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Growth of long-range correlations after a quench in phase-ordering systems
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We present a general framework for the time-dependent correlation functions in a phase-ordering sys-
tem after a quench from the disordered phase to or below the critical point and discuss under what con-
ditions the two-time exponents A, or A,, [characterizing the decay of local autocorrelations,
(P(r, O}P(r,t})-L ~ or -L ' for quenches to below T, or to T„respectively, where L(t) is the
correlation length at time t, and P is the order parameter] are equal to the spatial dimension d in the con-
served order parameter case. We present a few cases where exact solutions and numerical simulations
suggest A,,=d. The same, however, is not true for the exponent A, . We present one example, namely a
deterministic conserved model in one dimension, where A, is explicitly less than d =1. This led us to
study the differences and similarities between stochastic and deterministic models of coarsening. In this
paper, we address this general issue with a focus in one dimension, where the two classes of models are
discussed in parallel and several analytical and numerical results are derived.

PACS number(s): 64.60.Cn, 64.60.My, 64.70.Md

INTR QDUCTIQN

The kinetics of "phase separation" or domain coars-
ening, " after a system is rapidly quenched from its homo-
geneous phase into the multiphase region (two-phase for
simple binary mixtures or alloys or Ising model) of its
phase diagram, has a long standing history and is a sub-
ject of growing experimental and theoretical interest [1].
After the quench, the difFerent broken symmetry phases
of the system compete with each other to select the equi-
librium state. However, final equilibrium is never
achieved in the thermodynamic limit as the relaxation
time diverges as a power of the system size. Instead, the
system tries to achieve local equilibrium on larger and
larger length scales. As a result, domains of equilibrium
ordered phases form and grow with time. One important
experimental observation is that this nonequilibrium
coarsening process exhibits dynamic scaling at the late
stages of growth. By that, one means that at late stages
the system is characterized by a single length scale L(t)
(namely the characteristic linear size of the domains)
which grows with time t typically in a power law fashion,
L(t)-t" [although, as we will see later that in some
deterministic one-dimensional (1D) models, the length
scale grows logarithmically with time].

One of the quantities that can be measured by scatter-
ing experiments (light, x rays, neutrons, etc.) is the
equal-time correlation function G(r, t ) = (P(r ', t )P(r '

+r, t ) ) [where P( r, t ) is the order parameter field at time
t] or rather its Fourier transform, i.e., the equal-time
structure factor S(k, t)=(P(k, t)P( k, t)). The angu-—
lar brackets denote averages over random initial condi-

'Present address: Physics Department, Yale University, New
Haven, CT 06520.

tions and histories of evolution. The observed behavior
of the structure factor suggests that at late times it
satisfies a dynamical scaling law S(k, t) —[L(t)] F(kL)
[consequently, the real space equal-time correlation func-
tion G(r, t) scales as, G(r, t)-g{rlL(t))]. Here d
denotes the spatial dimension. For several years, the in-
terest in this field had been limited primarily to the deter-
mination of the growth exponent n and the scaling func-
tion g(x). Then it was pointed out by Fisher and Huse
[2] that the two-time correlation function
C(r, t)=(P(r ', 0)P(r ' +r, t)) (where t=O denotes the
initial time right after the quench) also has interesting
and nontrivial scaling properties. The function C(r, t) is
conjectured to have a scaling form, C(r, t)-L f(r/L)
[and, therefore, its Fourier transform
C(k, t)=($( k, O)P(k—, t)), i.e., the two-time structure
factor satisfies the scaling form, C(k, t)-L f(kL)].
This also implies that the auto correlation function
A(t)=(P(r, O)P(r, t)) which measures the local correla-
tion with the initial condition, decays as L (t). The ex-
ponent A. is a new equilibrium exponent. This exponent
has recently been measured experimentally for an Ising
system using video microscopy [3] and may also be mea-
sured via the autocorrelations of the speckle pattern in
coherent laser or x-ray scattering [4].

So far we have discussed quenches only into the or-
dered region of the phase diagram. However, one can
also quench the system to the critical point (e.g., in the
Ising model, quench to T= T, from temperatures above
T,). Unlike the quenches to below T„ in this case, well-
ordered domains do not form but the correlation length
of the system grows with time as g(t) t '~' where z—is the
usual dynamic exponent. The equal-time correlation
function scales as G, (r, t)-[g(t)] "+"g,[rig(t)]. The
autocorrelation A, (t) decays as [g(t)] ' where A., is a
"new" nonequilibrium critical exponent [5,6] in the sense
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that it cannot be simply related to the known static or dy-
namic critical exponents via some scaling relations.

It is now well established that the conservation laws
satisfied by the dynamics of phase ordering play an im-
portant role in determining the values of the exponents
(n, z, A, , A, , ) and the nature of the scaling functions. For
scalar order parameters in dimensions d ~ 2, it has been
argued on general physical grounds that the growth ex-
ponent n is —,

' for nonconserved [7] and —,
' for conserved

[8,9] order parameter dynamics. In the past few years,
the nonconserved dynamics (which is simpler than the
conserved case) has been studied in detail by several au-
thors [1] and a few analytical results have been obtained.
A new direction has been the extension to the vector or-
der parameter case for which several interesting results
have been obtained by Bray [1] and others. Exact results
for the correlation functions and the exponents are
known only in a few cases. For example, the noncon-
served zero-temperature Glauber dynamics in 1D (where
T, =0) can be solved exactly obtaining n = —,

' and A,, =1
[10]. Another example is the O(m) vector model (where
m denotes the dimension of the vector order parameter)
in the m ~ ~ limit where n =

—,', A, =d /2 [11] and
A,, =(3d —4)/2 (for 2&d ~4) [6] in the nonconserved
case. For the 2D nonconserved stochastic Ising model,
Fisher and Huse argued that A, =—„' [2], which has been
verified by numerical simulations [2] and recently in an
experiment by Mason, Pargellis, and Yurke [3] using
video microscopy. Fisher and Huse [2] also proposed
bounds on A,, namely, d/2+A, ~d. The exponents A, and
A,, in dimensions d 2 have been determined numerically
for the nonconserved kinetic Ising model [5,12]. Apart
from these, Mazenko and co-workers [13]have developed
an approximate theory for the zero-temperature coarsen-
ing which yields nontrivial values of A, which are in good
agreement with simulations only for the nonconserved
case. Recently, this approximation for two-phase sys-
tems has been extended to the coarsening of multiphase
systems such as the q-state Potts model and the q depen-
dence of A,(q) has been calculated within this approxima-
tion [14].

In comparison, relatively less success has been
achieved in the conserved order parameter case [1]. The
Lifshitz-Slyozov theory [9] predicted the growth ex-
ponent n =

—,
' in the limit of zero volume fraction of the

minority phase and also enabled exact calculation of the
distribution of the minority domain sizes in that limit.
Later, the growth exponent n was established to be —,

' for
all volume fractions [8]. Apart from these, Tokuyama
and Enomoto [15]have recently done a systematic expan-
sion in the low volume fraction of the distribution of
minority domain sizes and the equal-time structure fac-
tor. However, not much is known about the two-time ex-
ponents [A, , A,, ] or the two-time correlation function. For
the conserved 0(m ) model in the m ~ co limit, Bray has
shown that A,, =d [16]. Numerical simulation of the 2D
Ising model with nearest neighbor spin-exchange dynam-
ics (Kawasaki dynamics) has yielded A,, =2.0=d [17]. In
a recent paper, we have shown analytically and numeri-
cally [18] that A,, =1 for a 1D kinetic Ising model with

Kawasaki dynamics in the zero-temperature (T= T, =O)
limit. These three results seemed to suggest that the ex-
ponents A, and A,, might actually be equal to the spatial
dimension d (the upper limit of the Fisher-Huse bound)
for the conserved case. We were then able to make a gen-
eral argument that this result, A, =X, =d, was indeed true
in any dimension d provided one assumes that the k =0
mode of the two point correlation function scales {we will
illustrate this point in detail in Sec. I). However, there
may be cases where this assumption may not hold. In
fact, all three examples cited above where one can verify
this result directly, are quenches to the critical point T,
(for d= 1, T, =0) where the thermal noise plays an im-
portant role. This is in contrast to quenches below T,
where the thermal noise has been argued to be irrelevant
[1] in the renormalization group sense and the exponents
and scaling functions are characterized by the zero-
temperature fixed point. This fact leads to the specula-
tion that maybe the assumption that the k=0 mode
scales is valid only for quenches to T, leading to the gen-
eral result A,,=d but may break down for quenches to
below T, and the exponent A, may not be equal to d in
general. Thus, it would be interesting to find such a
counterexample where A, is indeed less than d. In this pa-
per, we present one such example, namely the coarsening
in a 1D deterministic conserved Ising model and show
that A, is indeed less than one.

