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The Laplace equation for an infinite chain of dielectric particles in an electrorheological fluid is solved
with the finite-element analysis (FEA) method. The FEA results reveal that the dipole model gives a
good approximation in calculating energy, even if neighbor particles are very close and the mismatch is
moderate. However, the dipole model underestimates the pair attractive force when the particles are in
or near contact. On the other hand, the conductor model is a good approximation when the two parti-
cles are near contact and the mismatch is very big. Otherwise, the conductor model overestimates the
pair attractive force. A formula to calculate the neighbor-pair attractive force for the whole range is
proposed. The FEA results agree with this formula reasonably well.

PACS number(s): 82.70.Gg, 61.90.+d, 64.90.+b

I. INTRODUCTION

An electrorheological (ER) fluid consists of fine dielec-
tric particles suspended in a liquid of low dielectric con-
stant [1-5]. Interesting phenomena observed in the ER
fluid, such as rapid variation of viscosity and
solidification of the fluid, are all induced and controlled
by an applied electric field. The reversible ER effect
occurs in milliseconds and has a high potential for tech-
nological applications.

In recent years, many attempts have been made to pro-
vide detailed theoretical descriptions for ER fluids [6-8].
A widely adapted approach is to treat each polarized par-
ticle in an ER fluid as a point dipole associated with a
hard core [6,7]. This dipole model has some success in
explaining and predicting the ER effect. For example, a
prediction based on the dipole model that the ground
state of an ER fluid is a body-centered tetragonal lattice
[7] was experimentally confirmed [9]. Various computer
simulations based on the dipole model also produced
some good results [10-13].

When the ER fluids have a small dielectric mismatch
between the particles and the base liquid, the dipolar ap-
proximation may be sufficient. However higher-
multipole contributions may be important when the
dielectric mismatch is large and the particles are nearly
touching [14-19]. The calculation for higher-multipole
contributions is not as simple as that for dipoles. Recent-
ly, a conduction model was proposed to explain the ER
effect under dc or low ac fields [20]. Since this model is
quite different from the dipole model, it is important to
have knowledge about the following information: Under
what condition is the dipolar approximation valid?
When is the dipolar approximation not sufficient? Under
what condition is the conduction model valid? What is
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the complete description of ER fluids? To answer the
above questions, we must have some exact numerical
solutions to compare with.

When an ER fluid is in an electric field, dielectric parti-
cles quickly form chains between two electrodes. A phys-
ical chain and its infinite images are equivalent to an
infinite chain. Therefore, in this paper, we will solve the
Laplace equation for an infinite chain system with the
finite-element analysis (FEA) method. Our ER system
has spheric dielectric particles of dielectric constant ¢,
and the liquid of dielectric constant €,. The results are
clearly determined by two parameters, the dielectric
mismatch

K=€p/€f , (1.1)
and the distance between two neighbor particles d in the
unit of sphere radius a.

A similar problem was studied in Ref. [14] with trun-
cated multipole expansion for a chain of up to 40 parti-
cles. Their result indicates that the interaction force and
energy between two touching dielectric spheres are diver-
gent, even if the spheres have a finite dielectric constant.
This result seems to be artificial because touching dielec-
tric particles in ER fluids do not collapse in reality.

Recently, Anderson also studied this problem and
especially examined the situation of a large « [15]. He
found that for a large dielectric mismatch the attractive
force between two neighbor particles is proportional to 2
when they are in contact.

Our FEA method enables us to solve the system exact-
ly for the whole range of interest. Our calculation covers
the whole range from a small « to a large k. We will re-
port about the electric field, surface charge distribution,
interaction energy, and attractive force as functions of «
and d. Based on our FEA calculation, we have proposed
a formula to calculate the pair attractive force. This for-
mula does not only agree with the conductor model and
Anderson’s result at a very large « and d —2a, but also
approaches the dipole model when « is not very big.

Our paper is organized as follows. In Sec. II, we will
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define the problem, outline the method, and derive a set
of theoretical equations for the system. These equations
provide a base for our calculations and clarify what phys-
ical quantities we should look for. In Sec. III, we will dis-
cuss the dipole model and the conductor sphere model
and list the necessary formulas that will be used for com-
parison. In Sec. IV, we present our results and compare
them with the dipole model, the conductor model, and
other published results. Finally in Sec. V, we summarize
our findings.

