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Differential theory of fluids below the critical temperature:
Study of the Lennard-Jones fluid and of a model of C60
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The hierarchical reference theory (HRT) is applied to the Lennard-Jones Buid below the critical
temperature T . This study completes a previous one performed above T using the same kind of
approximate closure for the direct correlation function. Results for several thermodynamic quanti-
ties and for the two-particle correlations are reported and compared both with other theories and
with simulation data. In the two-phase region the theory correctly yields rigorously Qat isotherms;
this feature allows a straightforward and accurate determination of the coexistence curve without
resorting to the Maxwell construction. In the critical region our analysis is consistent with the
previously developed one for T ) T and displays nontrivial critical exponents. We also study a
Quid with the Girifalco model potential for C6&. The critical point of the liquid-vapor transition is
found at T = 2138 K and p = 0.50nm . When the HRT result is supplemented with Verlet's
freezing criterion a triple point is found at T~ ——1979 K and pt ——0.848 nm

PACS number(s): 61.20.Gy, 64.70.Fx, 64.60.Fr, 64.60.Ak

I. INTRODUCTION

Nowadays several difFerent theories are available that
are able to describe with considerable accuracy the equi-
librium properties of simple fluids in a wide range of
thermodynainic states [1]. Nevertheless, a comprehen-
sive theoretical description of fluids over the whole phase
plane on the basis of the interparticle interaction is still
an open problem: in particular, a realistic treatment both
of critical behavior and of phase coexistence below the
critical temperature T is out of the reach of current
liquid-state theories since they do not take very accu-
rately into account the long-range fluctuations that are
an essential feature of such phenomena. For example, it is
well known that in most theories the power-law behavior
of the thermodynamic quantities at the critical point (if
they do show a power-law behavior at all) is governed by
mean-field or spherical model critical exponents [2]. The
coexistence region is also a rather troublesome portion
of the phase diagram for current liquid-state theories: in
fact, none of them is able to reproduce the flat shape of
the isotherms in the pressure-density plane, correspond-
ing to infinite compressibility and constant chemical po-
tential, which is the characteristic feature of phase coex-
istence. Even if it is possible to move inside this region,
as in the case of some of the simplest perturbative ap-
proaches [1], the &ee energy remains an analytic function
of its arguments and this gives rise to negative values of
the isothermal compressibility and hence to mechanical
instability and to the well known van der Waals loop.
The region of mechanical instability is bounded by the
so-called spinodal line, i.e., the locus of diverging com-
pressibility. Besides, the most successful integral equa-
tion approaches, namely, the mean spherical approxima-

tion (MSA), the Percus-Yevick (PY) equation, and the
hypernetted chain (HNC) equation, do not even have a
solution in a certain domain inside the coexistence re-
gion. In the case of the MSA the boundary of this for-
bidden region coincides with the spinodal line, while in
the HNC equation the compressibility remains Gnite on
the boundary, displaying a square root branch point. The
PY equation presents both kinds of behavior, respectively
on the high- and low-density sides of the boundary curve
[3]. It may be worth recalling that in any case the curve
bounding the instability or forbidden region does not co-
incide with the coexistence or binodal line. The latter
curve must be determined by performing a Maxwell con-
struction, i.e., by explicitly requiring that the pressures
and the chemical potentials of the gas and liquid phases
must be equal at coexistence. This procedure, although
conceptually straightforward, may require considerable
eÃort, especially when the solution is not de6ned inside
the two-phase region: when this is the case, two points
on opposite sides of the coexistence curve must be joined
by a piecemeal path so as to avoid the forbidden domain
and a high degree of thermodynamic consistency of the
theory is required in order to get reliable results [4]. If
this condition is met, the coexistence curve can be well
reproduced, at least for temperatures not too close to the
critical value. However, the accuracy gets worse as one
approaches the critical region, as can be seen for exam-
ple in the case of the optimized cluster theory (OCT) [5].
In fact, as noted above, most of the liquid-state theories
behave rather poorly in this region. Moreover, recent cal-
culations on the Lennard-Jones Quid performed with the
Zerah-Hansen (often referred to as HMSA) and the mod-
ified hypernetted chain (MHNC) equation [4,6] show that
the top of the coexistence curve may even be inaccessible,
since at the critical point it merges with the boundary of
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the forbidden region.
It seems therefore worthwhile to revisit the phase di-

agram of a simple fluid below the critical temperature
with the aid of a theory able to deal both with long-range
fluctuations and with the strongly nonanalytic behavior
of the thermodynamic quantities in the two-phase region.
Such an approach, namely, the hierarchical reference the-
ory (HRT) [7], was formulated some years ago in order
to achieve a better picture of universality at the critical
point and to retain, at the same time, the information
about the nonuniversal properties of the fluid. To this
purpose, the basic concepts of the renormalization group
are developed in the framework of a liquid-state theory:
in the HRT the long-wavelength part of the interaction
responsible for criticality is gradually turned on so that
the fully interacting system is approached through a se-
quence of intermediate systems in which long-range Quc-
tuations have been strongly inhibited. The corresponding
evolution of thermodynamic and correlations is described
by an exact hierarchy of integro-difFerential equations. In
particular, the first equation gives the evolution of the
&ee energy of the system in terms of the two-particle
direct correlation function [1] in momentum space c (k).
A simple approximation scheme consists then in trun-
cating the hierarchy to this equation, supplementing it
with a suitable closure relation based on some ansatz
for c (k). In a previous paper [8] such an approximation
was applied to the Lennard-Jones fluid. In particular,
it was shown that if one adopts an expression for c (k)
similar to that used in the optimized random-phase ap-
proximation (ORPA) [1], the resulting theory proves to
be comparable in accuracy with the best liquid-state ap-
proaches. Moreover, it provides a nontrivial description
of the critical point, with critical exponents that are cor-
rect to first order in the e expansion of the renormal-
ization group [7]. However, this study was carried out
only above the critical temperature of the system because
at lower temperatures some difBculties in the numerical
treatment of the problem set in. This was indeed a rather
serious limitation since it did not allow one to investigate
not only the coexistence region, but also the triple-point
zone, while an accurate description of this high-density,
low-temperature portion of the phase plane can now be
considered as a standard requirement of a successful the-
ory of liquids.

