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Spatial correlation functions in Lorentz gases maintained in nonequilibrium steady states are
studied. The correlation function of microscopic number densities of the moving particle and scat-
terer is found to have long range spatial correlations that decay as 1/r? in three dimensions in the
presence of either a concentration gradient, a temperature gradient, or an electric field. Stronger
correlations are found at higher order in the electric field. Our analysis is based on a derived kinetic
equation for the two-particle correlation function. Possible extensions of our work are discussed.
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I. INTRODUCTION

In this paper, the fluctuations in a classical Lorentz
gas that is in nonequilibrium steady states are studied.
In particular, we study the spatial correlation of fluc-
tuations in the microscopic number densities of moving
particles and scatterers for a Lorentz gas subject to a
temperature gradient, a concentration gradient, and an
external electric field.

There has been considerable interest in the study of
spatial correlations in nonequilibrium systems. It was
stimulated by the fact that because of the gradients in
the system, such correlation functions typically have a
much longer range in space than their equilibrium coun-
terparts. Among others, systems of fluids have been in-
vestigated both theoretically and experimentally [1]. For
a dilute gas, the equal time correlation functions exhibit
an algebraic decay in the nonequilibrium steady state,
which was noticed by Ludwig [2] in 1962, but was first
appreciated and fully investigated by Onuki [3], Ronis
et al. [4], Kirkpatrick et al [5], and Tremblay et al. [6],
and the same is true for a fluid of arbitrary density [7].
These theoretical predictions of long range correlations
for a fluid have been confirmed by light-scattering exper-
iments [1,8].

It is also well known that the velocity autocorrelation
function for a fluid in equilibrium shows an asymptotic
long-time decay proportional to t~%2 . This was first
discovered by Alder and Wainwright [9] in a molecular-
dynamics computer experiment for a system of hard
spheres. This result came as a big surprise and motivated
considerable theoretical work (see, for example, [10,11]).
It was realized that these two seemingly different phe-
nomena, namely long-time tails and long range correla-

tions, are closely related each other; their origins are the
same hydrodynamic mode-coupling effects [1,7].

In contrast, for a Lorentz gas [12], where the medium is
composed of fixed hard sphere scatterers, the velocity au-
tocorrelation function in equilibrium was found to decay
asymptotically for long times as t~(4/2+1) [13]. This long-
time tail was first explained in terms of correlated colli-
sion events [13] and later by means of phenomenological
mode-coupling theory [14]. Having seen the close connec-
tion between long-time tail and long range correlations
for a case of fluids, it is natural to expect that the long
range correlation also exists for a Lorentz gas. However,
no such correlations have been reported. This situation
motivated us to search for possible long range correlations
for a Lorentz gas in some nonequilibrium states. Techni-
cally our analysis is based on a kinetic equation for the
two-point correlation function. In general, we find long
range correlations do exist but they are somewhat weaker
(faster decaying) than in the fluid case, just as the long-
time tail in the Lorentz gas is weaker. This last point
suggests it would be interesting to study correlations in
a nonequilibrium quantum Lorentz gas, cf. point (4) in
Sec. IV.

II. BOGOLIUBOV-BORN-GREEN-KIRKWOOD-
YVON HIERARCHY FOR A LORENTZ GAS

In a classical Lorentz gas, there is no interaction be-
tween moving particles, so that there is no mechanism to
develop correlations between moving particles. A correla-
tion can appear only between moving particles and scat-
terers. We therefore consider the following many body
distribution functions:
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where, F(z™,R":,t) is the classical distribution function
of N moving particles for a fixed distribution of N; scat-
terers; R; is the position of the ith scatterer, z = (v,r);
and V is the volume of system. The time dependence of
R (R') is dropped since the scatterers are fixed for each
realization of disorder, and excluded volume effects have
been ignored in the integration in terms of R. Note that
f(z,t) is the disorder-averaged one-particle distribution
function.

We can construct a hierarchy of equations for the above
correlation functions. In the presence of an electric field,
the particles are assumed to be charged; however, inter-
actions between particles are still ignored. The first two
equations of the hierarchy are
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where T'(z,R’) is the binary collision operator between
a particle and a hard sphere scatterer given by [15],
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Here, o is the diameter of a scatterer, and & a unit vector
that characterizes the geometry of the binary collision
between the particle and the scatterer at contact. The
operator b replaces the velocity v of the particle before
the collision by the one after the collision; v* = v—26(v-
). In giving Eq. (6) the difference in position between
the particle and scatterer is neglected. It is easily shown
that this is a low scatterer density approximation. We
choose units such that the mass of the moving particle
is 1, e =1, and kg = 1. In order to proceed further, we
closely follow the paper [16] and use the cluster expansion
of C®)(z, R, R/), etc., yielding
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where C®(z,R,t) and C®)(z,R,R’,t) are defined

through these formulas. By substituting (7) into Egs. (4)
and (5), we have
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Now, we make the ansatz that the right-hand side of
the first equation and the last two terms of the second
equation can be ignored compared to other terms in a
dilute scatterer approximation [16]. Then we have,
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f

where n; = N;/V and T'(v) is defined by §(r —R)T'(v) =
T(z,R).

