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Dynamics of the passive scalar in compressible turbulent flow: Large-scale patterns
and small-scale fluctuations
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The work analyzes Quctuations of passive scalar and large-scale (mean field) effects in a turbulent
compressible Quid Qow. It is shown that passive scalar transport can be accompanied by slow
diffusion of small-scale inhomogeneous Quctuating structures for large Peclet numbers, Pe )) 1. The
origin of the inhibition of the diffusion of small-scale Quctuations of the passive scalar is associated
with compressibility (i.e. , div u oc Bp/Bt g 0) of a surrounding Quid Qow. The conditions for the slow
diffusion of the passive scalar Quctuations in homogeneous and isotropic turbulent Qow are found.
It is shovrn that the magnitude of the Quctuations of the passive scalar generated in the presence
of external gradient of the mean mass concentration Vq in compressible Quid Qow can be fairly
strong: g(q2) lo ln(Pe)[Vq~, where lo is the characteristic scale of the turbulent velocity field.

The characteristic spatial scale of a localization of solutions is of the order of lo/~Pe. In addition,
compressibility in the stratified turbulent inhomogeneous fiuid Qow [i.e., div u = —(Vp u)/p g 0]
results in formation of large-scale structures for large Peclet numbers. The formation of these
patterns is caused by the instability of the uniform distribution of the mean passive scalar field
whereby an additional nondiffusive component of the Qux of passive scalar particles results in a
large-scale pattern. The conditions for the excitation of the instability of the mean field are found.
Possible environmental applications of these effects are discussed.

PACS number(s): 47.27.+b, 47.40.—x

I. INTRODUCTION

The large variety of interesting phenomena related to
the passive scalar transport in a random incompressible
fluid flow were investigated both theoretically and exper-
imentally (see, e.g. , [1—35]). These efFects include anoma-
lous turbulent diffusion, intermittency, and fractal struc-
ture of a concentration field. Recently the state of the
art in the field of passive scalar transport by a turbulent
incompressible velocity Geld and the unified mathemati-
cal formulation of the problem were discussed in [33,36].
However, the passive scalar transport by a compressible
turbulent flow is a subject of relatively few investigations
(see, e.g. , [37—39]) and some interesting aspects of this
problem were not addressed.

In this study we address some issues of passive scalar
transport in compressible turbulent flow of fluid that
seem of interest in various phenomena. It will be demon-
strated that compressibility of turbulent flow plays an
essential role in passive scalar dynamics and causes qual-
itative changes in the properties of both mean passive
scalar field and Quctuations. In particular, we show that
the compressibility (i.e. , div u oc Bp/Ot g 0) of a sur-
rounding Quid flow results in a slow diffusion of a small-
scale Quctuating component of the passive scalar concen-
tration for large Peclet numbers. The conditions for the
slow diffusion of the passive scalar Quctuations in homo-

geneous and isotropic turbulent Qow are found. In ad-
dition, the magnitude of the fluctuations of the passive
scalar generated in the presence of external gradient of
the mean mass concentratioii VQ in compressible How

of fluid can be fairly strong. On the other hand, passive
scalar transport in a stratified turbulent Huid How [i.e. ,
div u = —(Vp u)/p g 0] is accompanied by formation
of large-scale structures. Formation of these patterns
is due to instability of the mean passive scalar field in
an inhomogeneous turbulent velocity field. The analysis
of the instability is performed for large Peclet numbers
Pe = ious/D where lo is a characteristic length scale of
a turbulence velocity field, uo is a characteristic value of
turbulent velocity u, and D is a coeKcient of molecular
diffusion.

In order to derive both equations for the second mo-
ment of the Quctuating Geld and for the mean passive
scalar field at large Peclet numbers we used a method in
which diffusion is described by means of an average over
an ensemble of random Wiener trajectories. This ap-
proach is similar to the method of Feynman integrals over
trajectories and it was successfully applied in quantum
mechanics, solid state physics [40], magnetohydrodynam-
ics [20,41,42], and passive scalar transport in incompress-
ible turbulent How [12,20,28,33]. It is shown here that the
equations for the mean passive scalar Geld for Pe)) 1 and
Pe« 1 have the same form.
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II. THE GOVERNING EQUATIONS

Evolution of the number density of the passive scalar
n„(t, r) is determined by equation of the convective dif-
fusion:

OAp" + W'. (n„v) = —V' J,Bt

where the diffusive Aux J in the absence of gravity is
given by

J = —DVn„,

and D is the coeKcient of the molecular diffusion, v is the
velocity of the medium. The velocity v and the density

p of the medium satisfy the continuity equation
FIG. 1. Random Wiener trajectories. The random trajec-

tories pass through the point x at time t.

—+V (pv) =0.Bp
Ot

(2)
v(t„g, ) ds + (2D) ') w(t),

Equations (1),(2) yield an equation for the evolution of
the mass concentration of a passive scalar C = m„n„/p:

OC

Ot
+ (v V)C = DEC

(see, e.g. , [43]). Here it is assumed that a passive scalar
consists of small particles with mass m„.