Theoretically, there have mainly been two approaches
when studying the coarsening process. The first ap-
proach is the study of discrete spin models such as the
stochastic Ising model. One usually studies the spin Aip
Metropolis or Glauber dynamics for the nonconserved
case and the spin-exchange Kawasaki dynamics for the
conserved case. The second approach is to study the
overdamped Ginzburg-Landau (GL) or Langevin equa-
tions describing the relaxational dynamics of a continu-
um coarse grained order parameter field. These are
called model A (nonconserved case) and model 8 (con-
served case) in the language of Hohenberg and Halperin
[19]. These equations, in general, have a noise term cor-
responding to thermal Auctuations. However, since
thermal noise is irrelevant for quenches to below T„ the
noise term can be dropped from the equations (essentially
one can assume T=O). In that case, the GL equations
are completely deterministic, the only randomness being
in the initial conditions. This is very diferent from the
kinetic Ising models, which are stochastic by definition
(even at T=O) and the average of any thermodynamic
variable is not only over initial conditions (which is the
case for the T=O GL equations) but also over the his-
tories of evolution. The deterministic GL equations are
studied either by numerically integrating them (in which
case the results are typically very noisy and not very
clean) or by making approximations that may or may not
be valid in specific cases. It is generally believed that in
dimensions d ~2 and in the long time limit, the stochas-
tic and deterministic models belong to the same univer-
sality class. However, in d=1 at zero temperature they
are known to give very di8'erent answers. In the deter-
ministic 1D CxL model, the kinks or domain walls in-
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teract with each other via exponential forces leading to
the logarithmic growth law [20] for domains at late times.
In the stochastic 1D models, on the other hand, where
the kinks difFuse and annihilate on contact in the noncon-
served case [10]and the domains themselves perform ran-
dom walks and like domains (domains with the same
spin) coalesce on contact in the conserved case [18], the
growth laws are, respectively, t' and t' as in higher
dimensions. We take the view that the 1D stochastic
models are analogous to T=T, & 0 in higher d, while the
deterministic 1D models correspond to T=O in higher d.

In order to verify whether A, is equal to or less than d
for quenches to below T„one could, in principle, in-
tegrate the GL equations numerically. However, as men-
tioned above, the results are typically rather noisy and it
is hard to conclude beyond doubt whether A, =d or A, & d.
Similarly, the approximate theories [13], that are
moderately successful in the case of model A, are known
to fail for model 8. Under these circumstances, an ideal
choice seems to be the 1D case where, although one can-
not directly solve the GI. equations exactly, it is possible
to map the late time evolution (as we show below) into
that of a deterministic hard spin model which can be easi-
ly simulated yielding very clean numerical results and in
some limits it is even possible to extract some exact re-
sults.

Thus, apart from addressing the question as to under
what conditions the two-time exponents A, or A,, are equal
to d, this raises the interesting general issue regarding the
di6'erences and similarities between stochastic and deter-
ministic models of coarsening. In this paper, we address
this general issue with a focus in one dimension and dis-
cuss the two classes of models in parallel. The spirit of
the paper is essentially twofold: the first is to build a gen-
eral framework for the correlation functions and to
derive new analytical and numerical results for stochastic
and deterministic models in 1D and the second is to cast
the existing known results in line with the general frame-
work.

The paper is organized as follows. In Sec. I, we discuss
under what conditions the exponents A, or A,, are equal to
d for the conserved case. As an example where such con-
ditions hold, we rederive the solution for the O(m) model
in the m —+ (x) limit for the conserved case at T, and show
explicitly that A,,=d. In Sec. IIA, we reconsider the
nonconserved stochastic model in 1D, namely the zero-
temperature Glauber model. In Sec. II 8, we consider
the corresponding nonconserved deterministic model and
determine A, numerically. Section III is devoted to the
conserved 1D models. In Sec. III A, we consider the sto-
chastic case where the Kawasaki dynamics can be
mapped onto a "domain" model in the zero-temperature
limit with exponents n =

—,
' and A,, =1 exactly. In Sec.

III B, we map the late time dynamics of the deterministic
model 8 onto that of a hard spin model and show numer-
ically that A, is less than d =1. In Sec. IV A, we consider
the zero volume fraction limit of this conserved deter-
ministic spin model. In this limit, this is equivalent to a
deterministic version of an aggregation model
2+ A ~A in 1D. In Sec. IVB, a stochastic version of

this aggregation model is solved exactly. Finally, the pa-
per is concluded with a brief summary and discussion of
open issues.

I. GENERAL DISCUSSIGN

where = means that we neglect the corrections to scaling
at late times. Note that for quenches to T„d is replaced
by 2 —i? in Eq. (1). In the nonconserved case, the peak of
the structure factor occurs at k =0 and the width of the
peak decays as L '(t). The scaling function F(x) is of
order 0 (1) at x =0 indicating that the variance of the to-
tal magnetization, S(O, t) grows as L"(t). In the con-
served case, on the other hand, the k =0 mode P(0, t ) is a
constant of motion. Clearly then, the scaling function
F(x) cannot be nonzero at x =0. Because if so, the
right-hand side of Eq. (1) for k=0 will grow as L (t)
while the left-h. and side remains a constant. Hence, one
gets F(0)=0 necessarily in the conserved case. However,
S(0,t ) is, in general, a nonzero constant set by the initial
conditions. How then can one satisfy Eq. (I)'? The
answer to this question lies in the corrections to the scal-
ing term in Eq. (1) which we had neglected. With the
leading order scaling corrections near k =0 included, the
Eq. (1) reads

S(k, t) = [L(t)]"F[kL(t)]+F,[kL(t)], (2)

where the correction term Fi(x) is a nonzero constant at
x =0 that cancels S(0,t ) exactly on the left-hand side of
Eq. (2). Note that for kAO, F[kL(t)] is nonzero and
then in the scaling limit when L(t)~ ao and k ~0 keep-
ing kL(t) fixed, the correction term is negligible. Thus,
for the conserved case, in order to incorporate the k =0
mode in the equal-time scaling, one should always consid-
er a scaling form of Eq. (2) and not just Eq. (1). In fact,
there can also be other corrections with positive powers
of L(t) that, however, also vanish at k =0, so the correc-
tion shown in Eq. (2) is, in general, the leading correction
only at k =0.

Now let us consider the two-time structure func-
tion C(k, t ) = ( P( k, O)P(k, t ) ). Onc—e again, C(0, t )
=S(O, t) and is a constant of motion for the conserved
case. By the same argument as in the case of the equal-
time structure factor, the k=0 mode is special in the
conserved order parameter case and one should include
the leading correction to the scaling and, in general, one
can write,

C(k, t) = [L (t)]" ~f[kL(t)]+ [L(t)] 'f, [kL(t)], (3)

We start out by assuming that the system undergoing
coarsening is described by a local order parameter field
P(r, t ) (for example, it is the local spin for the Ising mod-
el) whose Fourier transform is denoted by P(k, t). Note
that the k =0 mode $(O, t) is the total order parameter
(total magnetization for Ising model) at time t. In both
nonconserved and conserved cases, the equal-time struc-
ture factor S(k, t)=((()(k, t)P( k, t)—) satisfies scaling at
late times,

S(k, t)= [L(t)]"F[kL(t)],
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where A, , (d —
A, since the second term is a correction to

the first term and is, therefore, of lower order in L(t).
However, unlike the equal-time case, two diff'erent situa-
tions are possible in this case. The first scenario is,
as in the equal-time case, f(0)=0, A, (d, X, =O, and

f, (0)=C(O, t ) which is a nonzero constant. In this case,
we cannot conclude anything about A, except that it is less
than d. A second scenario is, however, possible in the
two-time case but not in the equal-time case namely,
A, =d, f(0) is a nonzero constant equal to C(O, t), and
A, I & 0 so that the correction term is not important at long
time for any k. Thus in this case, the k =0 mode is not
special for the two-time structure factor and is included
in the single scaling function f(kL ) and we say that the
k=O mode also scales. Note that the same argument
holds for quenches to the critical point as well and hence
for A, In fact, in the three special cases quoted in the In-
troduction, this latter scenario is valid [18]. However, all
these examples are for quenches to T, . In Sec. III B, we
will present an example where the first scenario holds and
A, is clearly less than d. In the rest of this section, we will
explicitly work out one case where the second scenario
holds, namely, the conserved O(m) model in the m ~ ao

limit at T=T, . This model has already been solved
[11,16] and we will not present any new result but we will
derive the solution in a way that wi11 illustrate the above
general framework in the most explicit fashion.