Equation (9) is the Boltzmann equation for a Lorentz
gas and Eq. (10) is an approximate equation for the two-
point correlation function. These are closed equations for
C® (z,R,t); i.e., by means of Eq. (9), we can solve for
f(z,t), then C®(z, R,t) is determined by Eq. (10). It is
easily seen at this stage that the binary collision operator
T(a:, R) just changes the direction of v, so that for any
function f(v) of v only, T'(z,R)f(v) = 0; the left-hand
side of (10) is nonzero only when f(z,t) has anisotropy
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in velocity space, namely in nonequilibrium.

Let us consider the nonequilibrium steady state in
which an external electric field, temperature gradient,
and chemical potential gradient are present. Up to the
first order in those mechanical and thermal perturba-
tions, the steady state solution of Eq. (9) is given by
[17)

f(.’E) =.fle‘+‘6f
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Here, fi. is the local equilibrium distribution function,
e~ B@)e(@)~n=)], f, is the equilibrium distribution func-
tion, e Al -4l 7 = 1/(n;mo%v); B(z) and p(zx) are
space dependent inverse temperature and chemical po-
tential, respectively; and 8 and p are the corresponding
mean values.

Although this is a well known result, it involves more
than just the solution of Eq. (9). In order to obtain the
solution (11), the local equilibrium assumption was made
[18]; however, there is no energy dissipation mechanism
between moving particles nor between the particle and
scatterer in Eq. (9). Accordingly, the electric field accel-
erates particles indefinitely, which leads to Joule heating,
or in the absence of the electric field, a particle that ac-
quires the kinetic energy from one boundary wall will
possess the same energy until it reaches another wall and
cannot relax into the local state determined by the local
temperature and density. Therefore, on using Eq. (11) as
our starting point, some energy transfer mechanism has
to be implicitly assumed. In this paper we want to focus
on the effect of elastic collisions on correlation functions.
Thus, we will study Eq. (10) without any modification
that would appear from the energy relaxation mecha-
nisms. Physically this is a good approximation if the
elastic scattering rate is large compared to the inelastic
one.

III. EIGENVALUE ANALYSIS
OF THE KINETIC EQUATIONS

We solve Eq. (10) by means of an eigenvalue analysis.
Introducing the Fourier transformation for r, Eq. (10) in
the steady state can be written as

N a _
k-v —n; —-E. = @) (k /
{z v—-nT(v)—E 8v}C (k,v,k)

=n,T(v)8f(v)(2m)36(k + K'). (12)

Now we look for the eigenvalue and the eigenfunctions
of operator ik - v — n;T(v) = Lg. This operator acts on
any function of ¥, but not of v, so that the function space
J
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is defined for each v. We are interested in the diffusion
mode, namely the eigenvalue that vanishes as £ — 0. For
small k, the eigenfunction and the eigenvalue are

La|®) = w|0©),
©) =1—ir,k-v+--- (13)
w=Dyk?+ -,

where D, = v%7,/3 = v/(3n;w0?). The v dependence
of diffusion constant D, and relaxation time 7, simply
reflects the fact that in a Lorentz gas one particular tra-
jectory of a moving particle is realized by a class of initial
conditions that have the same directions in velocities and
initial positions but different speeds, v’s, and the times
the particles spend in this trajectory are scaled by the ra-
tio between those v’s. This consideration also leads us to
define the inner product in the function space on which
Ly acts as follows:

(606, )l v))in = [ G0 (eiv)p(0cv)

where S is the solid angle element in the d dimension.
Note that |©) is normalized to 1 in the limit of £k — 0 by
this inner product.

(14)

A. E = 0 case

We first calculate the number density correlation func-
tion of particles and scatterers in the case of E = 0. This
correlation function is defined by

(A(r)NVi(R)) = (n(r)Ni(R)) — (n(r))(N:(R))
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where n(r) is the density of particles, V;(R) is the density
of scatterers, and |1) = 1. When there is no electric field,
Eq. (12) can be formally solved as
CA(k,v,K,t) = —n,T(v)Jf(v)(27r)36(k+k’) (16)
It is obvious that the diffusion mode |©) is the dom-
inant part of the eigenvalue spectrum of Ly for £ — 0,

or for long distances. Inserting the projection operator
|©)(O|, D(k) for k — 0 is given by
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In the real space this implies the algebraic decay

1 N1 v 3
= ). wvu-[E_2)s.
An2 VT r2? {r H (T 2)1‘ VT}
in three dimensions. This shows that the correlations are of long range and that they decay as r~2. As seen from the

above derivation, this is due to the coupling between the diffusion mode and the constraints imposed to maintain the
nonequilibrium steady state.