III. WIENER PROCESS AND EQUATIONS FOR
BOTH MEAN FIELD AND THE SECOND
MOMENT OF FLUCTUATING PASSIVE

SCALAR FIELD C(t, x) = M(Cp (g, )) (5)

where t, = t —s. Equation (4) describes a set of the
random trajectories which pass through the point x: at
time t (see I'ig. 1). Equation (4) is a stochastic integral
equation [45]. Since w(t) is a Wiener process, the initial
coordinates of every trajectory gq are random. Without
diff'usion (D = 0] the Wiener paths coincide with the
Lagrangian trajectory and gq is not random.

The solution of Eq. (3) with the initial condition C(t =
0, x) = Cp(x) is given by

We shall use here the stochastic calculus which was
invented in the study of Brownian motion by Einstein
and Smoluchowski, and was developed by Wiener, Kac,
Ieynman, and others into a rigorous mathematical the-
ory (see, e.g. , [44,20,33], and references therein). This
theory has been successfully applied in quantum me-
chanics, solid state physics [40], magnetohydrodynamics
[20,41,42], and passive scalar transport in incompress-
ible turbulent flow [12,20,28,33]. The znain object of the
stochastic calculus is a Wiener (Brownian) random pro-
cess that is defined by the properties

M(w} = 0,
M(zv;w, j = tb;,

where M is the mathematical expectation over the
Wiener paths. The diffusive motion in this method is
described by means of an average over an ensemble of
random Wiener trajectories. The problem of solution of
Eq. (3) reduces to the analysis of the evolution of field
C(t, r) along the Wiener path, gq.

(see Appendix A). Equation (5) is a particular case of
the Feynman-Kac formula (see, e.g. , [44,45]).

Now let us derive both equations for the mean passive
scalar field and for the second moment of the Huctuating
passive scalar component using Eq. (5). The procedure
of derivation is outlined in the following.

(i) If the total field C is specified at instant t, then we
can determine the total field C(t + Et) at near instant
t + At by means of Eq. (5):

where

At

g~g ——x — v(t, ( ) do + (2D)'~'w(At),
Q

and t = t+ Lt —0..
(ii) Expansion of the function C(t, g&z) and the veloc-

ity v (t, g ) in Taylor series in the vicinity of the point
x allows us to express the field C(t + At, x) in terms of
the field C(t, x)

v v„(At) + 2Div m„+ v'2D&t(v iv„—vpv) )

OC 1 OvC(t+ 4t «) = M(Cp, x)+ —— vent+ —vi (A—t)*+ V2Dur
Ox~ 2 Bx)

0 1 8 C—v2D v)id8 +-
Ox) p 2 OxmOsp
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(see Appendix B). Here we keep terms up to ) O[(b,t)2]
in the expansion.

(iii) In order to determine the mean Held Q we average
Eq. (6) over the turbulent velocity u, (i.e., Q = (C)).
Note that v = V + u, where V = (v) is the mean ve-
locity and u is the turbulent component of the velocity.
It is important to note that the Wiener random process
w(t) and the turbulent velocity u(t, x) are independent
random processes, and therefore we can change the or-
der of averaging: (M(f)) ~ M{(f)) (see [20]). On the
contrary, the random processes w(t) and u(t, g~&) are
correlated. We also assume that the velocities u in both
intervals (0, t) and (t, t+At) are independent, because we
consider the random How with short time of the renewal.
It is assumed also that the velocity v is constant (time in-
dependent) in small intervals (0, Et); (At, 2At);. . . , and
changes every small time interval Lt. Note that averag-
ing over the Wiener paths corresponds to the averaging
over the molecular processes with very small character-
istic scales. On the other hand, (f) determines the av-
eraging over the turbulent velocity field with scales that
are larger than molecular ones.

(iv) Now we calculate

Q(t + At, x) —Q(t, x)
Lt

and pass to the limit Lt + 0. In such a procedure the
turbulent velocity field u with very short time of the
renewal tends to a b-correlated in time random process:

(u (t, x)u (t, y)) = 2~ ~(t —t )(u (x)u (y))

(see, e.g. , [20,4].,33]). This procedure yields the equation
for the mean Held Q in the form

to an excitation of the instability. The growth rate of the
instability depends on the magnitude of (V . v).

(v) Let us calculate the correlator p(t + At, x, y)
(C(t + bt, x)C(t + At, y)) by means of Eq. (6). The
obtained equation allows us to find the function

where

I = —(V,ir . V)„—(V,ir . V)„+[V(D V)]„
a2

+[V(D. V)] + 2 o( -( ) -( )) ~ y~

and D=D
(vi) Consider the structure function O = Ip —pp

(q(t, «)q(t, y)), where q(t, x) = C(t, x) —Q(t, x), rpp ——

Q(t, x)Q(t, y), and Q(t, x) = (C(t, x)) is the mean field.
To derive the equation for the structure function 4 we
use Eq. (7) for the mean field. The equation for the
function 4 is given by

04
Bt

= L4+ I, (IO)

where

I = 27p(u (x)u (y))V Q(x)V„Q(y) .

(p(t + b.t) —rp(t)
Lt

Passing to the limit Lt ~ 0 yields the equation for the
correlation function y

where

BQ 0 OQ+(Vs V)Q= D„
Bt Oxp Oz~

Dp —D8p + ip(upu ),
V,ir = V+ ~p(u(V. u)) .