The O(m) model is described by an m component or-
der parameter field P(r, t)=[/&(r, t), . . . , P (r, t)] and a
coarse grained Landau-Ginzburg free energy functional

H(P)= —f d r (VP) +rag + (P ) (4)

The model-B equation describing the overdamped relaxa-
tion with a locally conserved order parameter is in gen-
eral nonlinear and hard to solve. However, in the largeI limit, this equation can be linearized in a self-
consistent way and is, therefore, solvable in that limit
[11]. In the Fourier space, this linearized equation reads,

= —k'[k'+ r, +uS, (t) ]P(k, t )+g(k, t ), (5)

where A is the upper cutoff' of the theory. Defining a
new variable k (t) via the relation, ro+uSO(t)= —d/
dtI2k (t)t j, the two-time correlator C(k, t) can be
written as

C(k, t ) =C(k, 0)exp[ —Q(k, t )],
where Q(k, t)=k t 2k k t and we have u—sed the

where g(k, t) is a Gaussian noise with zero average and
a correlator (i}(k,t)g(k', t')) =2Tk 5(k+k'}5(t+t')
Since the difFerent components of P are completely un-
correlated in the large m limit, we have dropped the sub-
script and denote any single component by P(k, t). The
self-consistency demands that So(t) is related to the
equal-time structure factor S(k, t ) by

S,(t) = f S(k, t)d~k,
(2~)'

fact that (P( —k, O)g(k, t)) =0 for tAO. Similarly, the
structure factor S(k, t) can be shown to consist of
two parts, S(k, t)=S, (k, t)+Sz(k, t), where S,(k, t)
=S(k,O)exp[ —2Q(k, t)] and S2(k, t) is given by

S2(k, t)=2k Texp[ —2Q(k, t)j f exp[2Q(k, t')]dt' .

This second term comes directly from the noise term in
Eq. (5) and is, therefore, important for quenches to T, .
For quenches to T=O it vanishes. The variable k~(t) has
to be determined from the self-consistency condition in
Eq. (6}. For convenience, we reparametrize the theory in
terms of (mo, u ) instead of (ro, u ) where mo is the equi-
librium magnetization and is simply related to ro by
ro = —um 0 uT/—(2~) jo k d k. In terms of these
new parameters, the self-consistency condition reads

[2k' (t)t ]=um,' — „f S(k, t )—,d "k,
(2~)" o k'

(9)

where S(k, t ) has to be substituted. Note that the quench
to T, corresponds to putting ma=0 in Eq. (9). In that
case, a suitable ansatz for k (t) at large t, would be
k (t)t=a+0(t ). As can be checked self-consis-
tently, for 2(d &4, a is nonzero and a=(4—d }/4 and
for d )4, a is zero and a=(d —4)/2 for 4&d (6 and
a=1 for d )6. Considering a random initial condition
(corresponding to a high temperature phase),
S(k,O)=C(k, O)=h, which is a constant of O(1) and
writing x =kt ', it is easy to check that
S&(k, t)=hexp[ —2x +4i/ax j and

Tc
Sz(k, t)= ' x f exp[ —2x (1—y)k'

+4v ax (1—v'y )]dy ',
(10)

in the scaling limit t ~ ao and k ~0 but keeping
x fixed. For x%0, the second term is going to dom-
inate and the equal-time structure factor scales as
S(k, t)=k F, [kg(t)] where g(t)-t' indicating z, =4
and the scaling function F,(x) is given by Eq. (10). How-
ever, note that the first term is precisely the correction to
the scaling term (at k =0) as discussed in Eq. (2) and at
x =0, F,(x)=0 but S,(0)=6 on par with our general dis-
cussion at the beginning of this section. However, the
two-time structure factor is given by C(k, t)
=b,exp( —x +2i/ax ), clearly indicating that A,, =d,
f, (0)=h, and the correction to scaling is unimportant.
This example, therefore, confirms the second scenario
discussed earlier where the k=O mode "scales" in the
two-time structure factor but not in the equal-time struc-
ture factor.

To determine the constant a, we substitute the scaling
form of S(k, t) in Eq. (9). Then the leading term on the
right-hand side decays as t '" ' which is slower than
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t '~ (for 2 (d & 4) whereas the left-hand side decays as
t '~ . Therefore, for consistency, the coefficient of
t '" '~ term on the right-hand side must vanish. This
gives a condition

At. They are independent random variables each taking
values +1, —1, or 0 with probabilities —,'At, —2ht, and
1 —At, respectively. Taking the limit At —+0, the equa-
tion of motion can then be written as

dx x 1 2x exp 2x 1
0 0

ay(k, r) = —(1—cosk )P(k, t )+ri(k, t ), (14)

+4&ax (1—&y )]dy '=0,

which can be numerically solved to determine a for
2&d &4. Thus, although the exponents are dimension
independent, the scaling functions depend explicitly on
the dimension. Note that for d 4, the scaling limit is
governed by the Gaussian fixed point, i.e., the self-
consistent term (arising from the P interaction) becomes
irrelevant and the only self-consistent ansatz for a is that
it is identically 0, and to match the self-consistency con-
dition in Eq. (9), k (r) must vanish as t '" '~ for
4&d &6 and as t ' for d &6. In that case, the scaling
functions F,(x) and f,(x) can be calculated trivially and
the same conclusion k, =d holds corresponding to the
second situation of our general discussion.

Another case where one can check explicitly that the
second picture holds is the 1D conserved stochastic mod-
el [18],which will be discussed in Sec. III A.

II. NQNCONSKRVED MQDKI. S IN QNK DIMENSI(ON

A. Stochastic models in 10

P(k, t ) = —g ( —1)"exp(ikx„),1

i&A sin(k/2)
(12)

where the domains are sequenced as 1,2, . . . , n, . . . and
x„denotes the location of the domain wall or kink
separating the (n —1)th and the nth domain. In the
zero-temperature Glauber model, these domain walls exe-
cute ind. ependent random walks and two walls annihilate
on contact. The increment in P(k, t) in a small time in-
terval At can be written as

AP(k, t ) = g ( —1)"exp(ikx„)1

i v'X sin(k /2)

X [exp(ikg„) —1],
where the g„(t) are the distances moved by the walls in

A classic example of a stochastic nonconserved model
that can be solved exactly in 1D is the zero temperature
Glauber model. Several authors have studied this model
and all the exponents and the correlation functions are
known exactly [10]. A new method of solving this model
was presented in Ref. [18] which separates out the deter-
ministic and the stochastic part of the evolution in an ex-
plicit manner. We outline this approach below.

We consider an arbitrary Ising spin configuration
tp(x, t); p(x, t)=+1] at time r on a 1D lattice. The
Fourier transform p(k, t ) = ( I /v i' )g p(x, t )exp(ikx ),
where X denotes the number of lattice sites, can be writ-
ten in a domain wall representation as

where the 6rst term on the right-hand side represents the
purely deterministic part of the evolution and the second
term g(k, t) is purely stochastic. It is Gaussian noise
with zero average and a correlator (ri(k', t')g(k, t))
=4cos (k/2)p(t)5(k+k')5(t t'),—where p(t)=L '(t)
is the average density of domain walls at time t. Using
the fact, (P( —k, O)g(k, t)) =0 for t&0, it immediately
follows that in the scaling limit (k —+0, t ~ oo but holding
x =kt '~ fixed), the two-time correlator is given by
C(k, t) =b,exp( —x /2) where as usual we have assumed
a random initial condition, C(k, O)=S(k, O)=b, . This
immediately gives A.,= 1. Similarly, the equal-
time structure factor can be shown, as in the case of the
0 ( m ) model in the m ~ oo limit, to consist of
two disjoint pieces, S(k, t ) =Si(k, t )+S2(k, t ) where
Si( k, t)=be xp(

—x ) and Sz(k, t)=4foexp[ —k (t
t )]p(t')—dt'. Using, p(t)=L '(t)=t ' in the scaling

limit, we get

S2(k, t ) = t ' —f exp[ —(x —y ) ]dy .
X 0

(15)

Thus, as in the O(m) case, Si(k, t ) represents the leading
correction to scaling and S2(k, t)=L(t)F(x), with F(x)
given by Eq. (15), represents the scaling term. However,
note that F(0)=8, a nonzero constant as opposed to the
conserved case where F(0)=0. Thus, once again as in
the case of the 0(m) model at T„ the scaling function
comes from the stochastic term and the leading correc-
tion from the deterministic piece. This is not surprising
considering T, =O in 1D. Thus, in this sense, the zero-
temperature Glauber model in 1D corresponds to "criti-
cal" coarsening.