In the present work we have considered the extension
of the previous treatment of a fluid below the critical
temperature; to this aim, the numerical algorithm em-
ployed in the computation has been reformulated so as
to be reliable both above and below T, with particular
regard to the coexistence region, which is the more difB-
cult to deal with. The results for the thermodynamic and
the correlations show that in the single-phase region the
theory is again as accurate as the most widely adopted
approaches. Moreover, it is well defined also in the coex-
istence region, where it correctly preserves the convexity
of the &ee energy. More explicitly, it will be seen that
the inclusion of arbitrarily long-range fluctuations in the
system removes the van der Waals loop and the region
of mechanical instability; when all the fluctuations have
been taken into account, the compressibility turns out

to be infinite over a finite domain of the phase plane,
which can then be unambiguously identified with the co-
existence region. This peculiar feature of the HRT has
already been pointed out in the study of a lattice gas with
nearest-neighbor attraction [9] and then discussed in the
more general context of the momentum space renormal-
ization group [10]. The coexistence curve can be imme-
diately determined up to the critical temperature as the
boundary of the region of infinite compressibility without
resorting to the Maxwell construction. We have applied
this theory to the Lennard-Jones (LJ) potential and the
agreement with the simulation data is very satisfactory.
As the temperature reaches its critical value, the coex-
istence region correctly matches with the critical point.
The latter can be located starting from both above and
below T and compares rather well with the simulation es-
timates. However, the present description fails to predict
the expected discontinuity of the inverse compressibility
on the coexistence curve. In fact, the compressibility at
coexistence is infinite in this approach and the coexis-
tence curve merges with the spinodal line. It has already
been pointed out [10] that such an unphysical property
is due to the long-range behavior of correlations implied
by the adopted closure relation, which assumes that the
direct correlation function in momentum space c (k) is
always of the Ornstein-Zernike form, while on the other
hand its analyticity in the wave vector k cannot be jus-
tified inside the two-phase region, where c (k) is known
to develop a discontinuity at k = 0 [11]. Actually, this
kind of closure yields a discontinuity for the inverse com-
pressibility at coexistence only for spatial dimension D
equal to or above 4. However, we show that in D = 3 it
is possible to get an estimate of the finite compressibility
at coexistence by subtracting from the zero-wavelength
value of the structure factor the anomalous contribution.

As another example of application of our theory we
have considered the Girifalco model for the interatomic
potential between rigid Ceo molecules [12]. This potential
has an attractive well that is considerably narrower and
deeper than the LJ potential. This moves the critical
point to a substantially larger packing &action. By using
Verlet's &eezing criterion we also locate the &eezing line
and, for the C60 model, the triple-point temperature is
only 7/p below the critical one.

The paper is organized as follows. In Sec. II the theory
and the adopted approximations are briefly reviewed. In
Sec. III our results-for the thermodynamic quantities and
the correlations of a Lennard- Jones fluid are reported and
discussed and a comparison both with other theories and
with simulation data is made. In Sec. IV we consider the
case of the model of C6o and in Sec. V we finally present
our conclusions.

II. THEGRY

Here we consider a simple fluid, i.e., a classical sys-
tem of identical particles interacting via a potential
V(rq, r2, . . .) that can be written as the sum of two-body,
spherically symmetric terms
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V(ri, r2, . . .) = ) v(r, , ), 1
cg(k) =— (4)

where rq, r2, . . . are the positions of the particles, v is
the two-body potential, and r,.j is the distance between
two particles labeled i and j. Following a procedure that
is widely adopted in liquid-state theories [1], we assume
that the potential v(r) can be split into a repulsive con-
tribution v~(r) and an attractive one iv(r)

v(r) = v~(r) + m(r) .

The repulsive term v~(r) is very short ranged and con-
tains the singular part of the interaction that gives rise to
the excluded volume effect, while m(r) is longer ranged
and is responsible for criticality and liquid-gas separa-
tion. One assumes that the properties of the system in
which only the contribution vR(r) is present are known,
so that it can be regarded as an unperturbed or refer
ence system. If vR(r) is very stifF, as in the case of the
LJ potential, it is known that such a reference system
can be represented by an "equivalent" hard-sphere fluid
of a suitable diameter d. Prom this point we are going
to assume that the reference system is the hard-sphere
one of a given diameter, possibly temperature and den-
sity dependent, and that the equation of state and the
radial distribution function g(r) of the hard-sphere fluid
are known. The aim of the theory is then to determine
how the behavior of the system is modified once the at-
tractive perturbation iv(r) has been taken into account.
What is peculiar to HRT is the way in which the per-
turbation is treated: in order to describe accurately the
effect of fluctuations, the attractive part of the interac-
tion is introduced in the system gradually via a sequence
of Q systems whose interaction potential vg(r) is given
by the sum of the reference term v~(r) and a perturba-
tion ivy(r). The latter is defined by its Fourier transform
ivy(k) according to the expression

0, k(q
-'(k), k) q,

where to(k) is the Fourier transform of the full attractive
potential iv(r) The param. eter Q plays the role of an
in&ared cutoff whose effect consists in depressing fluctu-
ations on length scales larger than 1/Q. In particular,
when one has Q = oo the Q system coincides with the
reference system, whereas for Q = 0 it coincides with
the fully interacting one. The corresponding evolution
of thermodynamics and correlations can be determined
by means of perturbation theory and is described by an
exact hierarchy of equations involving correlation func-
tions of increasing order. Here we are interested in the
first equation of the hierarchy, which gives the evolution
of the Helmholtz &ee energy per unit volume Ag of the
Q system. This turns out to be governed by the pertur-
bation iv(k) and by the direct correlation function in mo-
mentum space cg(k) of the Q system itself. This function
is related to the structure factor Sg(k) by the algebraic
relation

where p is the density of the system. The direct cor-
relation function we have adopted here differs &om the
usual one as defined by the Ornstein-Zernike relation [1]
in that (4) includes also the ideal gas contribution, which
in k space is just the constant additive term —1/p. We

also introduce the quantity 4(k) = —Piv(k), where as
usual we have set P = 1/k~T, k~ being the Boltzmann
constant and T the absolute temperature. The equation
for the &ee energy then reads

ax~ q', &, e(q) ~
(5)