(8)
(9)

In the case (V v) = 0 and V = 0 the efFective veloc-
ity V,s = 0, and Eq. (10) coincides with corresponding
equations that were obtained in [8,20,33]. In the next
section we will show that there are certain conditions
for slow (inhibited) diffusion of small-scale fluctuations
of the passive scalar field. This effect arises due to com-
pressibility (V v P 0) of turbulent flow.

Note that we use the b-correlated in time random process
to describe the turbulent velocity field only for simplicity.
The results remain valid also for a velocity Geld with a
finite correlation time if the statistical characteristics of
the passive scalar vary slowly in comparison with the
correlation time of the turbulent How (see, e.g. , [46]).
We will show in Appendix C that for Pe (( 1 and an
arbitrary velocity field the equation for the mean field
coincides with Eq. (7).

In the case (V . v) = 0 the effective velocity V,ir = 0
for V = 0, and Eq. (7) coincides with that derived in
[20,33]. It is well known that in incompressible turbulent
How with Pe )) 1 molecular dift'usion can be neglected
in comparison with the turbulent difFusion of the pas-
sive scalar. However, the situation is much more com-
plicated in a turbulent compressible How. In particular,
we show that there are conditions for pattern formation
in the large-scale distribution of the passive scalar (see
Sec. V). The inhomogeneous structures are formed due

IV. SMALL-SCALE FLUCTUATIONS
OF THE PASSIVE SCALAR

FOR I ARGE PECLET NUMBERS

In this section we will show that a compressibility of
surrounding Huid Bow results in inhibition of turbulent
diffusion of the fm.uctuations of the passive scalar. The
physical mechanism of this effect is quite clear. In incom-
pressible How at any time the mass of Huid Howing into a
small volume exactly equals the mass out8ow from this
volume. In the limit of infinite Peclet number particles
of the passive scalar are &ozen into a fm.ow of a surround-
ing Quid. This means that there is no accumulation of
the particles of the passive scalar at any point of the vol-
ume. A molecular dHFusion results only in a deviation of
the particles kom their Lagrangian trajectories without
accumulation of the matter of the passive scalar.

The situation changes if V' u g 0 in a turbulent Huid
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flow. In this case a mass of fluid flowing into a small
volume does not equal a mass outflow &om the volume
at any instance. Therefore at times smaller than a char-
acteristic time of the turbulent velocity Geld there is ac-
cumulation (or outflow) of the particles of the passive
scalar. This accumulation (or outflow) of the particles
can strongly reduce turbulent diffusion. At large times
the accumulation of the particles of the passive scalar on
the average is compensated by outflow of the particles.
Note that accumulation and outflow of the particles of the
passive scalar in a small control volume are separated in
time and molecular difFusion breaks a symmetry between
accumulation and outflow (i.e. , it breaks a reversibility
in time). The latter causes an effective reduction of tur-
bulent diffusion of the fluctuations of the passive scalar
concentration.

1 2 2 I 1 2—= —+ —[1 —F —(rF,)'], Dz = —u2prp,
m Pe 3 3 '

3DT
A = ——(F —2F,)',

3

&' = dR/dr, and we use here the identities

OC OCr r„ 1O46
Or Or„Or2 r2 r Or (

O4 O4 O4
Ox Oy Or

r
r2 j (14)

D, = 2uprp —+ —[1 —E —(rF,) ]
2 1 1

Pe

The boundary conditions for Eq. (13) are C(r = 0) =
e'(r =0) =1.

Note that the value

A. Model of compressible homogeneous
and isotropic turbulent velocity fleld

In this section we study the evolution of the passive
scalar fluctuations in a prescribed velocity Geld v with
V.u g 0, where the velocity of the flow v = V+u, V =
(v) is the mean velocity, and u is the turbulent compo-
nent of the velocity; the angular brackets mean statisti-
cal averaging. This model corresponds to homogeneous
and isotropic turbulence with a small, but Gnite value
of ((V' u)2). In this case the correlation function of the
velocity Geld is given by

'll

(u-(x)u-(y)) = 3' [F'(r) + F.(r)]~-

can be interpreted as a turbulent diffusion coefBcient that
depends on the scale r. For r ~ 0 the value D, tends to
6Dz /Pe—:2D, where D is the molecular diffusion coeffi-
cient. This means that the turbulent diffusion coefFicient
tends to the molecular diffusion at very small scales. On
the other hand, in large scales (i.e. , for r )& lp ——uprp) the
functions F, and F„and (rF,)' tend to 0 and m ~ ~ 2/3.
Therefore the value D, recovers the known coefFicient of
turbulent difFusion in large scales. A similar form of the
turbulent diffusion coefFicient which gives correct values
for both asymptotic cases (very small scales and very
large scales) was suggested in [13]. The scale dependent
difFusivity occurs also in a case of anisotropic turbulence
as was proved rigorously for a random shear flow in [33].

Now we introduce a function

+-rdF /

2dr (™~ dF, r r„+rr2 j dr
g = r4(t, r) exp y(x) dx

0
(16)

(12) and use Eq. (13). It results in an equation for the func-
tion @(r) in nondimensional form

(see Appendix D), where E(0) = 1 —F (0). The function
E,(r) describes the compressible (potential) component
whereas F(r) corresponds to vortical part of the turbu-
lence.