II. MODEL AND METHOD OF FINITE DIFFERENCE

As mentioned before, in response to an applied electric
field E,, the dielectric spheres form a chain in the field
direction. We assume that the separation between two
neighboring spheres is d =2D, (Fig. 1). The chain is
close packed if d =2a. Our present results are only from
the dielectric mismatch model which is valid for ER
fluids made of perfectly insulating materials or for ER
fluids in a high ac field. However, our method can be
easily extended to include cases with nonvanishing con-
ductivity. Then, in the calculation we must use a com-
plex dielectric constant e =€, +i4moy/w, which is related
to the dielectric constant €, conductivity o, and the
field frequency w.

We take the line passing through the sphere centers as
the z axis. The electric potential is given by

U=Uy+®, 2.1

where Uy=—|Ey|z and ® is produced by the induced
bound charges on the sphere surfaces. In the cylindrical
coordinate, the Laplace equation is given by

Fo 130 IO _

ap2 p Op dz?
U and ® are functions of p and z only. The symmetry
provides ®(p,z)= —®(p, —z). We only need to solve the
Laplace equation (2.2) for a two-dimensional strip in Fig.
2. Theoretically, D, should extend to infinity. We have
found in our calculation that as D, = 10a, the solution is
almost independent of the values of D;.

0. (2.2)

‘O‘

FIG. 1. Infinite chain of spherical ER fluid particles. The
rectangular strip, where D, =d /2 is half the distance between
the centers of two neighboring particles and D, extends to
infinity, is the basic unit for the FEA calculation.

R. TAO, QI JIANG, AND H. K. SIM 52

Z
G b s
E, 1
B 1 T 1 1 1 1
i 1
T I ]
NG 1% | 1 1] D,
T TN |
AT AT 1 l
o ZeAZEETIL 1 RN
A C P

FIG. 2. FEA mesh used for the numerical calculation.

In applying the FEA method, we generate a mesh in
Fig. 2 to discretize the Laplace equation. We first divide
LL AOB evenly into a large number of divisions. Then, at
all cross points of the circle and the radii, we draw lines
parallel to the z_axis and p axis. Outside the circle, we
further divide AC evenly into many divisions. The
boundary conditions are given by

®(p,0)=D(p,D,)=0, 3P(0,2)/3p=0,

and ®(D,,z)=0. (2.3)
On the sphere surface, U is continuous and

oU oU oU U

— -z = |p—+z— , (2.4
“Pop "oz ||,_,. |Pop "z ‘,=a+ 24

where r =V p?+z2.

Since E, and hence the applied voltage are maintained
as constants, the following electrostatic energy W charac-
terizes the interaction,

_ 1
W= | [E-Ddr— [EyDydr |, 2.5)
where Dy=¢/E, and D=¢(r)E, with €(r)=¢, or €, ac-
cording to the region. After the thermal energy is ig-

nored, W should be maximum in the ground state [21].
Rewrite W as

=$ [f(E—EO)-(D+D0)dr

+ [ (ByD—E-Dydr (2.6)

As E—E,=V(U,—U), the first integral can be shown to
vanish by the following transformation:

éfdr{v-[(nﬁuno)( Uy—U)]—(Uy—U)V-(D+Dy)} .
2.7)

There is no free charge within the bulk of the system,
then V-(D+Dg,)=0. The first term in Eq. (2.7) is also
vanishing because it can be transformed into a surface in-
tegration and U=U,, at the infinity. Then, the interac-
tion energy per particle is given by

w _ (e,—€y) f

~ = E,-Edr ,

(2.8)

sphere
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where the integration is taken within a sphere and N is
the total number of the spheres in the chain.

The bound charges are only on the sphere surfaces
with a density given by

__ (=€) |3U
o=——2_ "f7
4me, or ||,—,_
(e, —€f)
S Ll 2.9)
ﬂ-EP or r=a-+
Since Ey=—VU, and V-E=0, we have
[EyEdr=—¢ U Eds, (2.10)

sphere

where the integration is over a sphere surface. We can
transform Eq. (2.8) into a surface integration,

€
= — _f
w=—-] 9SsphereU° ods . 2.11)
Since Uy = —E,'r, we have
w=3€,E;,p, (2.12)

where p= ﬁsphmra ds, the induced dipole moment of

the sphere. Therefore, in the preferred state sphere has
the strongest dipole moment. When we stretch the chain,
the elastic force per particle is given by

__ow
f e a d *
The induced interaction energy between two dielectric
spheres is given by

(2.13)

0,0;
;=1 [ ——Ldsds, 2.14
Uy 2f €57y 5ias; (2.14)
and the force between them is given by
.0 .T;:
f,= [ —LTdsds; . (2.15)
€rTij

The situation is specially of interest when these two parti-
cles i and j are neighbors. However, f, in Eq. (2.13) is
usually different from the neighbor-pair force calculated
from Eq. (2.15). For example, as will be shown in next
section, f, in the dipolar model is about 20% higher than
the neighbor-pair force. The above formulas clarify what
quantities we should look for and provide a basis for our
calculation.