B(h 8 P BV(P)
Bx

(16)

where V(P) =(P2 —1) /2 is a double well potential with
degenerate minima at /=+1 representing the two or-
dered phases. The equilibrium profile (dp/dt =0) of this
equation is given in terms of a "kink" or "domain wall"
solution, P(x) =tanh(x —xo), where xo represents the po-
sition of the kink. Note that units are chosen so as to set
the width of the domain wall to unity. At late times t,

(16) can be mapped onto the deterministic equations
of motions of a bunch of interacting kinks and the aver-
age length of domains grow logarithmically with time
[20—22]. To see in a simple way how the kinks interact
at late times leading to a logarithmic growth law, we erst

B. Nonconserved GI. equation in one dimension

In one dimension, the zero-temperature (and, there-
fore, deterministic) GL equation for nonconserved order
parameter field [P(x, t ) ] reads,
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(19)

where we have neglected the interactions beyond nearest
neighbors. When two nearby kinks come closer, the cor-
responding domain between the kinks annihilate and the
two adjacent domains coalesce to form a larger domain.
In the limit, when the typical separation between domain
walls is much larger than the width of a wall (i.e., at late
times), the shortest domains collapse instantly compared
to the larger domains. The same situation arises when
the kinks interact via a long-range force r (where r
denotes the separation between a pair of kinks) in the lim-
it o~~ [23]. In either case, the late time dynamics
reduces to that of a kinetic Ising model where at every

R (t}

xo (t} x& (t}

FICx. 1. A bubble of "down" phase in a sea of "up" phase.
The two ends of the bubble xo and x, represent a pair of kinks.

consider, following examples in higher dimensions [1], a
bubble of "down" phase in a sea of "up" phase (see Fig.
1). The two ends of the bubble xo and x, represent a pair
of kinks. Clearly, this bubble is going to shrink in time.
In higher dimensions, this shrinkage is due purely to sur-
face tension. But in one dimension, the mechanism of
shrinking lies in an attractive exponential interaction be-
tween the pair of kinks. To see how this comes about, an
ansatz for the solution of Eq. (16) (which is appropriate at
late times for well-separated kinks) would be,

P(x, t ) = tanh[x —x, ( t) ]—tanh[x —xo(t) ]+I,
for xo(t) &xi(t). Substituting this form in Eq. (16) and
keeping only the leading order term in an expansion in
exp[ —(x i

—xo) ] (i.e., assuming the kink separation
x, —xo to be much larger compared to the width
of a kink [-O(1)] which is valid at late times),
we get, dx, /dt = —a exp I

—2(x, —xo ) ] and dxo /dt
=aexp[ —2(xi —xo)] where a is a numerical constant.
Thus the length of the bubble, R(t)=x, (t) —xo(t)
shrinks at late times according to the law,

dR
8t

= —exp[ —2R ],
where we have rescaled the time I; by the numerical factor
2a. Thus the bubble shrinks logarithmically with time
due to the attractive exponential force between the two
kinks. Equation (17) has to be compared to that in higher
dimensions d ~ 2, where dR /dt = —(d —1)/R and is
purely due to surface tension.

It is then easy to generalize this solution when the
number of domains present is large by superposing the
kink solutions as above and the equation of motion of the
nth kink is given by [20—22],

GfX ~ =exp [ —2(x„+i
—x„)]—exp[ —2(x„—x„,)],

time step (starting with a random initial configuration of
up and down spins), the shortest domain present is found
and the spins inside that domain are Qipped and the pro-
cess continues. Thus the system coarsens with the con-
tinual removal of shortest domains. This model was orig-
inally studied by Nagai and Kawasaki [20] assuming no
correlations between the domains. However, Rutenberg
and Bray [23] pointed out that this assumption is exact
because when the shortest domain collapses and conse-
quently a bigger domain is formed via the merging of
three originally adjacent domains, the other domains in
the system remain unaffected by this coarsening. There-
fore, if in the initial con6guration the domains are un-
correlated, no new correlations are generated dynamical-
ly. This model is also exactly identical to the "paste all"
model studied by Derrida, Godreche, and Yekutieli [24]
in the context of "breath Qgures. " The lack of correla-
tions between domains enables an exact calculation of the
distribution of domain sizes. Let n(l, t)dl denote the
number of domains with lengths in the interval [1,1+dl ]
and L(t), the shortest length at time t Then . the total
number of surviving domains at time I; is
N(t)= jzn(l, t)dl and the fraction, f(l, t) n(l, t)/N(t)
satisfies a scaling form, f(l, t)-L 'F(l/L, t) [23,24].
Since the domains are uncorrelated, the evolution of
n (1,t ) satisfies the equation [24],

n(l, t+dt ) =n(l, t )

+n(L, t)dL 2f(l,t)—

X 8( 1 —1' 2L ), (20—)

where 8(x) is, as usual, the unit step function. Sub-
stituting the scaling form for f(1,t ) and using the
Laplace transform F(p, t ) =j, dx exp( px )F(x, t ), one-
gets a fixed point distribution (i.e., dF /dL =0) of
the form, F(p) = tanh[E, (p ) /2] [20,23], where Ei (p)
=f "dx exp( —x )/x.

From the knowledge of this Axed point distribu-
tion of the domain lengths, Nagai and Kawasaki could
calculate the equal-time structure factor
S(k, t)=(P( k, t)P(k, t)) exactl—y [20]. However, the
calculation of the two-time structure C(k, t)
=(P( —k, 0)P(k, t)) is nontrivial as it requires a
knowledge of the history of evolution. However, it is
easy to simulate this model to determine the decay of the
autocorrelation function. The dynamics is very fast in
units of L(t) [where L(t) denotes the average length of
domains at time t] and it is possible to reach the late stage
of evolution quite fast and obtain clean data. In Fig. 2(a),
we have plotted —log, 0[2(t)] versus log, o[L(t)] for a
1D lattice with 10 sites, where A(t)=(p(r, 0)p(r, t)) is
again the local autocorrelation. Although, this plot
seems to be a fairly good straight line to the bare eye, the
local slope has an upward curvature as L(t) increases.
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To get a good estimate of A, , we, therefore, calculate the
effective exponent A,,z in the following way. The auto-
correlation A (L) [since the actual time t never appears in
the autocorrelation, we denote A(t) by A(L)] decays as
A(L)=aL +bL + where the second term
denotes the leading correction to scaling and . . denotes
higher order corrections. We fit the data with the choice
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FIG. 2. (a) The autocorrelation function (for the determinis-
tic model A in 1D), namely, A(t) = (s(r, O)s(r, t)) (averaged
over 70 runs on samples of size 10' sites) as a function
of L( t) on a log-log plot. (b) The efFective exponent
A,,a= —[1/log, o(c)]log,a[A'(cL)/A'(L)] plotted against L
for the nonconserved deterministic model in 1D. Here c =10
and A'(L)= A(L) —bL '. The constant b has been adjusted to
be = —1.819 so that the best fitting straight line is parallel to
the L ' axis, i.e., A,,z is independent of L '. The intercept of
this line with the vertical axis gives A, =0.60+0.01. (c) The
functions B(n, t) for n =0, 1,2, 3,4 against L(t) for the noncon-
served deterministic model in 1D (for a sample of 10000 sites).