—U( )&Ot m Or2

where the function U(r) is given by

(17)

B. Sly diffusion of passive scalar fluctuations U =~i -+x+ —I, x=~x'l
xj

We consider here homogeneous and isotropic turbulent
flow whereby the mean large-scale inhomogeneous Geld of
the passive scalar cannot be generated (see Sec. V). We
assume also that there is no external gradient of the mean
concentration. In this case the source I = 0 [see Eqs. (10)
and (11) for the correlation function 4]. The function 4
in homogeneous and isotropic turbulence with zero mean
field depends only on r = ~x —

y~ and t. Therefore Eq.
(10) is reduced to

and time t is measured in units of 7p, distance r is mea-
sured in units of Ip ——up7p.

We seek a solution to the equation for g of the form

Q(t, r) = exp(2pt)4(r).

Thus Eq. (17) is reduced to the eigenvalue problem:

1 d 4. -[2~+U())~=0

where

OC' 1 O ( 2O41 O4= D, ——r +6ADz
Ot r2Or ( Or j Or In the analysis we use a quantum mechanics analogy

(see, e.g. , [47]) whereby Eq. (19) is a one-dimensional
Schrodinger equation with a variable mass. In the limit
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of large Peclet number the formulation is amenable to
treatment by an asymptotic method (see, e.g. , [20,42]).
A particular form of the potential U(r) and the mass
rn(r) depend on the functions I"(r), I",(v ), and the Peclet
number. For instance, we may choose these functions in
the form

F(r) = (1 —s) exp( —r ), I', (r) = sexp( —nr ) . (20)

Here e determines the energy of the potential component
of the turbulent velocity and o. ~ is the characteristic
scale of the potential component of Row.

Using the formulas derived in Appendix D it can be
shown that

((V.u) )
—= — (u u„)

rn ~p8, CZ.' 7
2i c + yell

3 (r 8 ')

For r « 1 the function I', = s(1 —nr ) and

((V u)2) = losnuo2 .

The potential U(r) and mass m(r) in the form (20) are
plotted in Figs. 2 and 3. Note that the distribution of
mass weakly depends on c and o, . A region with positive
potential determines the difFusion of the fluctuating com-
ponent of the passive scalar concentration. Note that a
strong decrease of the mass at small r results in a strong
localization of the solution.

Usually the Schrodinger equation with such compli-
cated potential and mass can be solved only numerically.
However, availability of a small parameter (ln Pe) ~

&& 1
allows us to obtain an asymptotic solution of this equa-
tion. It is seen &om the distribution of the potential
U(r) (Fig. 2) that there are three characteristic regions,
in which mass m(r), potential U(r), and Eq. (19) can be
reduced to the following form.

Region I. 0 ( r (( rq.

(a}

0.5—

= —[1+(P Pe)r2],

(1+X ) 2
— p+p

m

-0.5
0.001 0.01 0.1

, i e(X) =0, (21)
P g 1+X2)

0.02

(b) o

-0.02—

U(r) -0.04—

-0.06—

-0.08—

-0.1
0.001 0.01 0.1

where X = (P Pe)'~ r, and

P = (1 —s)(1 —2cr), —2n & P & 1,

P = —(1 —s)(1+3cr), —& P & n,1 1
3 3

1 1 8
P/ = —(1 —s)(l + 8cr), —& PU & —n,

9 9 9

Region IL rg & r ( rg..

(c) 1 2 U~Up
m 3'

U(r) -2—

d'0 (r) 3
t& 2

——(U, —2~~~)@ = 0 .

Region III. r & rg..

(22)

-5
0.001 0.01 0.1

FIG. 2. Distribution of potential U(r) for Pe = 10 and
different values of e and n: (a) a = 0; (b) r = 0.35, cx = 1; (c)
e =0.35, o. =4.

1 2
U 0,m 3'

d'4 (r) +3[pf@=0.

We use here the expansion
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m(r)

1000 =

100 =

10 =

y

1 ( n 2 2 2

12(1+30) (n+0) l[(~ —3) +4v. (1+3~) ]

(27)

where unknown parameter vr will be found below. The
general solution of Eq. (24) is given by

T(Z) = AgP" (Z) + A2Q" (Z),

0.1
0.001 0.01 0.1

F(r) (1 —s)(1 —r ), F,(r) s(l —nr ) for r (( 1,

FIG. 3. Distribution of mass m(r) for Pe = 10 and
e = 0.35, n = 4.

@(r =0) =0, (28)

and the condition of the normalization (26) for the func-
tion O'. The condition (26) can be rewritten after taking
into account Eqs. (16) and (18)

where P„"(Z) and Q„"(Z) are the Legendre functions (see,
e.g. , [48]) with imaginary argument Z = i X and, gener-
ally, complex v. Unknown coeKcients A~ and A2 can be
determined &om the boundary condition

F(r) ~ 0, F,(r) -+ 0 for r )) 1, r'd4 ')

& "r J =o
(29)

and

=o, (24)

V' =1—P, ,

and consider only the case with p ( 0 (see below) which
corresponds to diffusion of the fluctuating component of
the passive scalar field [see Eq. (18)].