III. DIPOLE MODEL AND CONDUCTOR
SPHERE MODEL

Under the dipolar approximation, the integration ener-
gy between two particles in the chain is given by

(3.1)

where the dipole moment p is given by
p=Ba3efEloc , (3.2)

where f=(k—1)/(k+2). The force between two dipoles
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in the chain is attractive in the z direction,
6 2
fi=— _L4 , (3.3)
€ fd

where E; . is the local field. With a self-consistent

method, we can find
E,

B, =, (3.4
e 1 —4BaE(3)/d3 )

where §(3)=1+(1)*+(4)*+ - - - =1.20206. Combining
Egs. (3.2) and (3.4) we have the attractive force between
two neighbor dipoles,

6B’ ;Eja®/d*

L= . (3.5)
7 pai (1—4.8082Ba’/d?)?
From Eq. (2.12), under the dipolar approximation,
3p52
€ €ra’BE;
w=—-UE,p= . (36)
2 P 2(1—4.8082847/d)

From Egs. (3.1) and (3.2), the induced interaction be-
tween two neighbor dipoles is given by

_ 2¢/B’Eja®/d’
(1—4.8082Ba%/d?)?

When we stretch the chain, the elastic force per particle
is

u= (3.7)

fo=0w/3d =E(B3)f s - (3.8)

It is clear that f, is about 20% stronger than f ;.

Our conductor model has all dielectric particles in the
chain replaced by metallic spheres. This model can be
realized from the dielectric mismatch model by letting
k=€, /€,— . The electric field is concentrated between
two neighbor metallic spheres [22]. The potential
difference between the two neighbor spheres is Eqd. As
shown in Fig. 3, 4, 4,=d —2a cos6. The electric field
between 4, and A4, is Eyd /(d —2a cos@). The electro-

static energy can be estimated by

2
1 po2, 5, . (Eod)
=— O0——7F— . (39
W= fo 2ma* /sinf cos6 d 7 —2a cos0 (3.9
Equation (3.9) can be evaluated easily,
_ €Ejd’ d 2a
w=—"¢ S 4 (3.10)

The attractive force between these neighbor spheres is ap-

U = —Eod

®)
e

FIG. 3. Region between the two conductor spheres.
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proximated by
2 42
€E od 2a 4a d
= —_—— 3.11
4 16 |d—2a " a ™|a—2 G.10)

The above result is good only if d is very close to 2a.
Thus, the leading term is given by

6fE(2)03
2d —2a) ’

The results from the above two models will be compared
with our finite-element calculations.

f= (3.12)

IV. RESULTS AND DISCUSSIONS

In our calculation, we vary the dielectric mismatch «
from 2 to 50000 and make the distance d from 2.1a ap-
proaching 2a.

A. Electric fields

Figure 4(a) shows the electric potential U at k=2.5
and d =2.la, while Fig. 4(b) shows U at k=2.5 and
d =2.001a. In both cases, the electric field inside the
sphere is quite uniform, clearly indicating that the dipo-
lar approximation is quite good at k=2.5, even if the two
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FIG. 4. Electric potential U (in units of Eya). (a) k=2.5 and
d=2.1a. (b) k=2.5and d =2.0001a.

R. TAO, QI JIANG, AND H. K. SIM 52

0.
0.
0.
0.00 : : ;
0.00 0.43 0.87 1.30 1.73
X
Z —-1.0 ---0.9 ----0.8 ——-0.7
—-0.6 —-0.5 —=-0.4 -—-0.3
-—-0.2 ~—-0.1 -— 0.0

.

0.7
0.
0.
0.
X
Z —-1.0 -~-0.9 —--0.8 ——-0.7
—-0.6 —-0.5 —-0.4 -—-0.3
—-0.2 -—=0.1 -— 0.0

FIG. 5. Electric potential U (in units of Eqga). =10 and
d =2.1a. (b) k=10 and d =2.0001a.

spheres are very close.

