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Long-time tails in lattice gases violating detailed balance
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Using analytic and simulation techniques, we study the long- and intermediate-time behavior of
the velocity autocorrelation function in two-dimensional lattice gas automata with stationary states
that violate detailed balance. Such models are prototypes of dissipative systems, have stationary
states that are very different from Gibbs states, and exhibit long-range spatial correlations. Such
static correlations are absent in models with detailed balance symmetry. In some lattice gases
with strong violation of detailed balance, the simulations show negative velocity correlations at
intermediate times (cage eifect), which, to our knowledge, has never been observed in lattice gases
before. A mode coupling calculation is used to analyze the long-time tail, whose amplitude is very
different from the mean field prediction. When the above static correlations are taken into account,
our theoretical predictions agree very well with the results of computer simulations.

PACS number(s): Q5. 2Q.Dd, Q5.6Q.+w

I. INTRODUCTION

Equilibrium states of lattice gas automata that violate
(semi)detailed balance [1] have curious properties, such
as velocity correlations on the same node [2—5] and even
long-range spatial correlations [6—8]. These correlations
are completely absent in the Gibbs state of lattice gases
that satisfy the conditions of (semi)detailed balance.

The observed correlations are closely related to the
generic long-range spatial correlations occurring in the
stationary states of continuous fIuids with externally im-
posed gradients [9] or in driven diffusive systems [10,6,7].
In the present paper we are only interested in fluid models
with a locally conserved mass and momentum density.

Very recently dynamical equations for nondetailed bal-
ance lattice gas automata have been derived that describe
the equilibrium [11,8] and transport [12,13] properties of
such lattice gases. The main goal of the present paper is
to extend these theories to the computation of current-
current time correlation functions in the non-Gibbsian
equilibrium state of such lattice gases and to test the
theoretical results against computer simulations.

To that purpose we study the long-time behavior of
the velocity autocorrelation function (v (t)v (0)),q of a
tagged particle in lattice gases that violate detailed bal-
ance sufBciently strongly so that the equilibrium correla-
tions, affecting the coefFicient of the long-time tail, are
substantial. For such models, the mean field description
of equilibrium properties in terms of completely factor-
ized equilibrium distributions is totally inadequate and
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one has to use the more refined theory of Ref. [11],which
takes dynamic pair correlations into account. The theory
of Ref. [12] is not applicable as it is only refers to cases of
weak violation of detailed balance, where equilibrium cor-
relations can be neglected and only transport coeKcients
are affected. The equilibrium and transport properties
of detailed balance models are well understood at the
level of the mean field theory [1], as well as at the more
sophisticated level of the ring kinetic theory [14—16].

The existence of long-time tails in the velocity auto-
correlation function (v (t)v (0)),q A/t"~2 in discrete
d-dimensional fIuids is well established through computer
simulations and also completely understood and quanti-
tatively explained by mode coupling theories [17—20] and
kinetic theories [14,15]. The present paper discusses the
existence of long-time tails in lattice gases that violate de-
tailed balance. We restrict our study to three determin-
istic models that have spatially uniform and stable equi-
librium states, i.e., states that are stable against spatial
fIuctuations. These restrictions exclude lattice gases with
phase separation, such as the models of Refs. [21—25, 13],
for which a description in terms of Euler and Navier-
Stokes equations is not appropriate.

On large spatial and temporal scales the nondetailed
balance lattice gases under consideration are described
by the Navier-Stokes equations [2,4,3]. It is therefore
expected that the long-time tails, which are themselves of
hydrodynamic origin, still decay algebraically. However,
the coefFicient A of the tail will explicitly depend on the
size of the static correlations present in the non-Gibbsian
equilibrium state.

Let us specify the goals of this paper more precisely.
We want to establish theoretically the existence of a long-
time tail, derive an analytic expression for the coefBcient
of the tail in terms of transport coefFicients and equi-
librium susceptibilities, compute these quantities on the
basis of the ring kinetic theory for lattice gases with-
out detailed balance [11],and compare the results with
those obtained &om computer simulations of long-time
tails in the velocity autocorrelation function. An inter-
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esting new phenomenon, observed in some of our nonde-
tailed balance models, is the occurrence of a cage eKect,
i.e., negative velocity correlations at intermediate times.
The cage e8'ect also occurs in dense classical Quids, but
is completely absent in lattice gases satisfying detailed
balance.

The paper is organized as follows. In Sec. II we adapt
the phenomenological mode coupling theory for lattice
gases [17,19] with detailed balance to those without it.
Section III is devoted to a description of the microdynam-
ics of tagged and fluid particles together with a brief reca-
pitulation of mean Geld results and a short description of
analytic and numerical results based on the ring kinetic
theory of Ref. [11]. The mean field results for the veloc-
ity autocorrelation function and the self-difFusion coefI1-
cient are derived in the Appendix. Computer simulations
of the velocity autocorrelation function, diffusion coefB-
cient, shear viscosity, and susceptibilities are described
and analyzed in Sec. IV and compared with theoretical
predictions. We conclude with a discussion in Sec. V.

G; -(r) = b;.b(r, 0)f;(1 —f,).

However, in nondetailed balance lattice gas these corre-
lations are nonvanishing [11].

The dynamics of the triangular lattice gases stud-
ied here are modifications of the basic seven-bit mod-
els of Refs. [1,26], with (semi)detailed balance. In the
present paper the detailed balance symmetry is violated
by choosing asymmetric forward and backward transition
probabilities for collisions that respectively create and de-
stroy a rest particle. The collision rules will be specified
in Sec. III. For the tagged particle dynamics we use the
collision rules, introduced by Frenkel and collaborators
[17,18,27].

To analyze the behavior of a tagged particle we start
from the Einstein formula for the coefBcient of self-
difFusion D, given by ((Ax(t))2),~ 2Dt for t large,
where the average is taken over an equilibrium ensemble
and

II. M&DE CGUPLINC THEGBY T=O
(4)

In order to avoid unnecessary technicalities we restrict
ourselves to two-dimensional lattice gases deGned on a
triangular lattice [1] with unit lattice distance, periodic
boundary conditions, and V = L nodes. At each node,
labeled r, there are six moving particle states with veloc-
ity c, (i = 1, 2, . . . , 6) parallel to nearest-neighbor lattice
vectors with ~c;~ = c = 1 and a single rest particle state
(i = 0) with velocity co ——0. Furthermore, evolution
occurs at discrete times t = 0, 1,2. . . .