In the above equation we have introduced a modified
free energy Ag and a modified direct correlation func-

tion Cq(k) in order to eliminate some discontinuous con-
tributions that appear in the physical quantities Ag and
cg(k) due to the sharp cutofF adopted in the definition (3)
of ivy(k). These modified quantities are related to the
physical ones by the expressions

1 d3k
PAg —-—

S @(k) —C'~(k)
2 (2vr)s

+—S' @(0) —@~(0)
2

Cg(k) = cg(k) + C(k) —Cg(k).

(6)

(7)

Moreover, each Q system is afFected by the singular inter-
particle repulsion due to the reference part of the inter-
action and hence it must satisfy the so-called core condi-
tion, i.e. , the radial distribution function of the Q system
gg(r) must vanish for every Q whenever r is less than the

In the Q + 0 limit Ag and Cg (k) yield, respectively, the
free energy A and the direct correlation function c (k) of
the fully interacting system, which are then recovered at
the end of the evolution. For Q = oo instead, Aq and
cg(k) are nothing but the corresponding quantities of the
reference system A~ and c~(k) and the definitions (6)
and (7) reduce to the well-known mean-field approxima-
tion for A and to the corresponding random-phase ap-
proximation for c(k). Equation (5) then describes how
the mean-field &ee energy is affected by the subsequent
introduction of fluctuations. As already stated in the In-
troduction, the corresponding evolution of Cg(k) and of
higher-order correlations [7] will not be considered here,
but we will restrict ourselves to Eq. (5). We then need

a closure relation for Cq(k). This function is subject to
two main constraints, which are related respectively to
the long- and the short-range behavior of the correlations
in a fluid: first, the zero-wave-vector limit of the direct
correlation function must be proportional to the inverse
compressibility of the system due to the well-known com-
pressibility rule. In terms of the modified quantities this
condition reads
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characteristic dimension d of the particles. If gg(r) is ex-
pressed by the Fourier transform of the structure factor
Sg(k) and Eq. (4) is used, one gets

function gg(r) is expanded in series of Legendre polyno-
mials P (r) in the interval (0, d)

1 d k
p (2vr)s

1

p cg(k)

gg (r) = ) u„(Q)P„(r) .
n=0

(12)

for r ( d and for every Q . (9)

The expression we have adopted for Cg (k) is the same
used in Ref. [8], which reads

Cg(k) = cR(k) + Age'(k) +. gg(k) (10)

In (10) both Ag and gg(k) must be regarded as func-
tions of the density and temperature of the system. The
quantity Ag is chosen so that the thermodynamic consis-

tency condition (8) is satisfied, while gg(k) is determined
by the core condition (9); its inverse Fourier transform
gq(r) is difFerent from zero only for r ( d. The clo-
sure (10) then resembles the ORPA approximation for
the direct correlation function. However, we must notice
that in our case this expression is coupled to the evolution
equation (5) by the compressibility rule (8). Equation (5)
then gives rise to a partial differential equation for the
&ee energy Ag involving both BAg/cjQ and 8 Ag/Op .
As has already been shown [7,8], the universal features
of the theory in the critical region are not affected by the
detailed form of the closure relation: in fact, the relevant
information for universality is contained in the small-k
limit of Cg(k). According to Eq. (10), this is always an
analytic function of k, that is, the above expression for

Cg(k) is an Ornstein-Zernike closure. For every closure
of this kind the compressibility rule (8) implies that at
small wave vectors one has

) M, „(Q)„"
n=O

Q' — (Q)

Cg(Q) Cg(Q) 4(Q)

(»)
where we have indicated with Pz(Q) the Fourier trans-
form of the Legendre polynomial P~ (r). Each of the coef-
ficients M~„(Q) is in turn given as the solution of an ordi-

nary difFerential equation: if we set rp(Q) = 4'(Q)/4(0),
we have

2„'"= -2, &2(Q) P-(Q) —~(Q)P-(0)
~I%

We then determine the equations for the evolution of the
coefficients u„(Q): to this purpose, we make use of the
specific form of cg(k) given by Eqs. (7) and (10) and dif-
ferentiate Eq. (9) with respect to Q. To simplify the cal-
culation an approximation is introduced, namely, in the
Q derivative of cg(k) we disregard the long-wavelength
contribution containing the isothermal compressibility of
the Q system. This amounts to decoupling the short-
and the long-range evolution of the correlations: such an
approximation seems to be a reasonable one, as can be
checked at the end of the calculation by verifying that
the radial distribution function g~(r) for r ( d is in-
deed small for every Q. The resulting equation for the
coefficients u (Q) is

Cg (k) —6~k
O'Ag 2

A:—+0 gp2
Cg —4

(14)

where bg is a regular function of Q, p, and T with a
finite limit for Q ~ 0 even at the critical point. The
Ornstein-Zernike ansatz (ll) becomes obviously false in
the physical limit Q + 0 at the critical point, where it
implies Cg(k) k, thereby giving a vanishing value for
the critical exponent g, but it can be nonetheless consid-
ered as a reasonable approximation due to the small value
of rI for a three-dimensional system. Equation (11), to-
gether with the evolution equation for the &ee energy (5),
is enough to determine the critical exponents predicted
by the theory [7] as well as the qualitative behavior in the
broken symmetry region [10], which then turn out to be
the same for every Ornstein-Zernike closure, irrespective
of the short-range details.