8=1 [25]. Thus we first define A'(L)= A(L) bL
We then define the effective exponent
A,,tr= —[ I/logto(c) ]logto[ A '(cL )/A '(L )]. In our simu-
lation, we have chosen c =10 ' . Now the coefficient b is
adjusted so that A,,z is independent of L and, therefore,
when plotted against L ', gives a Bat line parallel to the
L ' axis. By extrapolating this line to L '=0, one can
read off the effective A, from the intercept of this Bat line
with the vertical axis. In Fig. 2(b), we have plotted A,,tr

against L '. By choosing b==1.819, we find that the
best fitting straight line is almost horizontal and then
from the intercept to the vertical axis, we get
A, =0.60+0.01 [25]. This result has to be contrasted to
the stochastic nonconserved Glauber model (which we
call critical coarsening} where A,, =l exactly. Thus, the
difference between these two classes of models shows up
not only in the growth laws and equal-time correlations
but also in the two-time correlations.

Recently, Bray, Derrida, and Godreche [26] have com-
puted exactly another nontrivial nonequilibrium ex-
ponent of the deterministic model. Defining B(O, t) as
the fraction of spins that have not Ripped at all up to
time t ("dry part" as in Ref. [24]), they found that B(0,t )

decays at long times as B(O, t)-[L(t)] ~ where
P=0. 174 exactly for the 1D deterministic model dis-
cussed above and P, =0.74 numerically for the 1D
Glauber model at zero temperature. The decay of B(O, t)
with different exponents shows further differences be-
tween stochastic and deterministic models in 1D. In fact,
one can, in general, define B(n, t) as the probability that
a spin has Hipped exactly n times up to time t. It then fol-
lows immediately that the autocorrelation A(t) is given
by, A(t)=g„o( —I)"B(n,t). Due to the cancellation
between even and odd n, the autocorrelation A (t) decays
faster (with a larger exponent namely, A. =0.60 for the
deterministic case and A,, = 1 for the stochastic case) than
B(O, t). The calculation of B(O, t) in Ref. [24] for the
deterministic case can be extended to calculate the
asymptotic decay of B(n, t) and we find that B(n, t) for
all n decay with the same exponent P=O. 174. However,
this does not enable us to calculate the exponent k exact-
ly since to calculate the autocorrelation A (t), we need to
know B(n, t) even at early times. For n ~ 1, B(n, t) grows
at early times, then remains constant for long times and
then finally starts to decay. However, for a finite lattice,
this asymptotic regime of decay is hard to see. To illus-
trate this point, we have plotted in Fig. 2(c), the functions
B(n, t) for n =0, 1,2, 3,4 against L (t) for a 1D lattice
with 10000 sites and up to times when the number of
domains left is 10. As can be seen from the figure, the
time at which B(n, t) for n ~1 starts to decay is longer
for larger n. The value of A(t) (up to the time shown in
the figure) obtained by keeping in terms up to n =4,
A (t) =g„(—1}"B(n,r ) agrees well with the direct calcu-
lation of A (t).

III. CONSERVED MODELS IN ONE DIMENSION

A. 1D Stochastic conserved model

An example of the stochastic 1D conserved model is
the nearest neighbor spin-exchange (Kawasaki) kinetic Is-
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ing model. In this model, a nearest neighbor spin pair is
chosen at random and their spins are exchanged accord-
ing to the usual Metropolis algorithm. Now, in one di-
mension the ordered phases coexist only at T=O and,
therefore, coarsening can occur only at T=O. However,
at T=O of the Kawasaki dynamics (where spin pairs are
exchanged only if the move does not increase the energy),
the domains stop growing indefinitely as the system gets
trapped in a metastable excited state with isolated
domain walls [27]. Thus in 1D Kawasaki dynamics,
coarsening can occur only in the limit T—+0 and on a
special time scale. This case has been discussed in detail
in Ref. [18]and here we just outline the results.

A new time scale r=texp( 4J/k—~T) was defined in

[18], with the real time t~ ~ and T~O but keeping r
fixed (here J denotes the exchange coupling of the Ising
model and kz, the Boltzmann's constant) and it was
shown that on this special time scale the 1D Kawasaki
dynamics is equivalent to a "domain" model of Cornell,
Kaski, and Stinchecombe [28], where each domain as a
whole performs a random walk with a rate proportional
to 1/L where L is the length of the domain. Coarsening

. occurs via the merging of these difFusing domains and the
average length of domains grow as L(r)-r' [18,28] as
in the higher dimensional cases. By proceeding in a simi-
lar way as in the nonconserved zero-temperature Glauber
model [i.e., writing P(k, t) in a domain wall representa-
tion and separating out the deterministic and stochastic
part of the evolution], we argued that the two-time ex-
ponent A,,=1 exactly for this model. This result along
with the scaling of the equal-time and the two-time corre-
lation functions was verified numerically [18].

This model thus represents another case where the ex-
ponent A,, is equal to the spatial dimension (in this case
d =1}.

B. Conserved GL equation in one dimension

In the dynamics of model 8, the local conservation of
the order parameter field P(x, t) implies a continuity
equation, Bp/Bt+Bj/Bx=0 where the current density
j(x) is derived from a chemical potential j(x)= —Bp/Bx.
The chemical potential p(x) is given by

a'y av(y) (21)a' ay

where V(P) is the usual double well potential as defined
in case of model A in the preceding section. Thus the
chemical potential p(x) in model 8 plays the same role as
dQ/dt in model A. The coarsening occurs via the bulk
difFusion of the "up" phase from a region of higher chem-
ical potential to a region of lower chemical potential.
Here we have dropped the noise term thus confining our-
selves to the deterministic zero temperature dynamics.
One again, as was achieved in the nonconserved case, the
goal is to map the late time dynamics of this model onto
that of a kinetic Ising model.

We proceed as in the nonconserved case by first consid-
ering a mall bubble of down phase confined between two
kinks &(t) and x&(t) as shown in Fig. 3(a) and let
R(t)=x2(t) —x, (t). Let xo(t) denote the location of the

nearest kink to the left of x&(t) and L, (t)=x&(r) —xo(r)
[see Fig. 3(a}]. Similarly, x3(t} is the location of the
nearest kink to the right of xz(t) and L2(t)
=x3(t)—xz(t). We consider the situation when R (t) is
much bigger than the width of a kink [ —O(1)] but much
smaller than the lengths of other nearby domains, e.g. ,
R (t) «L &(r). Now, the chemical potential p(x) satisfies
a diffusion equation d p/dx =0, in the bulk of the up
phases, i.e., in the regime I (xo &x &x, ) and regime II
(x2 —x —x3 ). Let us first focus on regime II. In this re-
gime, one has to solve the difFusion equation with the
boundary conditions, p(x2}=@2 and p(xi)=pi. Now,
proceeding exactly as in the nonconserved case, i.e., con-
sidering the superposition of the kink solutions as a suit-
able late time ansatz for P( x, t } and substituting in Eq.
(20), we get pz-exp[ —R(t)] to leading order in the ex-
ponential interactions and ~p&~ && ~p2~, since the domains
on either side of the kink at x3 are much larger than
R (t). Then, the solution of the diffusion equation satisfy-
ing these boundary conditions is simply

(x3 —x )

1.2
(22)

Thus a space independent current, j(x)= —Bp/Bx
=p2/L2 fiows, which causes the short down bubble with
length R(t) to shrink. Consequently, the next down
domain to the right (which is already longer) grows by
the difFusion of down matter from the shorter to the
longer bubble. Now, the same thing happens on the left
of the bubble of radius R(t), i.e., in regime I. The only
difFerence is that in this regime, the current is given by
j= p, /L, , wh—ere p& =p(x =x

&
). Noting however that

p&--p2-exp[ —2R(t)], since the bubble with radius R(t)
is the shortest one, so we find that the shortest bubble
shrinks with currents (of down phase) fiowing from it to
the nearest left or to the nearest right bubble of identical
phase and the ratio of the left to the right current is given

R (t) L2 (t)

- XO(t) x& (t), , x~ (t)jaj x& (t)

Lee

I

Dee
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Dg

e e,
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Lee + ee Lg + L, L„,+ e„

FIG. 3. (a) A small down bubble of length R(t) confined be-
tween a pair of larger up bubbles of lengths L &(t) and L~(t), re-
spectively. xo, x&, xz, and x3 denote the locations of the kinks.
(b) The schematic representation of the dynamics of the kinetic
Ising model derived from the deterministic CxL equation in 10
for the conserved case (model B). The shortest domain Do has
length Lo which is broken into two pats of lengths l& and l„ac-
cording to the ratio l&.l, =L„:L&.
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by J, :J,=L,:L,.
This then completes our mapping of the model-B dy-

namics to an equivalent kinetic Ising model at late times.
The dynamics of this Ising model is as follows. One
starts with a random initial configuration of up and down
domains. Then at every time step, the shortest domain
present in the system is found. Let this domain be denot-
ed by Do and its length by Lo. Let the two nearest
domains to the left of Do be denoted by D& (with length
L) and D&& (with length L&&), respectively [see Fig. 3(b)].
Similarly the two nearest domains on the right of Do are
denoted by D, (with length L„) and D„„(with length L„„).
Now the shortest domain is broken into two parts of
lengths I& (the left half) and l„(the right half) according to
the ratio I&.l„=L„:L&. Then, the shortest domain Do is
removed, the domains D~ and D, are coalesced together
to form a single domain of length L&+L, and the lengths
of the domains D&& and D,„are increased to L&&+I& and

I

L,„+I„,respectively. Then at the next time step, one
again finds the current shortest domain and the process
continues.