The microstate of the system is described by the set
of occupation numbers fn;(r, t) j, where n;(r, t) equals
unity if the state (r, c;) is occupied at time t and van-
ishes if the state (r, c;) is empty. Double occupancy is
excluded (Fermi exclusion rule). The statistical proper-
ties of the equilibrium state are described in terms of the
average occupation number or single-particle distribution
function f, and the pair correlation function G;~ (r —r'),
defined as

In the context of lattice gases the microscopic velocity
of the tagged particle is most conveniently expressed in
terms of the occupation number n;(r, t). This occupation
number takes the value unity if the tagged particle is in
state (r, c;) at time t and vanishes elsewhere,

v (t) = ) c, n;(r, t). (6)

is the x component of the disp1acement of a tagged par-
ticle. With the help of this relation and using the sta-
tionarity of the equilibrium state, the Einstein formula
for the diffusion coefBcient D of a single tagged particle
in a discrete space-time system can be transformed into
a Green-Kubo-type formula [28], i.e. ,

where the Huctuation is b'n; (r) = n, (r) —f; The dynam-.
ics or collision rules have the symmetry of the underlying
lattice. Thus, on average, the equilibrium state has the
same symmetry. Consequently, f; = f for the moving
particle states (i = 1, 2, . . . , 6) and f; = fo for the rest
particle state (i = 0). The average node occupation is
p=6f +fo

Due to the Fermi exclusion rule the self-correlation
function (i = j, r = r') is given by

if the lattice gas satisGes the detailed. balance condi-
tion, the equilibrium state factorizes over all one-particle
states (r, c;) and all on- and ofF-node correlations vanish.
The correlation function has the diagonal form

Consequently, P, , n;(r, t) = 1. Moreover, the equilib-
rium distribution of the tagged particle is

because the tag is on any of the N = g, , n;(r, t) Huid
particles with equal probability.

To derive the long-time tail of the velocity autocorrela-
tion function we refer to the mode coupling derivation of
Ref. [19]and indicate only where differences occur due to
the violation of detailed balance. To start, we write the
velocity autocorrelation function in the coarse grained
form, where the tagged particle velocity is expressed as
a product of tagged particle density times average flow
Geld
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( *(t) *(o))., =— ) ). -.. *'( '(r t)).
l' z Fo $0

) c i, ) u (r, t)P(r, t)
&0&jo r

Here the average ()„defined by the first equality, is
taken over a special nonequilibrium ensemble, which is
conditioned on the tagged particle being in a moving state
(ro, c~, ) at the initial time. The probability for this to
happen is f , = .f /N, which explains the overall factor
in front of (8).

In mode coupling theories the time dependence of
the probability distribution P(r, t) = P, (n;(r, t)), of
the tagged particle, as well as the local fluid velocity
u(r, t) = (1/p) g,. c;(n, (r, t)), in the special initial en-
semble, is calculated &om the macroscopic equations.
This yields, for the Fourier components of tagged particle
density and the flow field whose dominant contribution
comes from its transverse component,

P(q, t) exp( —Dq t) P(q, 0),
ug (q, t) = exp( —vq t) ug (q, 0), (9)

u(r, O) = —) c;(bn;(r, O)), = ) c;G;i(r —ro)/(pf ),
P

P(r, O) = 8(r, ro). (10)

where v is the shear viscosity of the lattice gas.
The only difference with the derivation in Ref. [19] is

that the initial value of the flow field, calculated in the
special initial ensemble ( )„contains spatial correlations,
0l.e. )

( IG(q)Ic):—) 'c G;, (q) = qqxt(q) + q~qixL(q)

contains in general the longitudinal susceptibility yt(q)
and transverse y~(q) as two independent scalar fields. If
the system is invariant under a discrete group of lattice
symmetries, these 6elds depend on the vector g. If the
system would be isotropic, then the susceptibilities would
depend only on the magnitude q = ~q]. In evaluating the

q sum for a large system, we use the replacement

where vo ——2i)3 is the volume of the uiiit cell of the
triangular lattice. The dominant long-time behavior of
(ll) is determined by the long-wavelength modes with

]qj « 1. Therefore we may replace the q integral over
the first Brillouin zone in by an integral over all q space
as in (14). By evaluating the resulting Gaussian integral,
the 6nal result for the long-time behavior of the velocity
autocorrelation function in lattice gases without detailed
balance is

&X~ & vo
(v-(0)v-(t))..=, , 4 (D+ ),

with the initial condition (v (0)),~ = 3f /p For th.e
normalized velocity autocorrelation function with P(0) =
1, ere have

( )
(v~(t)v~(0)), ~ ~(

o )~ (16)
(vz (0)), i 6f p) 4n (D + v) t

In fact, this initial condition is identical to the one used
in the original derivation of the long-time tail [29] in con-
tinuous fluids, where u(r, 0) also contains the equilibrium
correlation function. With the help of these results, the
velocity autocorrelation function simplifies to

(v*(0)v*(t)).~= ~ ~ I ~).e '"+ ' '
(pN) V

&& ) QJ (q~ . c;)c,.G', (q)
'v

1 XJ 1 )~ —(v+D)q t

2 p V

To obtain the second line we have averaged over the
equivalent directions x and y and we have introduced
the transverse susceptibility

y~ = lim ) c~;c~.G, (q):—lim(c~~G(q) ~c~), (12)

where c~ ——c.q~ with q~ a unit vector perpendicular to
q = q/q. We observe that the second-rank tensor field
in (ll)

In lattice gases obeying (semi)detailed balance the occu-
pations of difFerent velocity states at the same or dif-
ferent sites of the lattice are statistically uncorrelated
(bn;(r)hni(r')), ~ = h;zb(r, r') f;(1 —f;) and the coeffi-
cient in Eq. (16) reduces to g~ —— 3f(1 —f), where

f = f = fo ——p/7. The long-time tail for a model
with detailed balance becomes then

(I —fl vo

2p ) 4'(D + v)t
(17)

with the initial condition (v (0)),~ = 3/7. This is the
result for lattice gases erst obtained by Frenkel and Ernst
[17].