The short-range part of the interaction and the core
condition (9) must of course be taken into account in or-
der to describe also the nonuniversal features of the Quid,
especially at high density. In the present approach the
implementation of the core condition poses some prob-
lems, since the integral equation (9) must be satisfied for
every Q system &om Q = oo to Q = 0 and is coupled to
the evolution equation (5). As is standard in ORPA, the

At the beginning of the evolution process we have the
following set of initial conditions:

u„(Q = oo) = 0,
d3k 1

x P (k) —
V (k)P (o) P2(k) .

(15)

A detailed derivation of these equations has already been
reported in Appendix A of Ref. [8]. Following a prescrip-
tion that is widely adopted in ORPA calculations, the
series in Eqs. (12) and (13) have been truncated after
the first five terms.

The evolution equation (5) supplemented with the clo-
sure relation (10) and with the compressibility rule (8)
and the equations (12)-(14) for the implementation of
the core condition give rise to a closed system of differ-
ential equations, which has to be integrated numerically
from Q = oo to Q = 0 in order to obtain the properties
of the fully interacting system at the end of the evolu-
tion. In particular, the numerical integration of the par-
tial differential equation for the &ee energy resulting &om
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Cq(Q)j
@(Q)

c~(Q) + 4(Q)
(17)

where fg = fg(p, T) is the new unknown function. If in
the closure relation (10) the parameter Ag is eliminated
in favor of 82Ag/Bpz by means of the compressibility
rule (8) and the resulting expression for Cg(k) is used on
the left-hand side of Eq. (17), the latter can be inverted
to express 82Ag/Op2 in terms of fg,

cR(Q) + 4(Q)

+4"(Q) f~

+go(0) + c~(0) .

c~(Q) + 4(Q)
v(Q)

(18)

By differentiating twice Eq. (5) with respect to p and
by making use of Eqs. (17) and (18), one gets a partial
differential equation in a quasilinear form for the function

82
@ (Q) ~ 2

= E(Q fg gg) ~
+I'(Q fg gg) (19)

Eqs. (5), (8), and (10) is a nontrivial problem: as already
stated in the Introduction, the main difficulty consists in
devising an algorithm that proves to be reliable even be-
low the critical temperature T, when strong singularities
implied by phase coexistence set in. To this purpose the
explicit finite difference method [13] employed in Ref. [8]
is not well suited, since for T ( T the conditions im-
posed by the essential requirement of numerical stability
become so severe that the method is of no practical use.
It is therefore advisable to resort to an implicit finite dif-
ference algorithm, which has the great advantage of be-
ing unconditionally stable [13]. In general, for nonlinear
partial differential equations the use of such an algorithm
makes the numerical computation very complex and time
consuming. However, as already seen in Refs. [9,10], in
our case the problem can be considerably simplified once
Eq. (5) has been cast in a quasilinear form [14]; this is
easily achieved by a substitution of the unknown function
in Eq. (5). Specifically, we have set

When the density p goes to zero, Cg(k) is dominated by
the divergent ideal gas contribution and the logarithm on
the left-hand side of Eq. (17) vanishes. We have then the
following boundary condition for fg

f~(p = o, T) = o for every Q,T. (21)

At high density the ORPA approximation is very reliable,
so we have identified fg with its ORPA value, i.e. , we
have assumed that the quantity Ag in Eq. (10) is unity.
In this way we obtain

fg(p, T) = ln 1—1 i C(Q)
C'(Q) ( c~(Q) + C'(Q) + g~(Q)j

C'(Q) c~(Q) + g~(Q)

for every Q, T. (22)

III. APPLICATION TO THE LENNARD-JONES
FLUID

As a first application of the theory of the preceding
section we have considered the Lennard-Jones potential

(23)

Thanks to its quasilinear structure, Eq. (19) with the con-
ditions (20)—(22) can be solved with a predictor-corrector
implicit algorithm [14] without a great computational ef-
fort. The use of Eq. (17) to cast Eq. (5) in a quasilinear
form may seem someway odd with respect to the more
natural choice of setting fq equal to the logarithm on
the right-hand side of Eq. (5), but it allows one to elim-
inate some spurious divergences that would otherwise
affect the coefficients E(Q, fg, gq) and I" (Q, fg, gq) in

Eq. (19) every time the Fourier transform of the attrac-
tive interaction 4(Q) vanishes. The results for fg and

gg determined by Eqs. (19) and (12)—(14) are then in-
serted in Eq. (18) and in Eqs. (8) and (10) to yield the
thermodynamic as well as the two-particle correlations of
the system. Notice that a single run of integration gives
the full isotherm, &om the ideal gas region to the dense
regime in the &eezing region.

1 2fg=-(s, T) = -
S2

for every p,T. (2o)

where the explicit form of the coefficients E(Q, fg, gg)
and E(Q, fg, gg) can be straightforwardly determined,
but will not be reported here. This equation must be
supplemented with an initial condition at Q = oo and
with two boundary conditions at low and high density;
as noted above, at the beginning of the evolution of the
Q systems the modified direct correlation function Cg(k)
coincides with the RPA value. From Eq. (17) one then
gets

and the subdivision of vL~(r) in a repulsive and in an
attractive part is performed according to the prescription
due to Weeks, Chandler, and Andersen (WCA) [1]. We
then have

vLg(r)+e, r (2'~ 0.
v~(r)=

~ ( 21/6O
m(r) =

vr,J(r), r ) 2'~s

(24)

As explained above, the reference system is represented
by an "equivalent" hard-sphere Quid whose diameter d
depends beth on density and on temperature of the orig-
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inal fIuid and is determined by the well-known rule again
due to WCA [1]:

80—

—exp[ —PvHs(r, d)] }= 0, (26)

where vHs(r, d) is the potential of hard spheres of diame-
ter d, while yHs(r, d) is the corresponding "cavity" corre-
lation function, related to the radial distribution function
gHs(r, d) by the relation

yHs(r, d) = exp [PvHs(r, d) ] gHs(r, d) .