One of the main differences from the nonconserved
case discussed in the preceding section is that this dy-
namics introduces correlations between neighboring
domain lengths, so we have been unable to solve analyti-
cally as in the nonconserved case. At late times and in
the scaling limit, the exact ratio of the two parts (I& /l„) of
the shortest domain is not important (as has been
checked numerically) and one can break it into two equal
halves. In that case, one can write down a mean field
equation (i.e., ignoring correlations between neighboring
domains although it is clear that the correlations are im-
portant even for the "equal halves" case) in the same way
as in the nonconserved case. Using the name notations as
in the preceding section and ignoring correlations be-
tween domains, we obtain

+ J dl'j(l', t)f(l I', r—)8(l —l' —l)n ( l, t +d t ) =n ( l, t ) + n (L, t )dL 4f (1,t ) +—2f 1 — ,t— (23)

where L(t) is the shortest length at time r and
dL =L(t+dt ) —L(t). Assuming a scaling form
f(l, t)=L 'E(l/L, t) and using the Laplace transform
F(p, t ) = f i"dx exp( —px )F(x, t ), a straightforward alge-
bra shows that the fixed point distribution F(p) satisfies
the equation

dF(p) 1 —q (1—e ~~ ) eF'(p)—
dp &p

(24)

where we have used the consistency condition
lim, „F(l,t)= —,'. This first order equation falls in the
class of generalized Ricatti equation [29] and cannot in
general be solved in the closed form. However, a closed
form solution would not give us much insight since the
domain correlations are neglected in the mean field
theory. Furthermore, it does not give any information
regarding the two-time correlations.

However, as in the nonconserved case, this Ising model
can be simulated and it is possible to reach the late times
quite fast since the dynamics does not involve the real
time directly. In Figs. 4(a) and 4(b), we have shown the
scaling of the equal-time and the two-time correlation
functions, respectively. Note that the corrections to scal-
ing are quite apparent at early times. Figure 4(c) shows a
plot of the —log, o[A (t)] versus log, oL(t) where A(t) is
the autocorrelation A(t)=(P(x, O)P(x, t)} and L(t) is
the average length of domains at time t. Once again, as
in the nonconserved case [Fig. 2(a)], we notice an up-
ward curvature in the local slope as L (r) increases. We,
therefore, proceed to calculate the effective exponent X,ff
as in the nonconserved case. There is, however, an im-
portant difference from the nonconserved case. In the
conserved case, we expect the leading correction to the
scaling in the autocorrelation A (L) [once again we

denote A(t) by A (L) since only L appears in the expres-
sion for A] to decay as L " (following the discussion of
Sec. I). Thus for the conserved case, we fit to
A(L)=aL +bL +, where . denotes the
higher order terms in 1/L. In this case, we first define
A'(L) = A (L) bL "and th—en calculate the effective ex-
ponent, A,,s.= —[1/log, o(c) ]log io[ 3 '(cL ) /3 '(L ) ] with
c =10 . Once again, the coe%cient b is adjusted so that
A,,z when plotted against L gives a straight line parallel
to the L ' axis. With the choice of b = —0.984, we find
in Fig. 4(d) that the best fitting straight line is almost
parallel to the horizontal axis. From the intercept of this
line with the vertical axis, we get A, =0.67+0.02.

Thus, this constitutes a clear example of a determinis-
tic conserved model where A, &d, in contrast to the other
known conserved cases, all corresponding to quenches to
T, of stochastic models where we have found A,, =d.
Thus, according to our general discussion of Sec. I, the
deterministic conserved model falls in the "first" category
where, as in the equal-time structure scaling, the two-
time structure factor is also dominated by corrections to
scaling at k =0.

IV. MAPPING TG THE AGGREGATION MODELS IN 1D

A. Deterministic aggregation model

In this section, we consider the deterministic conserved
model in 1D as discussed in Sec. IIIB but in the limit
when the volume fraction of one of the phases (e.g. , the
down phase) is small. In this limit, the dynamics of this
model can be mapped onto that of a deterministic aggre-
gation model as we show below. When the volume frac-
tion Po of the minority down phase is small, a typical
domain of the majority up phase (with volume fraction
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FIG. 4. (a) The equal-time correlation function (for the deterministic model B in 1D), namely, (s(O, t)s(r, t)) (averaged over 70
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fitting straight line is parallel to the L axis, i.e., A,,z is independent of L . The intercept of this line with the vertical axis gives

A, =0.67+0.01.

1 —$0) is much longer compared to that of the minority
phase. Since the interaction between a pair of' kinks falls
off exponentially with their separation, it is clear that in
the limit $0~0, the dynamics of the minority phase
domains occurs exponentially faster than that of the ma-
jority phase. Thus in this limit, one can view a typical
configuration as consisting of a set of particles (each par-
ticle representing a majority domain) separated by the in-
tervals of the minority phase and the mass of a particle is
equal to the length of the corresponding majority
domain. The dynamics then consists of 6nding the pair
of closest particles (i.e., finding the smallest of the minori-
ty domains) and replacing them by a single particle (with
mass equal to the sum of the masses of the two "parent"
particles) midway between them. We note that without
this "aggregation" procedure, this model is geometrically
identical to the "cut-in-two" model discussed by Derrida,

Godreche, and Yekutieli [24] in the context of breath
figures.

In the limit of zero volume fraction of the minority
phase, the distribution of the sizes of the minority bub-
bles was calculated exactly in d =3 by Lifshitz and Slyo-
zov [9] and later this calculation was extended to higher
dimensions [30] as well as to d =2 [31]. However d = 1 is
very special where the distribution of the lengths of the
minority domains is the same as the distribution of inter-
vals in the cut-in-two model discussed above. The distri-
bution function P(l, L ) denoting the fraction of intervals
of length I when the shortest interval is I., scales as
P(l,L )-L 'R (I/L ) and was studied in detail by Derri-
da, Godreche, and Yekutieli [24]. Unfortunately, due to
the correlations introduced between neighboring intervals
as one cuts the shortest interval into two halves and
pastes them to its neighbors, the scaling function R(x)
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cannot be calculated exactly as in the nonconserved
"paste-all" model where there are no correlations be-
tween neighboring domains. One can calculate R(x)
within a mean field theory (i.e., neglecting correlations
between neighbors) which however is very difFerent from
the actual scaling function obtained by numerical simula-
tion [24].

In one dimension, the distribution of the lengths of the
majority phase is also of interest. In terms of the above
aggregation model, this is identical to the distribution of
mass, P(m, L ), i.e., the fraction of particles having mass
m when the shortest interval is L,. This distribution also
scales as P(m, L )-L 'S(m/L ). The introduction of
this new variable m in the cut-in-two model also intro-
duces correlations between the mass of a particle and the
lengths of the neighboring intervals since a large mass is
typically neighbored by long intervals. Consequently, ex-
act calculation of the scaling function S(x) is also
difticult. However, as in the case of length distribution,
one can write down a mean field theory ignoring all
correlations. Let n(l, mL )dl dm denote the number of
intervals of length between [i,1+dl ] followed by a mass
between [m, m+1m ] at a time when the shortest inter-
val is of length I.. Assuming no correlations, it is easy to
write down an evolution equation for n(l, m, L) as was
done earlier in Secs. II and III. Assuming a two variable
scaling, n(l, m, T)-L Y(l/L, m/L), it is straightfor-
ward algebra that shows that the function Y(x,y )
satisfies the following equation:

x +y + Y(x,y )+ Y(x —
—,',y )+f f Y( l,y, )3x By 0 0

X Y(x —
—,',yz )5(y —y 1

—
yz )dy, dye =0, (25)

where the function Y(x,y) is identically 0 for x & 1. One
can solve Eq. (25) by introducing the double Laplace
transform,

Y(p, q ) = f o"dy exp( —
qy )f 1"dx exp( —px ) Y(x,y ) .