The coefficient of the long-time tail in Eq. (16) contains
equilibrium quantities such as the density of moving par-
ticles f and the transverse susceptibility y~, as well as
the transport coeKcients of shear viscosity v and self-
diffusion D. To analyze the mode coupling prediction
(16) we brie8y review in Sec. III the relevant mean field
result and quote a theoretical result for the susceptibility,
which presents a correction to mean Geld theory based on
ring kinetic theory.

The approach taken in the present paper is to measure
the quantities on the right-hand side of Eq. (16) in inde-
pendent computer simulations, which will be described
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in Sec. IV. However, as the measurements of the suscep-
tibilities are very noisy, reaching acceptable statistical
accuracy is very time consuming (see Sec. IV). There-
fore we also use a theoretical result for the susceptibility
in nondetailed balance models, which has been derived in
Ref. [8]. Simulations of the susceptibility have only been
performed for a few test points.

III. MICROSCOPIC THEORY

tions are factorized into products of f, 's .Consequently,
an average of products (I;[n]) is replaced by a product
of averages I;[f] T.he resulting equation is the nonlinear
lattice Boltzmann equation [2,4,5]

f;(r+ c, , t + 1) —f;(r, t) = I;[f(r, t)].

The nonlinear collision term I;[f] is a polynomial of de-
gree 7 in the f s. The equilibrium solution f, (r, oo) = f;
for a spatially uniform equilibrium state is obtained by
solving Eq. (19) for its stationary solution

A. Collision rules I;[f] = 0. (20)

For a description of the time evolution of lattice gases
we refer to [1]. The time evolution of the system consists
of strictly local (zero range) collisions, followed by free
propagation. The microdynamical equation for the time
evolution of the occupation numbers can be written as

n; (r + c;, t + 1) —n; (r, t) = I;[n(r, t)]. (18)

B. Mean Beld theory

We briefly recall the necessary results from mean field
theory for nondetailed balance models. The Boltzmann
or mean field approximation is obtained by using the
Stosszahl ansatz in which p-particle distribution func-

All occupation numbers refer to precollision states. The
nonlinear collision term I, [n] describes p-tuple collisions
(p = 2, 3, . . . , 6), defined in terms of a transition probabil-
ities A, for an input state s = (s;(r, t), i = 0, 1, . . . , 6)
to an output state cr = (0;(r, t)) at the same node r.
Here s and o. represent the set of occupation numbers at
node r.

The collisions are specified in terms of the transition
matrix A, , with normalization g A, = 1, which only
allows collisions that conserve mass and momentum. The
probabilities A, = (Q, B, V, W) for collisions with s g cr

in the three nondetailed balance models discussed in this
paper are defined in Fig. 1. The colliding configurations
are identical to those of the basic seven-bit model of
Ref. [26], but the transition probabilities are different.
For every input state there are at most two alternative
output states with equal probability. By choosing one of
the two alternatives at even and one at odd times, the
stochastic models can also be implemented as determin-
istic ones (cf. Ref. [26]). Note that all three models are
self-dual, i.e. , invariant under exchange of particles and
holes.

Lattice gas automata satisfying the semidetailed bal-
ance conditions P, A, = 1 or the detailed balance con-
ditions A., = A, have a Gibbsian equilibrium state
without any velocity or spatial correlations [1,5]. In the
present models there are at most two different output
states for any input state; therefore the semi-detailed
balance conditions, combined with the normalization

A, = 1, coincide with the detailed balance con-
ditions. All models discussed in this paper violate the
(semi) detailed balance conditions.

Because the equilibrium solution has the spatial symme-
try of the underlying lattice, f, = f for moving particles
(i = 1, 2, . . . , 6) and fo for rest particles. For a given den-
sity p = 6f + fo, one has to solve a single polynomial
of degree 7 in fo This . can easily be done numerically,
using the iterative method of Ref. [5]. The results are
shown in Fig. 2.

The basic distinction between the three types of mod-
els is the sign of the slope of fo(p) At l. ow densities,
model I has on average a deficit of rest particles because

symmetric collisions

v"
1/2

~
1/2

i&

1/2 1/2

asymmetric collisions (changing number of rest particles)

220 520

I: (V,W)=(1,0) II,III: (V,W)=(0, 1) I; (V,W)=(0, 1) II,III: (V,W)81,0)

320

I,II: (V,W,Q)=(1/2, 1/2, 1/2)

III: (V,W,Q)=(0,1,0)

v ~
~W
V

I,II: (V,W,R)=(1/2, 1/2, 1/2)

III: (V,W,R)=(1,0,0)

420

FIG. 1. Collision rules or transition probabilities for the
three models used in this paper. Syxnmetric collisions do not
change the number of rest particles and. preserve the lattice
symmetries. The asymmtric collisions are described by transi-
tion probabilities A, = (Q, R, V, W). The triplet of numbers
in the left and right columns stands for the number of parti-
cles; the x momentum and y momentum of the con6guration
are as introduced in [26].
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equilibrium distribution function f;, obtained from (20)
(see [5]).

Starting from the lattice Boltzmann equation, there
exist many diferent methods to calculate the kinetic
pressure, speed of sound, and transport properties for
our models, such as the Chapman-Enskog method, or
some equivalent multitime scale expansion [1], or by de-
termining the relaxational modes of the linearized lat-
tice Boltzmann equation [32]. Following these standard
methods one finds, for the shear viscosity in mean field
approximation,

2) 8 (Oyg —Qg4
(22)

where —~ is an eigenvalue of the linearized Boltzmann
collision operator O. This eigenvalue has been expressed
in terms of matrix elements 0;z. The numerical value of
v is shown in Fig. 3.