10—

O

(b)

I

I I I I I I el I I I I
I I I I I I 'I

IX

X
/

X

The hard-sphere Quid can in turn be described by the
Carnahan-Starling equation of state [1]and by the Verlet-
Weis parametrization of the two-particle correlation func-
tion [15,16]. We use reduced units T* = k~T/e and
P =P.

The partial difFerential equation (19) for the unknown
function fg(p, T) defined in Eq. (17) is solved numeri-
cally in the density interval p* = 0 —1 with initial condi-
tion (20) at Q = 80. The boundary condition at p' = 0,
corresponding to an ideal gas, is given by Eq. (21), while
at p* = 1 we have assumed that the standard ORPA ap-
proxiination is appropriate and this gives the value (22)
for fg. We have verified that the result of integration
is not affected in a significant way by the precise value
of p' where we put the high-density boundary condition
and by the initial value of Q. The spacing of the density
grid is equal to Lp* = 5 x 10 and the evolution of
fg with Q is followed by setting Q = ln(1+ e t) with
a step Et = 10 . As the integration of fg proceeds,
the ordinary differential equations (13) and (14) that im-
plement the core condition are integrated. Temperature
only enters in the function 4(Q) = xv(Q)/k~T, —so that
the equations are integrated separately at each T. The
output of the integration gives directly, via Eq. (18), the
inverse compressibility over the full density range and
integration over p gives the chemical potential, the pres-
sure, and the Helmholtz &ee energy. Entropy is obtained
&om the increment of the &ee energy between two neigh-

boring isotherms. The quantities Ag —o and Qg o(k) are
obtained from Eqs. (8) and (10) and from Eq. (12) and
they determine the direct correlation function in k space.
The radial distribution function g(r) is then obtained via
the Ornstein-Zernike relation. Inspection of g(r) when r
is less than the hard-sphere diameter d shows that the
approximate scheme used to implement the core condi-
tion [Eqs. (12)—(16)] is as accurate as a standard ORPA
calculation using the same finite set of Legendre polyno-
mials.

We have verified that when T is above the critical tem-
perature, the results are essentially equal to those ob-
tained previously in a computation in which the evolution
equation was not reduced to a quasilinear form [8]. This
represents a test of our numerical methods. Below T two
typical isotherms are shown in Fig. 1; for the lower tem-
perature we also report the results of the approximate
equation of state obtained by Nicolas et al. [17] by fitting

0
0.8 0.4 0.6 0.8

FIG. 1. (a) Inverse reduced compressibility and (b) vapor
pressure of the Lennard-Jones Quid for two isotherms below
the critical temperature of the system. T* = 1.2, HRT (full
curve); T' = O.S, HRT (dashed curve); and the Nicolas et al.
equation of state [17] (x) results.

a large amount of data from simulations and virial series.
The inverse isothermal compressibility is shown in Fig.
1(a) and the pressure in Fig. 1(b). We recall that the ini-
tial condition for the free energy at Q = oo corresponds to
that of hard spheres supplemented by the attractive tail
in mean-field approximation; at these temperatures P*
at Q = oo then displays a van der Waals loop and S(0) is
negative at intermediate density. Inclusion of Quctuation
effects via the Q integration eliminates this unphysical
behavior and it is found that as Q goes to zero, the in-
verse compressibility vanishes exponentially over a finite
density range and, correspondingly, P* has a horizontal
part. No Maxwell construction has to be applied, but
this result comes out &om integration of the equation.
The Qat portion of the isotherms widens as T decreases
and the boundary of this region of infinite compressibility
gives the coexistence curve. The latter is shown in the
p*-T* plane in Fig. 2 together with the diameter. We
give also the HRT results when the core condition is not
implemented, i.e., when the direct correlation function
does not have the term Qg(k) in Eq. (10). The criti-
cal temperature is hardly affected by the core condition,
but this has some effect on the critical density. The co-
existence curve is in good agreement with the result of
simulation [18]. In Fig. 2 we also show the result obtained
from the MHNC integral equation [6). There is an over-
all agreement, the HRT result being slightly closer to the
simulation values. Let us remark that the MHNC does
not have a proper critical point and numerically it has
been found impossible to approach T closer than what
is presented in the figure. The situation is quite difFer-
ent with HRT, which describes a true critical point with
scaling behavior and nonclassical exponents. The HRT
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1.4 TABLE I. Critical parameters of the Lennard-3ones Quid.

Both temperature and density are expressed in reduced units
T' = keT/e and p' = po . The HRT values are compared
with the results of MHNC [6] and OCT [5] theories and with
molecular dynamics (MD) simulation estimates [18].

1.0

Parameter
T.'
Pc

HRT
1.329
0.314

MHNC
1.34
0.31

OCT
1.348
0.349

MD
1.310
0.314

0.8

0 0.8 0.4 0.6 0.8
p~

FIG. 2. Coexistence curve and diameter in the p*-T* plane.
HRT (full curve), HRT without core condition (dashed curve),
MHNC [6] (x), and simulation [18] (o) results.

equations can be solved numerically for temperatures ar-
bitrarily close to T and the Anal limitation is just due
to the adopted grid size in density.

