy between different
species as a function of time for both cases. The energy
for the symmetric case is higher, on average, than that
for the asymmetric case, as one expects. The effective
growth exponents estimated from the repulsive potential
energies (computed until stable plugs are formed) are
very close to each other in these two cases: 0.32+0.04
for the symmetric case and 0.29+0.04 for the off-critical
case, respectively. It seems that the domain growth ex-
ponent in these cases is given by the purely diffusive
growth exponent of —,'.

Figure 4 shows configuration snapshots during the evo-
lution of the symmetric mixture system confined within
an uneven strip pore. The length of the pore is L = 112o..
The largest and smallest radii of the pore are
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FIG. 1. The configuration snapshots of 50-50 composition
mixtures confined in a simple strip pore of radius 8 =5.6o. and
length L =112o at t =0, 100r, 200r, 900r, and 1000r after a
quench at T =1.4. The reduced number density of the mixture
is p =0.8. One of the two species is shown as o, the other one
is not shown for clarity.

FIG. 3. Log-log plot of the repulsive potential energies be-
tween the two different species vs time for the two Quid mix-
tures shown in Figs. 1 and 2. The solid lines with the slopes as
shown are obtained as the best fits to the data.
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FIG. 4. The configuration snapshots of a 50-50 composition
mixture confined in an uneven strip pore of R;„=5.6a,
R,„=11.2o., and I.=112' at t =0, 250~, 500~, and 1750m.

after a quench at T*= 1.4. The reduced number density of the
mixture is p*=0.8. The tilt angle in the wider section is
8= 11.3'. One of the two species is shown as o, the other one is
not shown for clarity.

R,„=11.2cr and R;„=5.6o., respectively. The tilt an-
gle of the walls of the uneven section is 0=11.3'. One
can see in Fig. 4 that the domain sizes are obviously
different in different parts of the pore and they are deter-
mined approximately by local pore sizes. The effective
growth exponent for this case is about 0.49+0.04, which
is larger than that for the case of the simple strip pore.
The tendency to deviate from the case of simple strip
pore will be shown even clearly by enlarging R,„,there-
fore the tilt angle 8. In Fig. 5 the pore has the same
geometric parameters as that shown in Fig. 4 except R
is enlarged to R,„=16.8o., correspondingly, 0=21.8.
The con6guration snapshots shown in Fig. 5 are taken at
various instants after a quench at T =1.4. As shown in
Fig. 5, the plugs are formed in a narrower section of the
pore. And the domain size in the wider section is larger
than that in the narrower section. However, the phase
separation in the wider section is still continuing until a
complete phase separation in the wider section occurs at
a later time, as shown in Fig. 5. It clearly demonstrates
how the local pore size affects the phase separation
behavior. A larger effective growth exponent of
a=0.64+0.04 is observed at late times, as shown in Fig.
6. This value of a, characterizing the growth rate of the
average size of the ordering domains in the binary Auids
is close to the hydrodynamic growth exponent of =

3

found in bulk two-dimensional systems [21]. We should
note that one would need many ensemble realizations to
establish an accurate asymptotic late-time growth ex-
ponent [22]. However, when we compare the results

FIG. 5. The configuration snapshots of a 50-50 composition
mixture confined in an uneven strip pore of R;„=5.6',
R,„=16.8o., and L =112o at t =0, 200~, 1400m, and 2800~
after a quench at T*=1.4. The reduced number density of the
mixture is p =0.8. The tilt angle in the wider section is
0=21.8'. One of the two species is shown as o, the other one is
not shown for clarity.
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FIG. 6. Log-log plot of the repulsive potential energy be-
tween the two different species vs time for the fluid mixtures
shown in Fig. 5. The solid lines with the slopes as shown are
obtained as the best fits to the data, at early and late times, re-
spectively.

shown in Fig. 3 and Fig. 6, it becomes clear that for wid-
er pores one Snds a larger late-time exponent. This result
clearly indicates that hydrodynamic modes become im-
portant for phase separation inside the wider section.

In Fig. 7 we show the results of a similar study of the
phase separation in the presence of a pore junction. The
junction is made out of two simple strip pores of L, =84o.
and R =5.6'. They cross and are perpendicular to each
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FIG. 7. Two snapshots of a 50-50 fluid mixture confined in-
side two crossing strip pores, at t =250~ and 3250~ after a
quench at T*=1.4. The reduced number density of the mixture
is p =0.8. One of the species is shown as 0, the other one is
not shown for clarity.

other. At the beginning the phase separation in the
pores, shown in Fig. 7(a), is very similar to that in a sim-
ple strip pore in both the configuration pattern and the
decay of the repulsive potential energies between the
difFerent species. While in the junction, domains grow
faster than in the pores due to the connection to both
pores. Although we do not observe a faster growth
characterizing by a larger exponent in decay of repulsive
potential energies, we find that the mean value of the size
of the plugs in this case is much larger than that in the
case of a simple strip pore, as shown in Fig. 7(b).

IV. DISCUSSIONS

In a simple strip pore, we observe a domain growth
with an efFective exponent of a-0.3 instead of a- —', as
expected for the phase separation of symmetric binary
fluids in a two-dimensional bulk system. We believe that
this deviation is mainly due to the confinement of the
pore. The effects of the hydrodynamic mode that are
present in fluids are suppressed in the narrow pore.
When the pore size is increased, as in the case of the
uneven strip pores, the hydrodynamic mode starts to play

a major role in the phase separation so that the effective
exponent also increases. Suppression of the hydrodynam-
ic effects has actually been observed in the phase separa-
tion in ternary-fiuid mixtures [23]. It is found that a sym-
metric ternary-fluid system at late times reaches a
dynamical scaling regime during the domains grow ast', characteristic of the long-range diffusion of mole-
cules between the ordering domains. Although there are
no physical confinements in the ternary-fluid mixtures,
the strong repulsive interactions between different species
and the unconnected domain-boundary network [23] may
play a role similar to what the physical confinement does
in a narrow pore.

One of the modifications of the present work is to
check if any important modification of the single-pore
model [3] is necessary for the phase separation of fiuid
mixtures in a true porous medium like Vycor, where
there are pore junctions and variations in the pore radius.
Our results indicate that the qualitative physics picture
suggested by the single-pore model is still valid for more
general geometries. However, the mean domain size can
vary largely from position to position in porous media
due to the connections of junctions and the variations in
the local pore radius. It may have significant effects on
the physical properties that are sensitive to fluctuations
in domain size such as the intensity of light scattering
[1,2].

Our results for the case of symmetric binary mixtures
are consistent with those obtained in the previous
molecular-dynamics simulations in three-dimensional
pores [7]. On the basis of the established equivalence be-
tween the two-dimensional and the three-dimensional
simulation results, we should be able to compare our data
in the case of off-critical binary mixtures with recent ex-
perirnental results of mixtures of PVME (poly vinyl
methyl ether) and water confined in a one-dimensional
capillary [5]. There is a difference in wettability to glass
wall between the fluids used in the experiments. Since
the difference in wettability is ignored in our simple mod-
el, we cannot compare the evolution of the pattern ob-
served in our simulations with that of the experiment in
detail. However, in deep quenches, the difference in wet-
tability is overridden by the strong interactions between
the different species. Therefore, in the case of deep
quenches, our results and the experimental ones should
be comparable. It seem to be the case. As shown in Fig.
4(b) in Ref. [5], in a deeper quench for off-critical PVME
and water mixtures, the wetting layer becomes unstable
and forms stable, periodic bridges, which is very similar
to the plugs shown in Fig. 2 in this paper.
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