When k=10, the electric field at d =2.1a is still not
too far from the dipolar approximation [Fig. 5(a)]. How-
ever, at d =2.0001a [Fig. 5(b)], the field is different from
the dipolar approximation because the field inside the
sphere is no longer uniform. From the above electric po-
tential, we can easily calculate the electric field. For ex-
ample, at d =2.0001aq, the electric field near the polar re-
gion is much stronger than the dipolar approximation.
Our field is stronger than the previous result obtained by
the multipole expansion [14].

When «=5000, the electric field is quite different from
the dipolar model. Figures 6(a) and 6(b) show the case
d =2.1a and the case d =2.00014q, respectively. A com-
parison of these two figures clearly shows that as the
spheres get closer, the electric field is more concentrated
between the two spheres. In addition, the electric poten-
tial inside the sphere is almost a constant, which indicates
that the conductor sphere model may be good for this sit-
uation.

To examine the detail of the electric field, in Fig. 7 we
plot U right outside the sphere surface as a function of
angle 6 for k=50000, and d =2.0002a, d =2.002a,
d =2.02a, and d =2.2a, respectively. It is clear that at
k=50000, the dielectric particles are close to conductor



52 FINITE-ELEMENT ANALYSIS OF ELECTROSTATIC...

X

Z —-1.0 ~~-0.9 -—--0.8 —=0.7
—-0.6 —-0.5 —=0.4 ~—=0.3
—-0.2 —-0.1 — 0.0

1' -
0. NN
N —~
N —
0 NN~
\, ~. ————
0.25 (b) S—
—
0.00 . . .
0.00 0.43  0.87 1.30 1.73
X
Z —-1.0 —--0.9 —-0.8 —-0.7
—-0.6 —-0.5 —-0.4 -—-0.3
—-0.2 -——-0.1 -— 0.0

FIG. 6. Electric potential U (in units of Eya). (a) k=5000
and d =2.1a. (b) k=5000 and d =2.0001a.
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FIG. 7. Electric potential U (in units of Eya) on the sphere
surface vs 0 at (k=50000) for d =2.0002a, 2.002a, 2.02a, and
2.2a.
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FIG. 8. Electric field at the pole on the sphere surface at
d =2.0002a vs k. The inset shows the same physical quantity at
d =2.002a. — — —, results of the conductor model; A points,
FEA results.

particles. Indeed, U only deviates from zero near 6=0 or
a where the surface charge is concentrated. In the case
d=2.2a, U is almost zero on the whole surface,
|U/(Eqa)| £5X 1073, indicating very low surface charge
density. As d is reducing, the electric field gets stronger
in the polar region.

Since the electric field near the polar region is most
sensitive to « and the distance d, in Fig. 8 we plot the
electric field on the sphere surface right at the pole 6=0
as a function of « at d =2.0002a and d =2.002a. All
FEA results can be divided into two regions: a transition
region and a plateau. In the transition region, the elec-
tric field increases quickly with k. The previous calcula-
tion found plateaus at k=50 [14]. Our results indicate
that the plateau depends on the d. For example, when
d =2.0002a, the field continues to increase, even if
k~5000. In the flat region, the electric field approaches
to a constant. For a comparison, in Fig. 8 we also plot
two dashed horizontal lines, which are the results of the
conductor model at the aforementioned distances,
Eyd /(d —2a). The similarity of the two curves in Fig. 8
indicates that there 1is a scaling relationship,
E =g(«k)E,d /(d —2a), where g(k) is a function of «
only.

In order to have a further comparison with the dipolar
model at low k, we plot the induced surface charge densi-
ty o at k=2 and d =2.02a in Fig. 9(a). To examine o,
we expand it in terms of Legendre polynomials,

0(0)=T c;P)(cosB) . 4.1)
I

Because 0(0)= —o(m—8@), ¢;=0 for all even /. Nonvan-
ishing coefficients are listed in Table I. We note that the
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FIG. 10. Electrostatic energy per particle w (in units of
o/Ega €E 3a?) vs d for k=2, 5, 10, and 100, respectively. The curves
0.12 W are from the dipolar approximation.
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face charge shown in Fig. 9(b) is clearly even closer to
¢ Py (cos8)
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FIG. 9. Surface charge density o (in units of Eya) vs 6, the

leading term in its expansion c;P; (cos@), and the second term
¢3P3(cosf). (a) k=2 and d =2.02a. (b) k=2 and d =2.2a.