Using Lagrange's method of auxiliary equations [32], we
find

tegrate over the length, i.e., to put p =0 in Eq. (25).
Then, the Laplace transform of S(y), i.e., Y(0,q )= fo"S(y)exp( —

qy )dy is given in terms of the unknown
function, g( l, q ),

Y(0,q)= f g(l, t)exp —f g(l, u)
q q Q

(27)

3.50

However, contrary to the case of the length distribution
where we need to know the value of the function g( l, q)
only at a particular point, i.e., at q =0 (and which is fixed
to be one by the finite coverage constraint as mentioned
above), for the mass distribution we need to know the full
function g( l, q ) for which there is no a priori consistency
condition. Thus there exists a continuum of such solu-
tions each characterized by a function g (1,q ) [as opposed
to the case of length distribution, where each solution is
characterized by a parameter g(1,0)]. Which one of
these solutions is picked up by most initial conditions is
not clear a priori.

In any case, the mean field theory is not accurate as it
neglects correlations. We have, therefore, performed a
direct simulation of the aggregation model to determine
the mass distribution. In Fig. 5, we have plotted the
scaled mass distribution versus x =m/L where L is the
average length of the domains which is proportional to
the length of the shortest interval.

A somewhat related one dimensional deterministic
model where such distributions can be computed exactly
is Burger's equation [33]. The exact solution of the veloc-
ity field satisfying Burger's equation consists of a series of
shocks each having a strength (or mass) (i.e., the discon-
tinuity in the velocity field across a shock) and an ad-
vance velocity that divers from shock to shock. When
two shocks collide, they coalesce into one and their
strengths are summed and also the momentum (i.e.,
strengthXvelocity) is conserved in a collision. In this
model, the distribution of the shock strengths as well as
the distribution of the length of the separation between
two adjacent shocks can be computed exactly [33]. Fur-
ther connections between the aggregation models and

Y(p, q)= f g(l, t)exp
q q

+ 1 —1+g l, u exp
~ dtt QP

q Q 2q

(26)
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where the function g(l, t)= f o Y(l,y)exp( ty )dy. Note—
that for q =0 [after making a change of variable t empt /q
in Eq. (26)], i.e., by integrating over the mass variable,
Eq. (26) reduces to the Eq. (21) of Derrida, Csodreche,
and Vekutieli [24] with the choice g(1,0)= 1 as demand-
ed by the fact that the fixed point distribution is charac-
terized by a finite coverage, i.e., the first moment of the
scaling function R(x) is finite. For calculating the scal-
ing function S(y) for the mass distribution, we need to in-
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FICx. 5. The mass distribution function P{m,L) [scaled by
the average length L{t)] plotted against the scaled mass m /L at
six different times when L is 10.00, 15.85, 25.13, 39.84, 63.17,
and 100.20 (averaged over 10 runs on samples of size 10 ) for the
deterministic aggregation model in 10.
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Burger's equation have been discussed by Hayakawa,
Yamamoto, and Takayasu [34].

B. Stochastic aggregation model

In this section, we consider a stochastic model of ag-
gregation and solve for the distribution of the length of
the intervals and the mass exactly. In this model, one
considers a number of massive particles performing ran-
dom walk on a one-dimensional lattice. We consider a
continuous time dynamics where in a small time interval
At, every particle hops to its nearest neighbor on the
right with probability 2ht, to the left with probability
2ht or stays back in its present location with probability
(1—b t ). If more than one particle happens to be at the
same site, they coagulate instantaneously into a single
particle whose mass is equal to the sum of the masses of
the coagulating particles. One is then interested in calcu-
lating the distribution of the separation between the par-
ticles P(l, t) and the distribution of masses P(m, t) at
time t.

Note that the discrete time version of this model is
identical to the growth model introduced by Takayasu,
Nishikawa, and Tasaki [35] except for the fact that in the
Takayasu model, there is an additional injection of one
particle at every site at every time step. This injection
procedure was introduced to achieve a nontrivial steady
state (t~~), where the distribution P(m, oo) has a

I

power law tail. This is because, without this additional
injection procedure, the steady state is trivial where all
the particles coagulate into a single one whose mass tends
to infinity. The statics [35] and the dynamics [36] of this
model with injection has been solved exactly. Also,
without the additional variable mass, our model is exactly
the same as the stochastic A+A ~A reaction model.
The length distribution for the A+A~A model has
been calculated by ben-Avraham, Burschka, and Doering
[37].

Let M~(t) denote the mass at the lattice site i at time t.
The dynamics is represented by the stochastic equation

M, (t+ht ) =g w,"M (t),
j

(28)

where w;. are random variables that take values 0 or 1 ac-
cording to the following rules. First of all, w," satisfy the
constraint g; w;~

= 1. Second, w;. =0 with probability 1 if
jAi —1, i+1 or i w;~. for. j=i —1, i +1 is 1 with proba-
bility —,'ht and 0 with probability 1 —

—,'At. Finally, w,.;
is 1 with probability 1 —At and 0 with probability At.
We define the r body g-enerating function Z( r, p, t )
=(exp[ —pg'+i 'M (t)]) where ( ) represents the
average over the joint probability distribution of masses
at the r consecutive sites. Note that Z(r, p, t ) is indepen-
dent of i due to translational invariance. Using Eq. (28)
and the constraint, g;w; =1, we get

l+f —2

Z(r, p, t+bt)= exp —p w;; iM; i(t)+(1—w; i;)M~(t)+ g MJ(t)
j=i+1

+ ( 1 —w; ~„,~„,)M, ~„ i(t)+ w; ~„,; ~„M,~„(t) (29)

where ( ) denote an average over the M at time t as well
as over the set W: [w;; „w;, ;, w;+„;+„
w;+„ i;+„]. The members of the set W are indepen-
dently distributed [independent of each other and also of
the M (t)]. Each member of Wean be either 1 with prob-
ability —,'b, t or 0 with probability 1 —

—,'kt. We first per-
form the average over this set W in Eq. (29). Note that
out of 16 possible configurations of 8' only five
configurations contribute to O(1) or O(ht) on the right-
hand side of Eq. (29). Out of these five [0,0,0,0] contrib-
utes to 0 (1) and [1,0,0,0], [0,1,0,0], [0,0,1,0], and
[0,0,0, 1] contribute to O(b, t ). The other 11
configurations contribute only to O(ht ) or higher.
Neglecting terms of O(b. t ) and taking the limit At~0,
we find that the function Z evolves according to the equa-
tion,

dZ(r, p, t) =[Z(r+ 1,p, t)+Z(r —l,p, t) —2Z(r, p, t)],
(30)

X [I„„(2t) —I„+„(2t)], (31)

where I„(t) is the modified Bessel function of the first
kind. Note that by definition, Z(l, p, t) is the Laplace
transform of the single site mass distribution function,
i.e., Q( mt).