First we study the region I. We seek a solution of Eq.
(21) in the form

2II(X) = (1+X2) Re[T(iX)],

where Re[T(iX)] is a real part of the complex function
T(Z) that is determined by the Legendre equation:

2

(1 —Z )T"(Z) —2ZT'(Z) + v(v+ 1) — T(Z)

Conditions (28) and (29) yield

jj 171
Ag ——— exp —(6p —1) A2,

2 sin[2r(1+ 2p)/4] 4

A2 —— exp ——(3p, + 1)fg(p) i~
QP Pe 2

(1 —2p)f (v) = 2' " ' ' o ( v) I'I
4

Here we assume that vI (( 1. We will show below that
vr (( 1 when ln(Pe) &) 1. For the calculation of Aq and
A2 we use an identity for the gamma function: I'(Z) I"(1—
Z) = 7r/ sin(mZ) (see, e.g. , [48]). To obtain a solution in
the vicinity r rz we use asymptotic formulas for the
Legendre functions at lZl r/Pe )) 1. The result is
given by

p=P v(v~1) —
l

1—
m( m)

(25)
where

@ = Ar ~ sin[vlin(r/P Pe)],

where Z = iX, and 1 ( p ( 5/3 for 0 & 1/2. The
correlation function 4 at r = 0 is positive, i.e.,

C (t, r = 0) = (q'(t)) = 1. (26)

This means that p should be real. Indeed, it follows &om
Eqs. (16) and (18) that

4(t, r = 0) = Re (+(r) ~

). o
exp(2pt)

If p is a complex number, the function C2(t, r = 0) can
be negative in contradiction with the definition of the
correlation function. The parameter v = v~ + ivl is a
complex number. It follows from (25) that vR = —1/2.
Using the explicit form of P, P, PU, vR we rewrite the
damping rate p in the form

fi(v)f2(v)
vr (P Pe) ')'

f ( )= 2sos(sr+ ~m)(siss —(2 + 2is)
4

—1

)
Here we use the identity

Z' ' = [«»(vl ln]Zl) + i»n(vl lnlZl)] exp[ —vI»g(Z)] .

The solution in region II (i.e., rq ( r ( r2) is given by

A3 exp[K(r —r2)] + A4 exp[ —r(r —r2)]

where K = [3(Uo —2lpl)/2]~) 2.
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The solution in region III (i.e. , r ) r2) is given by

@ = As cos[K i( r —r2) + P]

where ri ——+3~p~. Unknown coefficients As, A4, A5,
and parameter vy can be found by means of matching
the function 4'(r) and its first derivative d@(r)/dr at the
points rq and r2. The result is given by

r ) 0. This fact follows &om the analysis of Eq. (13) in
the region r ~ 0. However, according to the definition
of a correlation function the main maximum must be
located exactly at r = 0.

C. Generation of Auctuations of the passive scalar

and

2~m

ln(Pe) p +1y +2) ~ ~ ~

B —1
B+1 "
A3+ A4

cot P,

cos

B —1
exp(ed) 1 — exp(2nd)

K B+1
)( Up

(30)
In the preceding subsection we considered a case where

the external gradient of mean mass concentration VQ =
0. This means that the source I = 0 in Eq. (10) for
the correlation function 4. When V'Q = const g 0 the
nonzero source I results in generation of fluctuations of
the passive scalar caused by tangling of external gradi-
ent of mean mass concentration by the turbulent velocity
field. Here we study this efFect in detail. Substituting
the correlation function of the velocity field (12) into Eq.
(11) for the source I we obtain

I = lp(VQ) [A, (r) + rA(r) cos 8],
where d = r2 —ri. Substitution of (30) into Eq. (27)
yields the damping rate of p of the fluctuating component
of the passive scalar field

1 ( n
12(l + 3o.) (n+ o p

4~2p2
x (o —3)2 + , (1 + 3o.)2

ln'(Pe)

The obtained solution is valid for ~p~ & Up/2. The
maximum of the potential Uo can be much less than
unity for a wide range of parameters. The damping
rate p is measured in units of rp = up/lp. There-
fore the characteristic difFusion time can be much longer
than the turnover time of the turbulent eddies vo. When

0 (i.e., divu = 0) there is only a solution with
]p~ ) Up/2 = 1. This case corresponds to turbulent diffu-
sion. On the other hand, for s ) 0 (when div u g 0)
there are conditions for very small ~p]. For instance,

1/ln (Pe) « 1 when cr = 3. The latter inequal-
ity corresponds to slow difFusion, i.e., compressibility re-
sults in fairly strong reduction of the turbulent difFusion
of passive scalar fluctuations.

The characteristic scale of the function 4 in the region
I is l, (4"/@) lpPe . This means that the
characteristic scale of the correlation function C is l,
lpPe . When s = 0 (i.e. , div u = 0) the characteristic
time of difFusion in this scale is r = l, /D Tp. On the
other hand, when div u g 0, the difFusion in the scales
l & l, is substantially slower, i.e. , the difFusion time is
much longer than 70. Thus compressibility discourages
turbulent difFusion. Note that the main properties of the
obtained solution are preserved even in the case ~p~

Up/2, when Up « 1. However, in this case the solution
has a continuous spectrum.