FIG. 2. Average populations of rest (fo) and moving (f )
particles versus the reduced density p* = p/7. The circles rep-
resent the results for the average occupations of rest particles
obtained in simulations. Solid lines are the mean field predic-
tions for densities of rest particles and dashed lines for moving
particles. Finally, dotted lines are the occupation numbers for
(semi)detailed balance models fo = f = p'. Note the strong
deviations from mean field in models II and III.

the binary collision (220) in Fig. 1 converts rest particles
into moving particles. In models II and III the binary
collision (220) is reversed and there is an excess of rest
particles. This e8'ect is even stronger in model III than
in model II because at low densities the collisions (220)
and (320) both convert moving particles into immobi-
lized rest particles, which no longer participate in the
dynamics. At the lowest densities models II and III do
not reach a stationary state. By self-duality, the same
applies at the highest densities. Furthermore, in model
III the spatially uniform equilibrium state appears to be
stable only in the density range 2.35 ( p* ( 4.65. For
densities outside that interval the sound damping con-
stant is negative and unstable modes drive the system
to phase separation [24,30]. The phenomenon of phase
separation in lattice gases has recently been reviewed in
Ref. [31]. Here we restrict ourselves to stable uniform
states. In models I and II the sound damping constant
is positive for all densities and uniform states are stable
for all values of p*.

To study nonequilibrium properties we linearize the
lattice Boltzmann equation (19) around the uniform equi-
librium state f;(r, t) = f; + h f;(r, t) by making a Taylor
expansion of the collision term in (19) and using I,[f] = 0
for the stationary solution, i.e. ,

I;(f + bf) = ) O,

~(f)hfdf(r,

t) + O((hf) ). (21)

This equation de6nes the linearized Boltzmann collision
operator O,~. (f), which is a nonsymmetric matrix. Its
matrix elements can be evaluated numerically using the

C. Transverse susceptibility

0.4
~h~ 02-

0.4
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I

I
t

0.1
0.2
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0.4

I

Model III-

0.8

FIG. 3. Transport coefffcients (diffusion coefficient D and
viscosity v) versus the reduced density p'. Circles represent
the simulated values for the di8'usion coefBcient, obtained by
integration of the velocity autocorrelation function, while the
solid line is the mean field prediction for D. Squares are the
simulated viscosities measured through the decay of a shear
wave. Dotted lines are the mean field values for v. In model
III, with the strongest violation of the semidetailed balance
condition, the deviations are the largest.

tA'e consider the pair correlation function. In the Boltz-
mann approximation all correlations G;z(r) between dif-
ferent nodes are neglected, as well as all correlations be-
tween diferent velocity channels on the same node. Only
the diagonal part of the correlations as induced by the
Fermi exclusion rule is kept in Boltzmann approximation,
z.e.,
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GV(r) = G'"(r) = ~V~(r o)f*(1—f*) (23)

where f, is the stationary single-particle distribution
function. This result is exact for lattice gases satisfy-
ing detailed balance [compare Eq. (3)]. The above result
enables us to calculate the susceptibility in mean field
approximation as

x~ = (c~IG"'(q) Ic~) = 3f (1 —f ), (24)

where G,z(q) is the Fourier transform of G;~(r) in (23).
In our analysis of the long-time tail (16) we will also

use a recent theoretical result, which has been calculated
from ring kinetic theory of Ref. [8]. It reads

12 ( 1&'
&xi = x~ —xi = ——

I
~+ —

I
&»(f)

v i, 8)

IV. SIMULATIONS

A. Transport properties

According to the mode coupling analysis of Sec. II, the
long-time behavior of the velocity autocorrelation func-
tion contains two static quantities —the density of moving
particles f and the transverse susceptibility y~ as well
as two transport coeKcients —the diffusion coeKcient D
of the tagged particle and the shear viscosity v of the

TABLE I. Element Ars(f) for some values of the density
p* for the models used in this paper.

Model
I

P
0.2
0.3
0.4
0.5
0.2
0.3
0.4
0.5
0.2
0.3
0.4
0.5

g2013
+0.002423
+0.002366
+0.000857
+0.000000
—0.003983
—0.004164
—0.001521
+0.000000
+0.001154
+0.011521
+0.025192
+0.031250

where v is the shear viscosity and Ars(f) is a matrix
element of the transition matrix A, , explicitly defined
in Ref. [8], that can be evaluated numerically once the
stationary solution to the Boltzmann equation (20) is
known.

In fact, the matrix elements 0; . (f) represent the
amount of on-node (i, j) correlations created in a single
collision and vanish in lattice gases without violation of
detailed balance. The magnitude of a typical matrix ele-
ment is a measure for the degree of violation of detailed
balance. Table I shows the element O&3 for the differ-
ent models I, II, and III at different densities, ordered in
increasing degree of detailed balance violation.

lattice gas Buid. These quantities can be obtained kom
independent computer simulations.

The viscosity v is measured from the decay of macro-
scopic shear waves; the self-diffusion coeKcient D is ob-
tained from (5) by summing the velocity autocorrelation
function to the required time. The average occupation
numbers (fo, f }are obtained by simple counting, after
equilibrium has been reached. The susceptibility can in
principle be obtained by measuring the small wave num-
ber limit of the structure factor, which is the Fourier
transform of the pair correlation function G,~ (r).

Simulating the macroscopic decay of a shear wave is a
nonequilibrium simulation, which requires a different ini-
tialization. We use a method described in detail by Gerits
et at. [25]. We choose a fixed wave vector q = (0, 2vr/A)

with A = 21~3 in the triangular lattice, which is per-
pendicular to a lattice vector ci (z axis). We need to set
up a transverse momentum field g~(q, 0), which decays
as g~(q, t) = g~(q, 0) exp( —vq t). This can be done as
follows. For a given density p we start &om the occu-
pation numbers (fo, f }obtained by solving the nonlin-
ear stationary Boltzmann equation (20). The result is
shown in Fig. 2. The rest particles are distributed uni-
formly over all nodes with expected occupation fo The.
moving particle channels (cr, c2, cs}are filled with prob-
ability (f + asinq„) and the channels (cs, c4, cs} are
filled with probability (f —a sin q„). Thus the density
on the lattice has the constant value p = 6f + fo, but
we have created an initial shear wave gg (q, 0) = 4a sin q„.
We have chosen a sufficiently small (here a = 0.2) so that
no significant nonlinear effects could be observed in the
decay.