We first calculate the distribution of the separation be-
tween particles, i.e., P(l, t ). Let E(l, t ) denote the proba-
bility that a segment of length I is empty. Then clearly,
the function P ( I, t ) (normalized to unity) is related to
E(l, t) via

I

solution depends on p only through the initial condition.
This equation is identical to that satisfied by the two-
point equal-time spin-spin correlation function
G ( r, t ) = ( s (0, t )s ( r, t ) ) in the zero-temperature Glauber
model [10]. Making a Laplace transform following
Glauber and inverting it back, the solution can be written
as

Z(r, p, t)=1+e ' g [Z(n, p, 0)—1]
n=1

with the boundary condition Z(0,p, t ) =1 for all t Note.
that this equation does not contain p explicitly and the

P(l, t)= —[E(1+2,t)+E(l, t) —2E(1+1,t)] .1

e(t) (32)
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+e 2' g g(n)[I„,(2t) I„—+&(2t)],
n=1

(33)

where g(n)=lim „Z(n,p, O) is the probability of oc-
currence of an empty sector of length n in the initial con-
dition. While the first term in Eq. (33) is independent of
the initial condition, the second term depends explicitly
on the initial condition. However, as long as all positive
moments of g(n) exist [i.e., g„",n g(n) is finite for any
positive integer p], the second term decays in time faster
than the first term and, therefore, drops out in the scaling
limit when t~~. Thus, for all initial conditions, that
satisfy this condition, the expression for E(l, t) is univer-
sal and is given by the first term of Eq. (33). As specific
examples, one could consider two difFerent initial condi-
tions that satisfy this condition: (i) when each site is oc-
cupied by a single particle of mass unity for which
Z(n, p, O) =exp( pn ) and, th—erefore, g(n) =0 identically
and (ii) when every site is either occupied by a single par-
ticle of unit mass with probability —, or empty with proba-
bility —,

' in which case Z(n, p, O)=([1+e' i']/2) " and,
therefore, g(n)=2 ". Thus the concentration of parti-
cles decays universally as c(t)=1 E(l, t)=1—/&re and
consequently the average separation between particles
grows as (L )(t)=1/c(t)=v'~t at long times, a result
that was already derived by ben Avraham, Burschka, and
Doering for the A+ A —+A model by using a di6'erent
technique [37]. Using the asymptotic expansion of the
Bessel function, we find from Eqs. (33) and (32) that in
the scaling limit, i.e., t —+ ~, l ~ (x} but keeping
x =l /(L )(t ) fixed, P(l, t ) = (L ) '8 (l /(L ) ) where the
universal scaling function R (x) is given by

R (x)= (n.x /2)exp

This result was also derived by ben-Avraham, Burschka,
and Doering [37] for the A + A ~ A model by a different
method.

We now turn to the calculation of the single site mass
distribution function Q ( m, t ). By definition,
Z(l, p, t)=g" oe ~ Q(m, t), where Q(O, t) denotes the
concentration of vacancies at time t. Let us first write
Z(n, p, O)=g =Of(m, n)e ~ where f(m, n) denotes
the probability that at t =0 a block of n consecutive sites
will contain a total mass m. For example, for the two ini-
tial conditions discussed in the previous paragraph,
f(m, n)=5 „ for case (i) and f(m, n)= " 2 " for

case (ii). Then, from Eq. (29) we find (using properties of
Bessel functions) that for m )0,

00 —2t

Q ( m, t ) = g f ( m, n ) nI„(2t ) (35)
n=a

and Q(0, t ) = 1 E( 1,t ) as discusse—d in the preceding

The function E(l, t ) is just the p independent term in the
expansion of Z(l, p, t), i.e., lim „Z(l,p, t) and is easily
seen from Eq. (31) to be

1 —1

E(l, t)= 1 —e ' Io(2t)+I&(2t)+2 g I„(2t) .
n=1

paragraph. The fraction of particles having mass m
at time t, i.e., P(m, t) (normalized to unity) is given
by P(m, t ) =Q(m, t )/c(t) .Now, let us assume that
the initial condition satisfy the following two condi-
tions, namely, for any positive integer p (a) the
sum g„" in' (m, n ) exists for all m and (b)

g„=in' (m, n ) =[g„",nf (m, n ) ]~ to leading order for
large m. Then, using the asymptotic expansion of the
Bessel function and taking the limits t —+~, m —+co
but keeping x =m*(m)/(L )(t} fixed where
m'(m)=g„" inf(m, n), it is not difficult. to see that,
P(m, t ) = (L ) 'S(m*(m)/(L ) ) where the scaling func-
tion S(x) is given by

7TXS(x)= exp
2

(36)

Thus, provided the initial conditions satisfy the two con-
ditions (a) and (b) as mentioned above, this scaling func-
tion S(x) is universal. It is easy to verify that the two
specific examples of initial conditions (i) and (ii) discussed
in the preceding paragraph satisfy these two conditions
and m*(m)=m in case (i) and m*(m}=4m+2 in case
(ii).

It is amusing to note that the distributions of both the
intervals and masses are described by the same scaling
function. Note that from the function Z(r, p, t ), one can
also compute the probability E(r, m, t ) that a segment of
length r contains a total mass m by calculating the
coefficient of exp( —pm) in the expansion of Z(r, p, t).
This is useful in demonstrating that the corrections be-
tween neighboring sites play an important role in this
model also as in the case of the deterministic model. To
see this explicitly, we first calculate P(2, m, t )

=exp( 2t)[I 2(2t) —I +2(2t)] and t—hen the quantity,
U(m, t)=g OP(l, m„t)P(l, m —m, , t) which is

given by

e
—4t m

U(m t)= g mi(m —m )I (2t)I (2t) .
—p

1

(37)

Had there been no correlations between neighboring
sites, P(2, m, t ) would have been equal to U(m, t ). How-
ever, once again using the asymptotics of Bessel function,
it can be demonstrated that in the scaling limit, P(2, m, t )

decays as t ' whereas U(m, t) decays faster as t in-
dicating that correlations are important. In fact, around
a large mass at a given site, there will always be a neigh-
boring depletion regime as in the deterministic case.

Before concluding this section, we note that the sto-
chastic A+ A —+A model also describes the coarsening
of the q-state Potts model in 1D (at T=O) in the limit
q ~~ (which also describes the coarsening of soap bub-
bles) [14]. This can be understood in the following way.
Representing a domain wall between two Potts phases by
a particle A on a 10 line, the dynamics of the zero-
temperature Potts model is equivalent to that of a gen-
eralized reaction difFusion model where the particles
difFuse, annihilate, and coagulate according to the follow-
ing rules: Each particle undergoes diffusion until two of
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them meet in which case they either annihilate, i.e.,
A+ A ~0 (which corresponds to the merging of two
domains of the same phase in the Potts model) with prob-
ability 1/(q —1), or coagulate, i.e., A+A~A (when
two domains of different phases meet in the Potts model)
with probability (q —2)/(q —1). For q=2, the particles
only annihilate and thus one has the zero-temperature
Cilauber model, whereas for q~ ~, they only coagulate.
Thus the two models 3 + A ~0 and A + 3~3 are the
two solvable limits of the Potts model. For the latter
case, i.e., in the q~ ~ limit, it has been argued [14] re-
cently that the two-time exponent A, =d in all dimensions.
In one dimension, the coarsening of the q-state Potts
model can be mapped onto that of an Ising model with
magnetization I =2/q —1 and, therefore, following the
same method as discussed in Sec. II A, it is easy to see
that A,, =1 for all q in 1D. This, therefore, constitutes
another example where A,, =d.

SUMMARY AND CONCLUSIONS

In this paper„we have studied mainly the two-time
correlation function in a phase ordering system after a
quench to or below the critical point. We have built a
general framework for the equal-time and the two-time
structure factors and discussed under what conditions the
two-time exponents A, or A,, are equal to the spatial di-
mension d in the conserved order parameter case. We
have presented a few cases where exact solutions and nu-
merical simulations suggest that k, =d. All these cases
however correspond to quenches to T=T, where the sto-
chastic noise plays an important role. This raised the

question whether the same result, i.e., A, =d is true for
deterministic models as well, which correspond to
quenches to below T, . However, we have found one ex-
ample, namely the deterministic model 8 in 1D where A,

is explicitly less than d =1. Thus we conclude that while
A,, =d may be true in all dimensions, the exponent A, , in
general, can be less than d. In most parts of this paper,
we have confined ourselves to d= 1 where analytical re-
sults are possible to obtain and also the numerical simula-
tion is easier. We have presented a detailed analytical
and numerical study of the similarities and differences be-
tween stochastic and deterministic models in 1D.

While we have found a specific example where A, (d, so
far we have not found any counterexample to the conjec-
ture that A,, =d is generally true. This, therefore, remains
an open question and either a general proof of this result
or even a counterexample would be interesting. Al-
though the exponent A, has been measured experimentally
[3] for the nonconserved Ising model in 2D, there has not
been any experiment so far measuring A, or k, for the
conserved case. Any such effort, therefore, would also be
very interesting.

We have mainly confined ourselves to the short-range
models in 1D. Recently, however, there has been much
activity [23] in the one-dimensional long-range models
where the interaction between kinks decays as a power
law instead of exponentially as in the case of short-range
models. It would be interesting to study how the ex-
ponents A, or A,, change in that case.
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