The power-law behavior of the difference p~
—p„be-

tween the densities on the liquid and on the vapor side
of the coexistence curve as a function of reduced tem-
perature t = (T, —T)/T, is demonstrated by the linear
behavior in a bilogarithmic plot as shown in Fig. 3. Prom
this analysis we locate the critical point at T, = 1.329
and p* = O.314. These values are very close to the ones
determined previously [8] (T,* = 1.333, and p,* = 0.316)
from computations at T & T by looking for the diver-
gence of the isothermal compressibility, the slight change
being due to the improved density mesh we have used
now. In Table I the critical parameters given by HRT
are compared with the predictions of other liquid-state

theories [5,6] as well as with the simulation values [18].
It can be seen that there is excellent agreement between
the HRT and the simulation results, but one has to keep
in mind the uncertainty in the simulation data due to the
diKculty in locating a critical point &om simulation on a
Rnite system. The simulation value of the compressibility
factor at the critical point is Z, = (P/pk~T), = 0.306,
while HRT gives Z = 0.323. Prom the slope of the curve
in Fig. 3 we obtain an exponent P = 0.38. This is close to
the asymptotic value given by this theory, which is known
to be P = 0.345, about 10% larger of the accepted value

The coexistence curve in the p*-P* plane is shown in
Fig. 4. The vapor pressure and the chemical potential
as a functim of temperature along the coexistence curve
are shown, respectively, in Figs. 5(a) and 5(b). All these
quantities are in excellent agreement with the simulation
results.

As already stated in the Introduction, HRT has a qual-
itatively wrong behavior exactly on the coexistence curve
since it gives an infinite compressibility. This behavior
does not appear on the scale of Fig. 1(a), where 1/S(0)
seems to drop to zero almost discontinuously, but it shows
up in an enlarged scale as in Fig. 6. An analytic study of
the evolution equation [10] shows that S(0) diverges as
aI „[p —pl „[ (4 )/( ) at the phase boundary, where
D (2 ( D ( 4) is the dimensionality of the system; for

0 15

I I I I IIII I I I IIIII I I I IIIII I I 111111 I I 111111 I

1Oo
0.10

10
0.05

I I I IIIII I I I IIIII I I I IIIII I I I IIIII I I I lllll I

1O-5 1O-4 1O-3 1O-~ 1O-'
(T,—T)/T,

o.oo I

0 0.4 0.6
p~

FIG. 3. Difference (pl —p„)/p, as a function of the reduced
temperature (T, —T)/T, .

FIG. 4. Coexistence curve in the p'-P plane. The graphic
notation is the same as in Fig. 2.
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g(r) = exp [ PvIt(r)] y(r)—, (29)

where y(r) is the cavity function for the hard sphere plus
tail system given by HRT, and then transforming to k
space. The resulting S(k) is also shown in Fig. 8 and now
is in good agreement with the MHNG result at large k.
However, the main peak remains higher than the MHNC

are significantly difFerent &om the commonly accepted
ones [18].

We do not perform a comparison with experimen-
tal data on rare gases because the deviations would be
mainly due to the approximate representation of the true
interatomic interaction by the LJ potential. The com-
parison of the experimental data for krypton above T
with the HRT results for an accurate pair interaction plus
the three-body Axilrod-Teller interaction is found in Ref.
[20]. It is possible to extend that computation to temper-
atures below T by applying the methods of the present
paper, but we have not performed such a computation.

We consider now the HRT result for the radial distri-
bution function g(r) and the structure factor S(k). As
examples we consider two states close to the liquid branch
of the coexistence curve, at T* = 1.36 and p* = 0.5 and
at T* = 0.88 and p* = 0.85. The HRT results for S(k)
are shown in Fig. 8 together with the MHNG results. It
is known that the MHNC gives quite an accurate corre-
lation function. The main peak of S(k) given by HRT is
larger than the MHNC result by about O.l. Also the sub-
sequent oscillations of S(k) have a larger amplitude for
HRT. This last effect is due to the fact that our S(k) has
been computed for a hard sphere plus tail potential. We
can reconstruct the S(k) appropriate for a soft repulsive
core by writing

I I I I I 1 1 I I I I I I I I I I I I I

2,0

1.5 (a)

1,0

0.5

0.0

—0.5
I I I I

I I I I I I I ~
I I I I I I I

I I I I I I I I I I I I I I I I I I I I I I ~

0 0.5 1 1.5 2 2.5 3

one and we can conclude that the correlation function
given by the present HRT scheme is less accurate than the
MHNC one. The comparison of g(r) based on Eq. (29)
with simulation [21] and with the MHNC is presented in
Fig. 9. The agreement with simulation is better in the
MHNG than in HRT.

FIG. 9. Radial distribution function for the states (a) and
(b) as in Fig. 8. HRT (full curve), MHNC (dotted curve), and
simulation [21] (o) results.

1.5
I I I I I I I I I I I I I I I I I I I I IV. APPLICATION TO A MODEL

INTERACTION FOR Ceo

1.0 As another application of our theory we have consid-
ered the Girifalco potential [12]

0.5

I I I I I I I I I I I I I I I I I I00~ LJ I I I I I I I I I I I I I I I I I I I I

1 1
'UG T = —Cl.' +

s(s —1) a(a + 1)
1 1

+p
a(a —1)s s(s + 1)s+

2
S4

2
s10

0
0 2.5 7.5 10 12.5

FIG. 8. Structure factor for the states (a)T' = 1.36, p = 0.5 and (b) T' = 0.88, p' = 0.85. HRT
(full curve), HRT as appropriate for a soft repulsive core ac-
cording to Eq. (29) (dot-dashed curve), and MHNC (dashed
curve .

where a = r/2a, 2a = 0.71 nm, n = 74.94 x 10
ergs, and p = 135.95 x 10 ~s ergs. This central poten-
tial has been used to model the interaction between C60
molecules at high temperature. There has been a specific
interest to determine whether such a model has a criti-
cal point and a liquid branch or whether solidification
preempts the liquid-vapor transition.

The Girifalco potential has a deeper and narrower at-
tractive well when compared with LJ, as can be seen in
Fig. 10, where the parameters o and e of the LJ poten-
tial have been chosen so as to be appropriate for Cso [22].
We have decomposed vG with the same WGA rule used
in Sec. III [Eqs. (24) and (25)] and the computation pro-
ceeds in a way similar to the LJ case. We find a critical
point and the value of the critical parameters are given
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FIG. 10. Girifalco [12] (full curve) and Lennard-Jones [22]
(dashed curve) interaction potentials. The distance o at
which the potential vanishes and the depth e of the attractive
well are equal to

ajar&

= 3218 K, o = 0.959 nm (Girifalco)
and sjk~ = 2330 K, cr = 0.922 nm (Lennard-Jones).