The above initial state is chosen to get as close as possi-
ble to a nonequilibrium state in which the sinusoidal wave
can be considered. as a small disturbance away from the
correlated stationary state. The simulations were carried
out on systems of linear dimension L = 256 and the expo-
nential decay exp( —vq t) was typically fitted over a time
interval from t = 1000 to 3000. As mentioned before,
we have to wait some time steps (1000 in this case) be-
fore performing any measurements, so correlations have
been built up. The number of runs was 20 at any given
density.

The simulation results for models I and II are shown in
Fig. 3. At intermediate densities (0.35 & p' & 0.65) the
simulated v in models I and II is very close to its mean
field prediction v in Eq. (22). However, at lower densities
the deviation increases to 10%%uo (model I) and 22%%uo (model
II) at p* = 0.3 and 0.7 and to 17%%uo (model I) and 16%%uo

(model II) at p* = 0.2 and 0.8. Deviations on the same
order of magnitude have been observed [25] in the seven-
bit detailed balance model introduced by d'Humieres and
Lallemand [26] and have been quantitatively explained by
ring kinetic theory [16).

However, in model III the behavior is quite different.
At the densities studied in the range (0.35 & p* & 0.65)
of the stable uniform equilibrium states, the measured
viscosities are substantially larger than the mean field
(MF) prediction; for instance, v = 0.186+0.008 (the MF
prediction is 0.161) at p' = 0.5 and v = 0.219 + 0.008
(the MF prediction is 0.183) at p* = 0.4 and 0.6.
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One may raise the question whether the viscosity, mea-
sured in the macroscopic relaxation experiments, is in-
deed the linear viscosity, in particular, in model III
with its narrow density range of stable equilibrium states
where the sound damping constant is small compared to
that in models I and II. Consequently, sound wave dis-
turbances decay only slowly and it may be dificult to
separate linear and nonlinear eBects.

In order to test whether the measured viscosities are
strictly linear, we have made an independent measure-
ment of the viscosity by using the following method. We
study the average decay of spontaneous Huctuations in
the transverse momentum density g~(q, t) around the
stationary state, described by the hydrodynamic correla-
tion function F~(q, t) = (1/V)(g~(q, t)g~( —q, t)),~. In
the long-wavelength limit q ~ 0 this function decays as
E~(q, t) = y~(q) exp( —vqzt).

In general, the statistical accuracy in measuring time
correlations in lattice gases at small q is very low [33,34],
and therefore the measurements of P~ (q, t) are very time
consuming. Therefore, we have used this method only in
model III, and only at four densities (p' = 0.35, 0.4, 0.45,
and 0.5) in the stable regime. The results are consistent
with the data obtained from shear wave relaxation ex-
periments. The Huctuation measurements take too much
time to be of much practical value. The simulation of
E~(q, t) for a system of linear dimension L = 256 at
density p* = 0.5 and wave number q 0.227 required for
75 runs takes approximately 90 h of CPU on a DEC-
alpha workstation. However, the large deviations be--

tween measured and mean field values of transport coef-.
ficients are not disturbing. In principle, the "short time"
or "bare" transport coeKcients entering in the mode cou-
pling derivation of Sec. II contain also corrections coming
from correlated ring collisions. Such ring corrections to
transport coefBcients are only available for lattice gases
obeying detailed balance [16] and have not yet been de-
veloped for lattice gases with strong violation of detailed
balance. The same remarks apply to the smaller devia-
tions between simulations and mean field values for the
viscosities [16].

The coefBcient of self-difFusion D is obtained from the
velocity autocorrelation function, the simulation of which
is described below. The transport coeKcient D and, by
the same token, the viscosity v are bare (unrenormalized,
short-time) transport coefficients [35,36]. We therefore
estimate the diffusion coefficient, to be used in (16), by
evaluating the sum in (5) over the time interval t = 0—
t =75.

The simulation results for D are also plotted in Fig. 3
and compared with the mean field theory for self diffu-
sion, as derived in the Appendix. In model I the mea-
sured values of D are very close to the mean field predic-
tion. For models II and III the deviations between theory
and simulations do not exceed 5% in the relevant density
ranges.

B. Static properties

The first problem is how to prepare the stationary state
in which the ensemble average (5) is calculated. A spa-

tially uniform (factorized) distribution over all nodes and
all velocity channels, specified by the average occupation
J', = fo ——f = p/7, would be the equilibrium distribu-
tion for lattice gases obeying detailed balance. However,
the average equilibrium occupations J'0(p) and f (p), ob-
served in simulations, are very different from p/7, espe-
cially in models II and III, and agree very well with the
mean field solutions of (20), as is clearly shown in Fig. 2.

However, in the preparation of the initial state we dis-
tribute particles with equal probability given by f
fo ——p/7, with imposed total momentum equal to zero.
Then the system is equilibrated during an aging period
of T g time steps. The simulations show that the pop-
ulations reach the equilibrium value in a few time steps
at intermediate densities. The system needs the remain-
ing equilibration steps to build up the spatial and ve-
locity correlations observed in equilibrium states of non-
detailed balance models [2—5,11]. The aging time chosen
depends on the quantities measured, on the model, and
on the density.

The mean field results for the average occupations have
already been shown in Fig. 2. To compare them with
computer simulations, we have considered systems of size
L=100 and we have waited an aging period T g of 50,
100, and 500 time steps for models I, II, and III, respec-
tively. The observed occupations were space averaged
over all nodes and time averaged over periods of 50—100
time steps and typically 10—20 runs per density point
have been performed. The simulations are in excellent
agreement with the stationary solutions of the nonlinear
Boltzmann equation (20), as already discussed in Ref. [5].