Here we have not considered a solution of the equation
for 4 with positive p [negative region of the potential
U(r)]. This solution yields the function 4, that cannot
be a correlation function. Indeed, the main maximum of
the function 4 for the case p ) 0 is located at the region

where the source I is written in dimensionless form, 0 is
the angle between the vectors r and VQ, and

2 1
Ai(r) = — F(r) + F,(r) + rF'(r)—

3 2

We consider here only spherically symmetric solutions of
Eq. (10). In this case Eq. (10) is reduced to

O@ 1 O /2O@i OC

Ot m(r)r2 Or ( Or ) Or

where

I, (r) = lp (VQ) Ai (r) + —r A(r)

Using substitution (16) in Eq. (31) we obtain the one-
dimensional Schrodinger equation with a variable mass

O@ 1 O2$ —U(r)@+ rI, (r) exp
Ot m Br2 y(x) d2: . (32)

We seek a solution of Eq. (32) in the form

(33)

where 4„(r) are the eigenfunctions determined by Eq.
(19). The condition of the orthogonality for the eigen-
functions is given by

m(r)4„(r)@i(r) dr = Npb„i,
0

(34)

where Np Pe ~ /6. Here we take into account that
the main contribution to the integral (34) is from the
region r & Pe . In this region the mass m(r) Pe/2,
and the mass drastically drops for r & Pe up to the
value m(r) 3/2. Substitute (33) into Eq. (32), multiply
the obtained equation by @i(r), and integrate over r The.
result is given by
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d 2 2 2

dt
b—u —"bu = —to(~Q)

where we use Eq. (34) and take into account that

m(r)rI, (r) exp
l y(x) dx l4'p(r) dr

)
—l (V'Q) Pe
1
9

molecular weight of a surrounding Huid). In this case
the number density evolution is governed by the equa-
tion of convective diffusion (1) except for the different
formula for diffusive flux J written in the form suggested
by Smoluchowski,

J= Dl —vn„— " n„
( m„g

KT )
The solution of Eq. (35) with initial condition b„(t =
0) =Ois given by

b (t) = — ' (VQ)'[I —exp( —[~~It)].3 I~pl
(36)

Now we take into account Eqs. (16), (33), and (36) to
obtain the solution for the correlation function 4(t, r):

~(t, ) = -l —
l

(~Q)'). " l1- p(-l~, lt)]
2 &Io& 2:C"(r)

(37)

where we used an estimate (WQ)2 - (bQ) /L2. The main
contribution to the correlation function e'(t, r) for t ))

in (37) is due to the mode with minimum damping
rate lp„l, i.e. , for p = 1. Therefore, a level of Ructuations
of the passive scalar in a steady state is given by

(see, e.g. , [49]), where K is a Boltzmann constant, g is
gravity acceleration, and T is a temperature of a sur-
rounding fluid. The second term in the flux J describes
a sedimentation of the passive scalar particles in a grav-
ity field with a velocity v, = D(mug/rT). This means
that the velocity of the particles of the passive scalar
is given by vp = v + v, . The stationary solution of
Eqs. (1,), (2), and (38) in the absence of Huid How is
determined by the equation V'n„—(m„g/rT)n„= 0.
Solution of the latter equation is given by a baromet-
ric distribution with a height length scale for particles
A„= ~T/m„g « lV'p/pl

For example, we consider a Brownian approximation
for diffusivity of heavy particles. In this case the coefFi-
cient of diffusion is given by

Note that in incompressible How lpl 1 and the level
of the Huctuations of the passive scalar g(q2) «bQ,
since Ip (( I.However, in compressible flow the damping
rate [pil can be small. For instance, when o ~ 3 the
damping rate lail [ln(Pe)] «1.This means that the
level of the fluctuations of the passive scalar generated
in the presence of external gradient of the mean mass
concentration in compressible flow can be fairly strong,

v (&') -»(Pe)
l

—l(~Q) .(to'
EL&

(see, e.g. , [43]), where a, is the radius of a Brownian
particles, v is the kinematic viscosity of a surrounding
Huid. Equations (1), (2), and (38) yield the equation for
the evolution of a mass concentration of a passive scalar:

OC
Ot

+ (v+ v, ).VC = DEC. (39)

B. Model of an inhomogeneous turbulent velocity
Beld in a stratiBed medium

Hereafter we neglect small terms oc DC/A2,
oc ]AD. V'Cl, and oc lCV'Dl/A in Eq. (39) for the case
Pe)) 1, where A = lVp/pl . We also neglect a small
component of velocity oc D/A « lv, l

in Eq. (39). There-
fore Eq. (39) written in a frame moving with a velocity
v, is reduced to the form (3).

V. DYNAMICS OF THE MEAN PASSIVE
SCALAR FIELD FOR LARCE

PECLET NUMBER

A. Effect of gravitation

Now let us take into account the gravity Geld. In this
case additional terms appear in Eq. (3). We consider
a case of the heavy passive scalar (i.e. , a passive scalar
consisting of particles with mass mp )p YAf mf is a

In this section we study the evolution of the mean pas-
sive scalar Geld in a prescribed velocity Beld v. In this
sense we consider a kinematic problem. The velocity of
the Row v = V+ u, where V = (v) is the mean ve-
locity and u is the turbulent component of the veloc-
ity; the angular brackets mean statistical averaging. We
consider a model of the turbulent velocity Geld u with
V u g 0 that corresponds to the Row in a stratified
medium. In this case the correlation function of the ve-
locity field (u (x)u (y)) is given by
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rOFp ( r r„l 1
(u (y)u (x)) = B Fp(r, R)h + —