FIG. 11. HRT results for the coexistence curve and the
diameter in the p/p, T/T, pla-ne. The graphic notation cor-
responds to the two potentials as in Fig. 10. The freezing
transition is denoted by the dotted curve (Girifalco) and by
the dot-dashed curve (Lennard-Jones).

in Table II. Some computations of the coexistence curve
for the Girifalco potential have already been performed
with integral equations; the corresponding results for the
critical point are also reported in Table II together with
estimates &om numerical simulations. Our T is higher
than the HMSA result [22] by 90 K and higher than the
MHNC result [6] by about 200 K. It should be noted
that these integral equations cannot be solved too close
to T, and quite a bit of extrapolation is needed to reach
the critical point. From simulation data [22,23] the crit-
ical temperature has been estimated around 1800—1900
K, substantially smaller than our result, and for the crit-
ical density one computation has given a larger value [22]
and another a smaller value [23]. In this latter case the
critical point was present only as a metastable state. The
coexistence curve given by HRT is shown in Fig. 11 to-
gether with that of the LJ Quid. It should be noted that
at the critical point the efFective hard-core packing &ac-
tion g =

harp

ds/6, where d is the diameter of the effective
hard core as given by (26), is substantially larger for the
Girifalco potential (ri, = 0.239) than for the LJ potential
(g, = 0.167). This means that at the critical point the
correlations for vG are substantially stronger than in the
LJ case; this is shown in Fig. 12, where S(k) and g(r) at
the critical point in the two cases are plotted. The coex-

4
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1.5
r/cr

I I I I I I I I I I I

2 2.5 3
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(b)

istence curve for va is less skewed toward high density in
comparison to vLJ.

Our theory does not describe the solidification transi-
tion so that in order to answer the question whether there
is a liquid branch, we have to supplement HRT with a
&eezing criterion. We have adopted the simple but efFec-
tive Verlet criterion [24]: solidification takes place when

TABLE II. Critical parameters of the Girifalco potential
[see Eq. (30)] as predicted by HRT, HMSA [22], MHNC
[6], and MD [22], and Monte Carlo (MC) [23] simulations.
According to MC results the critical point should be only a
metastable state of the system.

p
0 2.5 5 II'.5 10 12.5

ko
Parameter
T, (K)
S- (nm ')

HRT
2138
0.50

HMSA
2050
0.56

MHNC
1920

MD
1900
0.56

MC
1798
0.42

FIG. 12. (a) Radial distribution function and (b) structure
factor at the critical point. The graphic notation is the same
as in Fig. 10.
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TABLE III. Triple-point parameters of the Lennard- Jones
Quid. The notation is the same as in Table I. The HRT re-
sult is reported together with the values from HMSA [4] and
MHNC [6] theories and from MC simulations [24] See the
text for the adopted freezing criterion.

Parameter
Tt
Pt

HRT
0.66
0.85

HMSA
0.66
0.86

MHNC
0.63
0.86

MC
0.68
0.85

the main maximum of S(k) reaches the value 2.85. Since
HRT overestimates the height of S(k) by about 0.1, we
have implemented this freezing criterion with the value
2.95. This produces the freezing lines given in Fig. 11;
the triple-point parameters for the LJ and the Girifalco
potential are given respectively in Tables III and IV to-
gether with results from integral equations and simula-
tions. For the Girifalco potential the triple-point tem-
perature Tq is just 7% below T, and pq is 70%%uo larger
than p . The liquid branch is much more extended for
the LJ interaction and the triple-point parameters are
in reasonable agreement with simulation results [24]. In
the case of vG the simulation results give conHicting ev-
idence. In one simulation [22] a triple point was found
around Tt 1800 K and pq 1.0nm, but no triple
point was found in another simulation [23] and the liquid
branch was present only as a metastable state. In the
case of HMSA and MHNC integral equations the triple
point has been located by means of an entropic criterion
for &eezing [6,22]. As can be seen &om the data in Ta-
bles II and IV, there is an overall agreement that if the
liquid branch exists at all, its extension is very limited.

HRT gives quite accurately the critical point of the LJ
Huid but seems to strongly overestimate T for the Gi-
rifalco model. As discussed below, it is likely that the
closure (10) we have adopted for the direct correlation
function is less accurate for such a narrow and deep pair
interaction and we are investigating a more appropriate
form. On the other hand, the study of critical phenom-
ena for a system with such a deep and narrow poten-
tial appears to be of some interest, although probably
C6p is not the most suitable system in which to study
these phenomena experimentally because T is too high
to ensure stability of the C6p molecule and colloidal solu-
tions appear more promising in this respect. In the stan-
dard case, correlations at the critical point are essentially
gaslike, i.e. , there is only a small amount of local order
(see Fig. 12). On the contrary, the correlations are much
more liquidlike when v(r) is narrow and in fact in this
case g(r) at the critical point has a substantial amount of
short range order, which then continues at larger distance
with the slow decay characteristic of a critical point.

In order to analyze more quantitatively the inHuence
of the short-range structure of a Huid on the location of
the critical point, we can follow the numerical integra-
tion of Eq. (5), which describes the effects of fluctuations
of wave vector Q on the &ee energy of the fluid. As al-
ready stated in Sec. II, the initial condition at Q = oo
just represents the mean-field approximation, which is
characterized by a "zeroth-order estimate" of the critical
constants: TMF ——1.42 for the Lennard-Jones potential,

TABLE IV. Triple-point parameters of the Girifalco po-
tential. The notation is the same as in Table II. According to
MC results the system should not have a triple point at all.