The second equilibrium quantity of interest is the
transverse susceptibility y~ in (13) in the long-
wavelength limit. We Gnd from mean field theory
yo& ——3f (1 —f ) and from ring kinetic theory y~ =
y& + Ay~, with Ay~ given by Eq. (25). In princi-
ple, y~(q) can be obtained directly from simulations
of F~(q, t), described in Sec. IV A, through the initial
value E~(q, 0) = y~(q). The result found in that exper-
iment on model III at density p* = 0.5 and q = 0.227
is y~(q) = 0.538, whereas the prediction (25) from ring
kinetic theory yields y~ 0.581 as q ~ 0.

The major part of this deviation is not caused by low
statistical accuracy of the simulations but by strong dis-
persion effects in y~(q). This can be concluded by eval-
uating the theoretical prediction for y~(q) by the ring
kinetic theory of Ref. [11] at wave number q = 0.227,
yielding yz(q) = 0.547. As simulations at smaller q val-
ues become increasingly time consuming, numerical ex-
trapolation for q ~ 0 from a sequence of measurements
at decreasing q values is not feasible and we use the the-
oretical result (25) in our analysis of the long-time tails.

C. Velocity autocorrelation at short times

The measurements of the velocity autocorrelation
function (v (t)v (0)),„:—P(t)(vz(0)), ~ were performed
using the algorithm and programs developed by van der
Hoef and Frenkel [18,37]. Their methods are of ex-
tremely high statistical accuracy, in particular in the
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intermediate- and long-time regimes.
The velocity autocorrelation function appears to be

very sensitive to the equal time velocity and spatial cor-
relations existing in the equilibrium state of nondetailed
balance models. In order to obtain convergent results it
appears necessary to use long equilibration periods. We
typically take T @,

——750—1000 time steps in all models
and even longer in model III at densities close to the sta-
bility thresholds p* = 0.33 and 0.67, where T z, ——1500
was chosen. To discuss the simulation results we distin-
guish three regimes: short, intermediate, and long-times;
we start with short times.

In the Appendix the mean field result P(t) = [P(1)]i =
(1 —uD)t has been discussed. In detailed balance models
this relation is exact for t = 1 and 2 [18]. The sim-
plest mechanism to build up dynamical correlations is
the recollision, which requires at least two time steps to
be completed. Consequently, the resulting correlations
can only be observed after the second tixne step, i.e. , at
t = 3, as times are registered just before the collisions are
taking place.

The same argument applies to dynamic correlations in
lattice gases that violate detailed balance. However, the
value of P(l) is affected by the existing static correlations
between the tagged particle and the Quid particles, collid-
ing at a single node. Consequently, the mean fieM value
P(l) = (1 —~~) is no longer exact. A comparison of the
mean field and sixnulation values of P(l) shows that the
deviations are small. In model I the deviations are 2% in
the intermediate density range p* = 0.4 —0.7 and much
smaller ( 0.5%) at low and high densities. In model II
the corresponding deviations increase &om 0.2% at re-
duced density p' = 0.1 to 2.6% at p' = 0.5 and to 3.2%
at p' = 0.7. Finally, in the stable density range of model
III the deviations are less than 0.2%. We have also ver-
ified that the mean field relation b, = P(2) —P(l)~ = 0,
which is exact in detailed balance models, no longer holds
and that b, constitutes a substantial fraction of P(2) in
all cases studied.

D. Cage efFect

002 i I I I l

0.00
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FIG. 4. Cage effect (negative velocity correlations) in the
velocity correlation function tP(t) in model III at densities
p' = 0.35, 0.4, 0.5, 0.6, and 0.65, from top to bottom.

ing Quid particles, &om which it can escape only slowly.
However, for the model we are dealing with, the result is
the opposite, the cage effect being more pronounced at
lower densities rather than at higher ones.

The physical processes creating the cage in lattice gases
without detailed balance are not yet understood and a
quantitative ring kinetic theory for the velocity autocor-
relation function is still lacking. For lattice gases obeying
detailed balance, Brito et aL [15,16] have developed a ring
kinetic theory that is in good agreement with the simu-
lated velocity autocorrelation function. It would be in-
teresting to investigate whether ring kinetic theory would
be able to account in a qualitative manner, or perhaps
even quantitatively, for the cage effect in model III.

E. Long-time tails

The phenomenological mode coupling theory of Sec.
II predicts a time dependence of the velocity autocorre-
lation function as t . In order to illustrate this result
we have plotted in Fig. 5 the velocity autocorrelation
function as a function of time for model I at reduced
density p* = 0.7. The circles are the simulation results
and the solid line is a t -decay, plotted as a reference

Model III, the lattice gas with the strongest violation
of detailed balance, shows a cage effect at intermediate
times, i.e., the velocity of the tagged particle shows neg-
ative correlations in the time interval 5 & t & 25, in the
whole density range 0.33 & p* & 0.67 of stable uniform
equilibrium states. This is shown in Fig. 4, where we have
plotted the velocity autocorrelation function P multiplied
by t for model III at densities p* = 0.35, 0.4, 0.5, 0.6,
and 0.65 (from top to bottom). In models I and II the
velocity autocorrelation function P(t) remains positive at
all times. Positivity of P(t) is also observed in all lattice
gases with detailed balance.

The appearance of a cage effect in the velocity auto-
correlation function, which, as far as we know, has never
been observed. before in lattice gases, is an interesting
effect that also occurs in continuous classical fluids at
high densities. In high-density configurations a tagged
particle is "trapped" in a tight cage formed by surround-

3
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log(t)

FIG. 5. Natural logarithm of the velocity autocorrelation
function for model I at density p' = 0.7. The circles are the
simulation results and the solid line is a t line shown for
reference. In the inset the velocity autocorrelation function
multiplied by t is plotted versus t. The lattice size is 500 x 500,
the equilibration time 1000, and the number of runs is 250.
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line. During the Brst time steps the velocity autocorre-
lation function shows an exponential decay, predicted by
the mean field theory (see the Appendix). At later times
P(t) approaches the mode coupling result t i. The in-
set of Fig. 5 shows the velocity autocorrelation function
multiplied by time t as a function of t, so the asymptotic
time regime is transformed into a horizontal line. We see
that that regime is reached for times longer than 50.