~

b —
2 ~

— F—p(r, R) (r A„—r„A )2 Or E

+A A(r, R) ~

8

I (O2
+—b „~ —4

4 -"&»

O

A2 ) 4 OB„

A„ i A(r, R) —— A(r, R) + —
i

A + A„
i
A(r, R)

O) 1 O O &( O
(40)

(see Appendix E), where

2BA
Fp(r, R) = ——

Op
r =x —y, R= (x+y)/2,

(u') ( I'A'(-() -())= l&+ ' () l

l2A2
(4I)

where lo is the length scale of the energy containing ed-
dies and

A determines the inhomogeneity of the density of the
surrounding flow, i.e. , A = —Vp/p. Here the functions
Fp(r, R) and A(r, R) are assumed to be independent of
the direction of the vector r. The turbulent velocity field
which is determined by Eq. (40) satisfies the continuity
equation V . (pu) = 0.

In the case where the vector OFp/OR as well as OA/OR
are directed along A and for x = y = z the tensor (40) is
given by

ible flow any initial inhomogeneous distribution of the
passive scalar is transformed into a homogeneous distri-
bution due to the turbulent diffusion.

Now we study the effect of compressibility on the evo-
lution of the passive scalar. Note that Eq. (42) can be
rewritten in the form of a conservation law for the total
number of particles

ON ( V p+ V.
i (V+ v, )N+rp (u u)N —DVN

i

P

= 0, (43)

where N = (n„) is the mean number density of particles,
D=D

Now let us multiply Eq. (42) by Q and after simple
manipulations we obtain

OQ + (V. S) = Q (V V,s) —ILi,

where

Eo 1 E()
4A2 Fp 4A Fp

S =Q (V,@) —D „V„Q,

where Ep(z) = dFp/dz, and vector A is directed along
the axis z, and we use that

Fp(R) = —~A(R)
4
)2

(see Appendix E).

C. Properties of the mean Be1d equation

Evolution of the mean field Q is determined by the
equation

ID = 2D „(V Q)(V„Q) .

If the field Q is homogeneous, ID = 0, (V . S)
Q~(V .V,ir) and Q2 = const. However, if the initial dis-
tribution of the passive scalar Q is inhomogeneous and
(V V,g) ) 0 there is a condition for excitation of the
instability that results in pattern formation. This means
that any inhomogeneous perturbation of the initially ho-
mogeneous spatial distribution of passive scalar particles
will grow, i.e.,

OQ O OQ+ (V ir V)Q = D„Bt Bxp Ox

In incompressible flow Eq. (42) is reduced to

(42)
Q dr)0.3

Ot

The latter equation implies that in a strati6ed turbulent
flow of fluid when Vp g 0 and Op/Ot = 0 the value

OQ O OQ+(V.V)Q = D
Bt t9x |9xp

N dr&0,
Bt

This is a well known equation which describes the tur-
bulent diffusion. This means that for large Pe the turbu-
lence enhances diffusion in comparison with the molecu-
lar diffusion (see, e.g. , [20,33]). Therefore in incompress-

where Q = Np. Therefore the value f N2 dsr grows,
whereas the total number of particles jNdsr is con-
served [see Eq. (43)]. This means that there is a spatial
redistribution of particles so that regions with increased
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concentration of passive scalar particles are separated
&om those with decreased concentration of particles.

The reason for (V V,a) g 0 is either the compress-
ibility of the mean flow

(V V) $0,

ON + V [(v, —ADT Fp(z))N]

= V . [(D + Dz Fp (z) )V'N] . (47)

Equation (47) has an equilibrium solution:

or the compressibility of a turbulent How
( v,VN =ID F() AIN (48)

[V. (u(V u))] go,

D. Large-scale instability

Consider the case when V (u(V u)) g 0. Assume
for simplicity the turbulent flow with zero mean velocity.
Now let us study in detail the instability of the large-scale
distribution of the passive scalar in the small-scale tur-
bulent stratified flow. The stratification of the turbulent
How can be caused, for instance, by the inhomogeneous
distribution of the density p. In the case A2lp2/6 « 1 and
/p2F,"/Fp & 1 the expressions for D „and V,s are given
by

D~~ = D~~~+ DT Fo(z)&~~, (44)

or both of them. When (V V) ) 0 the surrounding
Huid Hows out of the control volume. However, due to
molecular and turbulent diBusion the particles of the pas-
sive scalar do not follow the trajectories of liquid parti-
cles. The latter leads to increase of the mass concen-
tration Q of a passive scalar, i.e. , J' Qdsr in the control
volume grows. On the other hand, the number d.ensity
n„changes slowly in comparison with variation of the
density p. Thus when the divergence of the Incan How

(V . V) ) 0, the efFect is quite trivial. Note also that
the case of a stationary mean How with (V V) g 0 im-
plies either continuous accumulation of the mass of the
surrounding fluid at any point of volume, or a constant
flow of mass of the fluid from infinity. In this case pres-
sure at this point of a control volume increases, and it
will stop the continuous accumulation of the surrounding
Quid at this point. Therefore the stationary mean flow
with (V . V) g 0 is hardly possible.