(R(r)N(R)) =

B. E # 0 case

We next consider the E # 0 and the Vy = VT = 0 case. The existence of an additional term E -9/8v in Eq. (12)
allows us to investigate D(k) not only in the first order in E but also to arbitrary strength in E. The operator
E -9/0v is defined in a different space from that of Ly. However, the same eigenfunction |®) = 1 — itk - v solves the
eigenvalue equation for Ly — E-8/8v with the new eigenvalue w = D,k? + itk - E. This is true up to second order in
k for the term independent of E and to first order in k for the term that depends on E. Thus with this approximation
we can regard this operator as one that belongs in the same operator space as Ly. Therefore the equation for D(k)

can be solved in the same way as before,
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Integrating over v yields
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where the last line was expanded in powers of (ik -
E)/(k%T). This is compatible with the above approxi-
mation and is valid as long as the electric potential dif-
ference between the two boundary walls is sufficiently
small compared to the mean temperature of the system,

k-E 1 1 LT

Z7 A T s
where ®;(¢ = 1,2) are the electric scalar potentials at the
boundary walls and L is the length of the system.

The result, Eq. (19), indicates the long range correla-
tions. In particular, the first term is the same as the term
involving the chemical potential gradient in Eq. (17). It
also shows that the higher order terms in E have stronger
singularities in k space, and that the expansion in powers
of E is nonanalytic.

In principle, when we go beyond first order in F, the
higher order corrections to f(z,t) must also be taken into
account. Those corrections, however, involve the consid-
eration of the dynamics of scatterers, Joule heating, etc.,
and require additional parameters such as the inelastic
scattering rate discussed at the end of the last section.
Our results are due solely to the coupling between the
electric field and the diffusion mode that originates from

(18)
ik-E\? 3ik-E 3ik-E
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ik B §+ 19
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[
elastic scattering and are therefore independent of these
corrections.

IV. CONCLUSION AND DISCUSSION

We have shown that the correlation function of the
number density of particles and scatterers decays alge-
braically for a Lorentz gas in a nonequilibrium steady
state. To first order in a concentration gradient, a tem-
perature gradient and an electric field, it decays asymp-
totically as 1/r2, while it has stronger correlation at
higher order in the electric field. Those long range cor-
relations are due to the coupling between diffusive mode
and thermal or mechanical perturbations that maintain
the nonequilibrium steady state. Our method was based
on a simple analysis of the kinetic equation for the two-
particle correlation function.

We conclude this paper with a number of remarks:

(i) Our method is considerably simpler than that for a
fluid [7]. Due to the lack of momentum conservation in
collision process in a Lorentz gas, there are only two col-
lisional invariances, 1 and v2, which correspond to num-
ber density and energy density conservation law, respec-
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tively. Moreover, because of the absence of an energy
relaxation mechanism, the particles having different v’s
are never mixed up. The diffusion process occurs only
involving particles having the same v’s. This means that
v can be regarded as a parameter characterizing the class
of particles, and accordingly there is only one collisional
invariant: 1. This is the reason why we have a simple so-
lution for the eigenvalue equation (13) and the definition
of the inner product is given by Eq. (14). The statistical
distribution of energies emerges only in the preparation
of the local equilibrium. It is interesting to compare this
situation with the case of the self-diffusion process in a
fluid [19]. There, the collision operator in the Lorentz-
Boltzmann equation involves the equilibrium distribution
function fo. Thus, the inner product also involves fy, and
the similar eigenvalue analysis yields the constant D. In
this sense, the diffusion process in a Lorentz gas is spe-
cial.

(ii) In wave number space, our results for correlation
functions of particle density and scatterer density are
summarized as follows:

D(K) Niﬁ - (gradient of T, u,or ®) N(R -E)? o
kT k212

In contrast, for a fluid in a temperature gradient, the

density density correlation function has been shown to

have a long range [7], which in wave number space is

(k- VT) N (k-VT)?
k2T kiT? -
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This comparison shows us that the Lorentz gas corre-
lations are less singular as £ — 0 than those in a fluid. It
is generally believed that the smaller the long-time tail
exponent, the weaker the long range correlations. The
long-time tail for a Lorentz gas is t~(4/2+1) which is also
weaker than the t~%2 for a fluid. Thus our results sup-
port this general scheme. In the case of fluids, the connec-
tion between long-time tails and long range correlations
is well understood [1], [7]. We investigate this connection
for a Lorentz gas elsewhere [20].

(iii) The spatial correlations in diffusive systems kept
in a nonequilibrium steady state have been studied by
many authors [1,21,22]. In general the particle-particle
density correlation function is studied using fluctuating
hydrodynamics, and long range spatial correlations are
found. However, these are due to the interaction between
particles and are therefore distinct from our study.

(iv) In this paper we studied a classical Lorentz gas.
The quantum version of the problem has a long-time
tail that decays as t~%/2 [23]. One therefore expects
stronger long range correlations in nonequilibrium quan-
tum Lorentz gases than in the classical Lorentz gas. In
addition, even if there is no interaction between particles,
there are correlations due to the Pauli exclusion principle.
For example, the two-particle Wigner function cannot be
simply factorized into two one-particle Wigner functions.
These problems will be considered elsewhere [24].
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