The amplitude of long-time tail (16) in the velocity
autocorrelation function P(t) A/t is given by the mode
coupling expression

6pf ) 4vr(D + v)
(26)

002

0.01

0.00

The amplitudes of the long-time tail of P(t) measured
in computer experiments are shown in Fig. 6. They are
compared with the above prediction, where the coefFi-
cients are calculated or measured by more and more ac-
curate methods, as follows:

(i) In the simple mean field theory of Sec. III B, which
neglects all static correlations, the occupation number of
moving particles in Eq. (26) is given by the mean field
solution f of Eq. (20) (see Fig. 2). The transverse sus-
ceptibility is given by y& ——3f (1 —f ) and the mean
field transport coefFicients D and v are shown in Fig. 3.
This results into a mean field prediction for A shown as
a dotted line in Fig. 6. In models I and II the mean field
theory agrees with the simulations within error bars for
reduced densities p* ) 0.5. For smaller densities the sim-

ulation results are systematically outside the error bars
and smaller than the mean Beld predictions. In model
III mean Beld theory disagrees with the simulations at
all densities.

(ii) At the next level of refinement we use the suscep-
tibility y~ ——y& + Ay~ predicted by ring kinetic theory
with b,y~ defined in Eq. (25). However, we still use
mean field values for f, v, and D. This prediction for
the amplitude is represented by a dotted line in Fig. 6.
The efFect of the Ly~ correction is small in models I and
II, i.e. , a slight decrease of the predicted amplitude of
2.2% at p* = 0.3 and 0.7% at p' = 0.4 in model I and a
slight increase of 4.3% at p* = 0.3 and 1.3% at p* = 0.4
in model II. It leads to slightly better (model I) or slightly
worse (model II) agreement between theory and siinula-
tions. However, in model III the corrections Ly~ Rom
ring kinetic theory are substantial (see Fig. 6) and lead
to a decrease of the amplitude of 19%, 22%, and 25%
at reduces densities p* = 0.35, 0.4, and 0.5, respectively.
This constitutes a great improvement for the agreement
between theory and simulations.

(iii) As already mentioned in Sec. IV A, the mean field
predictions for the transport coefficients are rather poor
(10—20%) at low and high densities in models I and II
and increase to 23% in model III. In our anal compari-
son of simulated long-time tails with the amplitude from
mode coupling theory, we replace the transport roefFi-
cients in Eqs. (16) and (25) by their simulated values,
described in Sec. IVA. Simulated transport coefficients
are in most cases larger than the mean filed values, so
the amplitude of the long-time tail decreases and makes
the agreement with the simulated velocity autocorrela-
tion function better. The resulting predictions for the
amplitudes are shown by the solid line in Fig. 6. There
is good agreement between theory and simulations of the
long-time tail of the velocity autocorrelation function in
lattice gas with weak or strong violation of the detailed
balance conditions.

0.02

0.01
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0.3 0.4 0.5 0.6 0.7
P*

FIG. 6. Amplitudes of the long-time tail of the velocity
autocorrelation function. Circles are the simulation results
with the corresponding error bars, obtained by fitting tP(t)
to a constant at long-times. The lines represent the mode
coupling expression Eq. (26) evaluated in different approxi-
mations: dotted lines are obtained from mean field y~, D,
and v values; dashed lines are from mean Beld D and v values
and ring kinetic y~ values; solid lines are from simulated v
and D values and ring kinetic y~ values.

The main goal of this paper on long-time tails is to
perform and analyze a consistent set of computer 8imu-
lations, in which not only the long-time tail of the ve-
locity autocorrelation function has been measured but
in which also all phenomenological coefFicients, entering
in the mode coupling expressions for these tails, are ob-
tained &om independent computer experiments. These
quantities are the shear viscosity, measured &om the de-
cay of macroscopic decay of shear waves, and the self-
difFusion coefIicient, obtained by integrating the velocity
autocorrelation function. Moreover, we have measured
by simple counting the equilibrium occupations of mov-
ing and rest particle states, as well as the equilibrium
susceptibilities, which are the Fourier transforms of the
pair correlation functions. On the theoretical side we have
extended the mode coupling theory of I19,18] to non-
detailed balance models. The result for the amplitude of
the long-time tail difFers in two key static quantities-
the average occupation of moving particles f and the
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transverse susceptibility y~—Born the corresponding re-
sults for detailed balance models. Furthermore, we have
calculated all transport coeKcients, susceptibilities, and
average occupations Rom the available mean field and
ring kinetic theories.

The ring kinetic theory of [11,8] gives excellent agree-
ment with the computer simulations for all three mod-
els studied and for all density ranges of interest. If one
would use instead the mean Geld values for the static
and transport coeKcients entering in the amplitude of
the long-time tail, the predicted long-time tail would be
strongly at variance with the simulation results.

The velocity autocorrelation function in one of the non-
detailed balance models studied here shows the so-called
cage effect, i.e. , negative velocity correlations, an effect
very familiar in the theory of dense classical fluids. This
is, to our knowledge, the first time that such cage effects
have been observed in lattice gases with only zero range
interactions.

The relatively large deviations between mean field pre-
dictions and simulated values of the transport coefBcients
in Fig. 3, in particular in model III, as well as the ob-
served cage effect remain unexplained. It would be very
interesting to investigate whether the existing deviations
can be explained by extending the ring kinetic theory
of Ref. [11,8,13] to transport coeKcients in nondetailed
balance models.

the modifications with respect to Ref. [27] resulting from
the violation of detailed balance. The velocity autocor-
relation function P(t), defined in (16), is in mean field
theory given by

(A1)

Consequently, the diffusion coefBcient follows from (5) as

D = (.(0)) ) ~(t) ——

(A2)