dipole model would be exact if ¢;=0 for [ =2. Table I
shows, for example, at d=2.02a and k=2,
¢3/¢1~19.5%. The dominance of ¢, implies that the di-
pole model is a good approximation when « is not very
big. In Table I we also list the coefficients for the same «
at d =2.2a, where c3/c;~11%. The corresponding sur-

TABLE 1. Coefficients in the series expansion of surface
charge density for k=2.

d 2.02a 2.2a
Coefficient
¢y 0.0703 0.0674
c3 0.0137 0.0080
cs 0.0095 0.0044
cq 0.0053 0.0017
Co 0.0029 0.0007
Ci1 0.0016 0.0002

¢;cos@ than that in Fig. 9(a). Therefore, the dipole model
provides an even better approximation if the distance d
increases slightly.

B. Interaction energy

Figure 10 presents the interaction energy per particle,
w, as a function of spacing d at k=2, 5, 10, and 100, re-
spectively. The maximum value of w is reached when d
approaches 2a. The curves in Fig. 10 are the results from
the dipolar model in Eq. (3.6). It is clear that the dipolar
approximation is quite good for k < 10. At k=2, there is
almost no difference in the energy between the FEA re-

w/(es E? a3)
°]
4.
2.0002a
3
2.002a
2 a
2.02a

—

0 10000 20000 30000 40000 50000

K

FIG. 11. Electrostatic energy per particle w (in units of
€/E}a’) vs « for d =2.0002a, 2.002a, and 2.02a, respectively.
The three horizontal lines are the results from the conductor
model.
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FIG. 12. Pair interaction energy between two neighbor spheres vs the distance d. (a) k=2, (b) k=5, and (c) k=10. The results

from the dipole model are included for comparison.

sult and the dipolar approximation. At «=10 and
d =2a, the dipolar model only differs from the FEA re-
sults by 15%. However, at k=100 and d =2a, the
difference between the FEA calculation and the dipole
model is quite big.

In Fig. 11 we plot w vs k at d =2.02a, 2.002a, and
2.0002a. The three horizontal lines are the results of the
conductor model in Eq. (3.10). As k increases, w ap-
proaches a plateau. However, it is clear from Fig. 11 that
Eq. (3.10) underestimates w at d =2.02a and d =2.002a.
The situation is improved at d =2.0002a. This is easy to
understand because Eq. (3.10) only considers the electric
field between two neighbor spheres, and only as d —2a is
this approximation good.

We also calculated the pair interaction energy between
two neighbor particles from Eq. (2.14). In Figs.
12(a)-12(c), we plot the pair interaction energy from the
FEA result and from the dipole approximation at k=2,
5, and 10, respectively. It is clear again that when « < 10,

the pair energy obtained with the FEA method is very
close to the results of the dipole model, even if the two
particles are nearly contacting each other.

C. Attracting force

Figures 13(a)-13(c) illustrate the neighboring attrac-
tive force vs distance d between two neighboring spheres
at k=2, 5, and 10, respectively. We apply Eq. (2.15) in
our calculation. The result from the dipole model, Eq.
(3.5), is also plotted in Fig. 13 for comparison. The above
results again indicate that the dipole model provides a
reasonably good approximation if « is not very big. The
deviation from the dipole model comes when the spheres
begin to contact. The FEA calculation shows that the at-
tractive force between two touching dielectric spheres is
stronger than the result from the dipole model when two
spheres contact each other. In addition, the higher « is,
the stronger the attractive force is. For example, at

1£/(eg Eda?)| 1£/(es E§a?)|
0.0465 09
0.0415 . 08/

0.0365
0.0315
0.0265
0.0215
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o.0115 02
0.0085 0.1
0.0015 ' , , , ' 00l

07
06/
05/
0.4
03

pair-force

1£/(es E3a?)|
4

(b) (c)

pair-force

0 d.lpol’e

2:6 28 3.0
d/a

20 22 2-4d/ 26 28 30 20 22 24 28 28 3.0 20 22 24
a

FIG. 13. Strength of the attractive force between two neighbor spheres f (in units of €,E}a?) vs d. (a) k=2, (b) k=5, and (c)
x=10. Both the results from the pair-force formula and the dipole model are also included.
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FIG. 14. Strength of the attractive force between two neigh-
bor spheres f (in units of €;E3a®) vs k at d =2.00002a.
— — —, results of the conductor model; A points, FEA results;
O points, results of the pair-force formula, Eq. (4.2).

k=10, the dipole model underestimates the strength of
chain by a factor of 6.