Parameter
Tt, (K)
p, (nm ')

HRT
1979
0.848

HMSA
1774
0.944

MHNC
1620
1.00

MD
1800
1.00

MC

corresponding to TMF ——3309 K for LJ parameters fitted
C6p as in Fig. 10 and TMF ——2275 K for the Girifalco

potential. The critical packing fraction in mean-Beld ap-
proximation is rIMF = 0.132 in both cases. Quite gener-
ally, the effects induced by Huctuations are expected to
be considerably more visible in systems characterized by
shorter-range interactions. Long-wavelength fluctuations
have been extensively discussed in the framework of the
renormalization group and an approximate Ginsburg-like
criterion can be consistently obtained also within our dif-
ferential approach under the hypothesis that the difFer-
ent potentials are parametrized by a single dimensionless
quantity B representing the ratio between the range of
the attractive part and the size of the molecules. This
Ginsburg criterion would predict a scaling of the form
(TMF —T,)/TMF R, leading to a decrease of the
critical temperature in the Girifalco model three times
larger than the one observed in the Lennard- Jones poten-
tial. Instead, the numerical integration of the differential
equation predicts a moderate lowering of the critical tern-
perature due to fluctuations (about G%%uo) in both cases,
despite the considerable difference in the range of the in-
teractions. A detailed analysis of the numerical solution
of Eq. (5) shows that the shift in the critical temperature
is actually due to two opposite and physically distinct ef-
fects: the well known, previously discussed reduction of
T due to long-wavelength Huctuations and the increase
of T induced by short-range order, i.e., corresponding to
short-wavelength fluctuations of wave vector Qd 2x, d
being the effective hard-sphere diameter. These strongly
affect the mean-field approximation for narrow attractive
potentials in such a way that the effective critical temper-
ature, before the introduction of long-wavelength Huctu-
ations, turns out to be higher than the mean-Geld value.
This effect is expected every time the interaction has non-
negligible Fourier components at short wavelengths and
it is considerably more important for the Girifalco in-
teraction potential than for the LJ one since the former
shows a pronounced short-range structure in the critical
region.

As already discussed, the ORPA-like closure of Eq. (5)
adopted in the present analysis is known to overestimate
the main peak of the structure factor at high density,
leading to an artificial enhancement of the inHuence of
short-wavelength Huctuations on the f'ree energy of the
model. As a consequence, the shift in critical tempera-
ture due to strong local order is also overestimated and
for the Girifalco model this results in too high a value
of the critical temperature itself. Instead, our approach
accurately describes the efFects due to long-wavelength
Huctuations that dominate in the LJ-type interactions. A
better analytical representation of the main peak of the
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structure factor is therefore necessary in order to make
HRT accurate also for deep and narrow potentials.

V. SUMMABY

In conclusion, we have presented results about the
thermodynamics and the correlations in liquids through-
out the phase diagram, with particular emphasis on the
phase transition region: the critical point and the co-
existence curve. The analysis has been carried out by
use of the hierarchical reference theory of Quids together
with an approximate ORPA-like closure that provides
the momentum dependence of the direct correlation func-
tion of the Quid. The quality of the resulting correla-
tion functions is therefore at least comparable to that
of known and appreciated liquid-state theories. The ac-
curacy in the thermodynamics is instead expected to be
higher because the differential equation we have solved
is formally exact, the only approximation being induced
by the ORPA-like form of the correlation function used.
This gives rise to comparable errors in the Quctuation
corrections to the &ee energy rather than in the free en-
ergy itself. Our theory is particularly suitable for study-
ing the phase transition region because near the critical
point it shows the correct renormalization group struc-
ture, giving rise to scaling laws and nonclassical critical
exponents. Inside the coexistence curve it reproduces
rigorously Qat isotherms without invoking the Maxwell
construction.

HRT has been tested by the use of two difFerent po-
tentials: a standard Lennard-Jones potential, where ex-
tensive numerical results are available (including simula-
tions), and a narrower potential proposed by Girifalco for
C6p molecules. This investigation supplements an anal-
ogous study carried out for lattice models. We believe
that the results obtained by HRT on the thermodynam-
ics are generally accurate in the whole phase diagram,
as can be inferred by the good agreement with available
simulation data. The equation of state, compressibility,
and coexistence curve are very well reproduced for the LJ
Quid. The accuracy in the case of the Girifalco potential
is more diFicult to test because of the lack of precise al-
ternative numerical estimates. In this case, however, the
critical temperature seems to be overestimated by our
method if compared to numerical simulations. The dis-
crepancy may be attributed to the closure relation, linear

in the attractive potential, which becomes less accurate
for deeper and narrower potentials. The analysis of the
Quctuation corrections to the location of the critical point
allows us to identify two mechanisms responsible for the
change in T with respect to a simple mean-field approx-
imation: long-wavelength Quctuations depress the criti-
cal temperature, but the short-wavelength structure has
the opposite effect, at least in the models studied here.
Further studies leading to a precise determination of the
critical temperature for narrow potentials are required in
order to examine more thoroughly the inQuence of local
order on the location of the critical point.

The correlation functions show more clearly the intrin-
sic limitations induced by the ORPA-like closure that has
been adopted here: a splitting of the potential in attrac-
tive and repulsive contribution is erst needed and then
a mapping of the repulsive part onto a hard-sphere gas
is also required in order to apply our formalism. These
two steps lower the accuracy in the short range structure
of the liquid, as can been shown by comparing ORPA to
other liquid-state theories. The defects introduced by the
mapping of the repulsive interaction onto hard spheres
can be partly compensated by introducing the cavity cor-
relation function y(r), but this cannot be considered a
fully consistent procedure and should be replaced by a
more satisfactory treatment of the short-range potential.
Again, the limitations of the simplified closure adopted in
our investigation are emphasized in the Girifalco model,
which shows a considerable short-range structure also in
the critical region and reQect in the lower accuracy of
HRT for this class of interactions. A noticeable improve-
ment on the description of correlations within HRT will
follow from a closure able to treat accurately continuous
potentials, avoiding both the splitting of the interaction
and the linearization of the attractive contribution.
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