The tagged particle dynamics is described by the so-
called maximally random collision rules [27]. To calculate
P(1) we need the expected velocity v(1~co) = (1 —ur)co of
a tagged particle with initial velocity cp after one time
step. In an encounter of p particles at node r with in-
put configuration s(r) = (s, (r), i = 0, 1, 2, . . . 6} and
p = p(s) = P, s, (r), the tag is with equal probabil-
ity on any of the p occupied output states a; (r) and
the expected postcollision velocity of the tagged parti-
cle is (1/p) pc;o;(r) = g(o)/p(o) = (1/p) P,. c;s;(r).
In mean field approximation the probability to -have a
precollision configuration s(r), given that the tag is on
the incoming velocity c~p, reads
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(A3)

where f; is the stationary solution of Eq. (20). The
expected velocity v(l~c~o), summed over all p-tuple colli-
sions, i.e. , over all configurations s(r) with the incoming
tag in channel c~p, is then

v(1lc~o) = ):l l s~o+o(s)cg. —= (1 —~)c~o. (A4)
- &g(s) &

)o s j
This quantity can be calculated following [27] with the
result

APPENDIX: TAGGED PARTICLE PROPERTIES
4 1 4 3 2 4 3 1 4+—x +xp —+ —x+ —x + —x + —x

5 2 3 2 5 6

The dynamics of a single tagged particle in a fluid of
untagged particles is described in Refs. [17,18]. Mean
Geld theory for the velocity autocorrelation function and
the coefBcient of self-diffusion in detailed balance models
has been developed in Ref. [27]. Here we only indicate

where x and xp are defined as

*= f-l(1 —f-) *o = fo/(1 —fo) .

(A5)

(A6)



52 LONG-TIME TAILS IN LATTICE GASES VIOLATING. . . 2667

[il

[2)

[3]

[4)
[51

[6]

[7]

[8)

[9)

[10)

[ii]

[12]
[13]

[i4]

[i5]
[16]

[»l

[i8]

U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand,
Y. Pomeau, and J. P. Rivet, Complex Syst. 1, 649 (1987).
B. Dubrulle, U. Frisch, M. Henon, and J. P. Rivet, J.
Stat. Phys. 59, 1187 (1990).
J. A. Somers and P. C. Rem, in Numerica/ Meth-
ods for the Simulation of Multi Pha-se and Complex
I'/om, edited by T. M. M. Verheggen, Lecture Notes
in Physics, Vol. 398 (Springer-Verlag, Berlin, 1992), p.
59; D. van Coevorden, M. H. Ernst, R. Brito, and
J. A. Somers, J. Stat. Phys. 74, 1085 (1994).
M. Henon, J. Stat. Phys. 68, 353 (1992).
H. J. Bussemaker and M. H. Ernst, J. Stat. Phys. 68,
431 (1992).
B. Schmittmann and R. K. P. Zia, in Phase Transitions
and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz (Academic, London, 1995).
P. L. Garrido, J. L. Lebovritz, C. Maes, and H. Spohn,
Phys. Rev. A 42, 1954 (1990).
M. H. Ernst and H. J. Bussemaker, J. Stat. Phys. (to be
published) .
J. R. Dorfman, T. R. Kirkpatrick, and J. Sengers,
Annu. Rev. Phys. Chem. 45, 213 (1994).
G. Grinstein, D. H. Lee, and S. Sachdev, Phys. Rev. Lett.
64, 1927 (1990).
H. J. 8ussemaker, M. H. Ernst, and J. W. Dufty,
J. Stat. Phys. 78 1521 (1995).
B. Boghosian and W. Taylor (unpublished).
H. J. Bussemaker, Ph. D. thesis, University of Utrecht,
1995, and unpublished.
T. R. Kirkpatrick and M. H. Ernst, Phys. Rev. A 44,
8051 (1991).
R. Brito, and M. H. Ernst, Phys. Rev. A 44, 8384 (1991).
G. A. van Velzen, R. Brito, and M. H. Ernst,
J. Stat. Phys. 70, 811 (1993); R. Brito and G. A. van
Velzen, J. Stat. Phys. (to be published).
D. Frenkel and M. H. Ernst, Phys. Rev. Lett. 83, 2165
(1989).
M. A. van der Hoef and D. Frenkel, Phys. Rev. A 41,

4277 (1990); M. A. van der Hoef and D. Frenkel, Physica
D 47, 191 (1991).

[19) M. H. Ernst, Physica D 47, 198 (1991).
[20] T. Naitoh, M. H. Ernst, and J. W. Dufty, Phys. Rev. A

42, 7187 (1990).
[21] D. Rothman and J. M. Keller, J. Stat. Phys. 52, 1119

(1988).
[22] C. Appert and S. Zaleski, Phys. Rev. Lett. 64, 1 (1990).
[23] F. J. Alexander, I. Edrei, P. L. Garrido, and

J. L. Lebowitz, J. Stat. Phys. 68, 497 (1992).
[24] H. J. Bussemaker and M. H. Ernst, Physica A 194, 258

(1993).
[25] M. Gerits, M. H. Ernst, and D. Frenkel, Phys. Rev. A 48

988 (1993).
[26] D. d'Humieres and P. Lallemand, Complex Syst. 1, 599

(1987).
[27] M. H. Ernst and T. Naitoh, J. Phys. A 24, 2555 (1991).
[28] M. H. Ernst, Liquids, Freezing and the Glass Transi

tion, 1989 Les Houches Lectures, Session LI, edited by
D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier,
Amsterdam, 1991), p. 43.

[29) M. H. Ernst, E. Hauge, and J. M. J. van Leeuwen,
Phys. Rev. A 4, 2055 (1971).

[30] H. J. Bussemaker and M. H. Ernst, Transp. Theory
Stat. Phys. 23, 147 (1993).

[31] D. H. Rothman and S. Zaleski, Rev. Mod. Phys. 66, 1417
(1994).

[32] S. P. Das, H. J. Bussemaker, and M. H. Ernst,
Phys. Rev. E 48, 245 (1993).

[33] A. Noullez and J. P. Boon, Physica D 47, 212 (1991).
[34] P. G. Gros61s, J. P. Boon, R. Brito, and M. H. Ernst,

Phys. Rev. E 48, 2655 (1993).
[35] M. A. van der Hoef and D. Frenkel, Phys. Rev. Lett. 66,

1591 (1991).
[36] J. A. Leegwater and G. Szamel, Phys. Rev. Lett. 67, 408

(1991).
[37] M. van der Hoef, Ph. D. thesis, University of Utrecht,

1992 (unpublished).