Figures 13(a)-13(c) also indicate that the attractive
force between two touching dielectric spheres is finite. A
previous calculation based on multipole expansion finds
this force to be infinite, which is unphysical because two
touching dielectric spheres in an electric field do not col-
lapse [14]. The pair attractive force will become infinite
only if k— .

As shown in Fig. 13(c), at k=10 and d =2a, the FEA
result of the pair force is about six times as strong as the
dipolar result. The FEA calculation of a tetragonal lat-
tice structure at d =2a and w =3.236a finds this ratio to
be about 9 [17]. Though the tetragonal lattice is not the
ideal structure of ER fluids [7], the above results indicate
that a lattice structure will further enhance the pair at-
tractive force

To have an empirical fit to the FEA results, we intro-
duce the following formula, which gives a good approxi-
mation to the neighbor-pair attractive force,

a*B6d —4a)
d4(d _zaﬁ(l—ﬁ)/l) .

Results from Eq. (4.2) have been plotted in Figs.
13(a)-13(c). They are better than the results from the di-
pole model.

In Fig. 14 we plot this attractive force as a function of
k at 2.00002a. The horizontal dashed line is the result of
the conductor model, Eq. (3.11). For a comparison, we
also plot the result from Eq. (4.2) in Fig. 14. It is clear
that the new pair force formula matches the FEA result
very well.

Our formula seems to cover the whole range of in-
terest. If B is small or d is big, Eq. (4.2) recovers the di-
polar result. If we take B=1 for the conductor spheres,
then Eq. (4.2) is identical to Eq. (3.12), the leading term

 pair = —€,E3a> 4.2)
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of the conductor sphere model.
When the spheres are in contact, d =2a, Eq. (4.2) gives
the neighbor attractive force

_ efE(z,aZBZ
fpair_ - 4(1 _B(I‘B)/Z) . 4.3)
If k«>>1, then B— 1, we can approximate
10 2 =exp [1=Lin[1-(1-p)]
~1—(1—-B)/2. (4.4)
Thus we have the leading term
foaie = — ke, Efa(k—1) . 4.5)

It is very interesting to note that Anderson’s result esti-
mates this force as [15]

—0.52¢,Eja’*/(4m)=—0.04138¢,E3a’> . (4.6)

Since k >> 1, both results are proportional to k2. Howev-
er, our force is slightly stronger than Anderson’s result in
the above limit.

We also note that the pair force of our FEA result in
Eq. (4.3) is proportional to E3, while the conduction
model [20] has the leading term of the pair force propor-
tional to E,. The conduction model assumes that the
conductivity of the base liquid is a function of the local
field which, in turn, limits the upper value of the local
field. Our present FEA calculation does not place any
cap on the local field. Therefore, the above difference
should be understandable.

V. CONCLUSIONS

We have solved the Laplace equation in closed form
for an infinite chain of dielectric particles in a dielectric
fluid and compared the electric field, energy, and pair at-
tractive force with the dipole model, conductor sphere
model, and other published results.

When k=€, /€, < 10, the dipole model seems to give a
good approximation for the energy, even if the particles
get very close. Therefore, in calculating the energy, the
dipole model can be used as an approximation for a rath-
er wide range of «.

However, the dipolar model underestimates the pair at-
tractive force when the particles are in contact or very
close. For example, at k=2 and d =2a, the attractive
pair force from the dipole model is about 70% of the
FEA result, while at k=10 and d =2a, the result from
the dipole model is only about 10% of the FEA result.
The bigger « is, the poorer is the dipolar model. Howev-
er, when « is finite, the attractive force is finite. When
two dielectric particles are in contact, their attractive
force does not go into infinite.

The conductor model is a good approximation when
the two particles are very close and « = 1000. Otherwise,
the conductor model overestimates the pair attractive
force.



52 FINITE-ELEMENT ANALYSIS OF ELECTROSTATIC. ..

Based on our FEA calculation, we proposed Eq. (4.2)
to calculate the neighbor pair attractive force. When
x>>1 and two spheres get very close, Eq. (4.2) is the same
as the leading term from the conductor model. When « is
not too big, Eq. (4.2) is also approaching to the result ob-
tained from the dipole model. When the chain is close
packed and « is large, Eq. (4.2) also gives f,; propor-
tional to 2, consistent with Anderson’s result. A com-
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parison of Eq. (4.2) with the FEA result suggests that this
formula may cover the whole range of interest.
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