The situation is difFerent when (V V) = 0 but V .
(u(V u)) g 0. In this case the density p of a surrounding
Huid does not change, but still 1' Qz dsr grows. This efFect
arises due to the inhomogeneous distribution of a number
density of a passive scalar in the turbulent compressible
flow.

where Np is an equilibrium distribution of number den-
sity of particles. Hereafter we consider the case Pe && 1,
i.e., DT )) D. Now we study stability of this equilibrium.

We seek for the solution of Eq. (47) in the form

N(t, r) = Np(r) + N(t, Z) exp(ik . r~), (49)

where the wave vector k is perpendicular to the axis Z.
Substituting Eq. (49) into (47) yields

where

BN 1 BN ON

Ot mp t9Z2 OZ
Kp

mp
(5o)

mp
= Fp(Z), p, p ——Fo —AEp —vp,

I+o
Ko =k —A

Hereafter we consider the case Fp(Z) ))Pe for all Z.
Equation (50) is written in dimensionless form, coordi-
nate Z is measured in units A„, time t is measured in
units A„/DT, the wave number k and value A are mea-
sured in units A„, and z = A„Z, vp ——v, A„/DT
3m&/(mfPe), and A„ is the characteristic scale of the
spatial distribution (u ), the vector A = Ae„e, is the
unit vector directed along the axis Z.

Substitution

1
N (t, Z) = 4p (Z) exp(ppt) exp —— yp dZ

2
(51)

@p + [Wo —&o]@o = 0,
mp

(52)

where R o ———pp, and the potential Uo is given by

Uo=
~

+ +Ko ~,

t Xo Xo

mo(4 2

(53)

reduces Eq. (50) to the eigenvalue problem of the
Schrodinger equation

V 'T
V a = DT'Fp(z)A, DT ——

3 (45)
&o

Xo ——p,omo ———+ A
Eo ro

Here we use the notation

(u') = uoFp(Z) . (46)

Taking into account Eqs. (44) and (45) we can rewrite
Eq. (43) for the mean number density of the particles in
the form

Now we use a quantum mechanics analogy for the anal-
ysis of the pattern formation in a spatial distribution of
the passive scalar. The instability (pp ) 0) can be ex-
cited if there is a region of potential well where Up ( 0.
The positive value of TVp corresponds to the turbulent
diffusion, whereas a negative value of TVo results in the
excitation of the instability. Next, we introduce a func-
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tion f = ln(u ) and f' = Fo/Eo. The potential Uo can
be rewritten as

Uo —
~

—(f —A) + —[f —A —voA exp( —f)]
1 (1, g 1

mo (4 2

+k + —exp( —2f)
~

.l2 VO

4 (54)

The potential Uo can be negative in a region where f"—
A' —voAexp( —f) & 0. For instance, the function f(z)
with a maximum can satisfy this condition. Next, we
consider an example. We expand the functions f (Z) and
A(Z) in Taylor series at the point Z = 0, i.e. , f(Z)—Z +" and A(Z) Ao+aoz+aiz +" . The point Z =
0 is at the maximum of the spatial distribution ln(u~),
and the value ln(u~) is measured in units of value f at
the point Z = 0. Note that V.u = A u, and A = —Vp/p.
Strong inhomogeneity of the density p of the surrounding
Huid can be caused for example by an inhomogeneity of
the temperature of the surrounding Buid.

Expansion of the functions f(Z) and A(Z) in Taylor
series simplifies the Schrodinger equation (52) with vari-
able mass. It is given by

4o + [Wo —U(Z)]Co ——0, (55)

where a potential U(Z) is given by

U(Z) = Xo(Z+ Z.)' —U. ,

with

'Uo
Ao = b ——ai ——(Ao —vo) Wo&

2 2

U = b ——(Ao —vo) —k + Aoz
1 2 2 2

2bAp —vpap

4Ap
Gp6= —+1.
2

Here Z, (( 1 and we can neglect the small term ApZ~ in
the expression for U, .

Now we introduce a new variable

( = Ao~ (Z+ Z, ),
where Ao & 0. Then Eq. (55) reduces to

(56)

+ (E —( )4o ——0, (57)

where

E = Ao (U, + Wo) . (58)

Equation (57) is similar to that for a harmonic oscillator
in quantum mechanics (see, e.g. , [47]). Discrete levels of
energy of the oscillator are determined by conditions

1 2 1 ( li 3
Vo = b+ ——& ——(Ao —vo) —

~

b+ —
~

——oi
2 4 2p 2

1

—k ——(A —v )0 0

E —1 = 2p, p=0, 1, 2, . . . .

Combination of Eqs. (59) and (58) yields the growth rate
of the instability for p = 0

Note that when V u = 0, i.e., A = 0 (for Ao ——ao ——

ai ——0) the value po ( 0 and the instability is not ex-
cited. Nonzero Ao reduces the efFect of gravitation (sedi-
mentation of particles). The growth rate of the instabil-
ity has a maximum at k = 0. If vo is very small (when
Pe )) m„/my) the threshold of the instability is inde-
pendent of the Peclet number Pe. It is determined by
the value V ~ u and the inhomogeneity of the turbulence.
Note that the approximation of the harmonic quantum
oscillator is valid when pp U, . More detailed investiga-
tion of the instability is possible by means of numerical
simulation.

Thus we have shown here that the initially spatial dis-
tribution of a number density of passive scalar particles
evolves into a pattern containing regions with increased
(decreased) concentration of a passive scalar. Character-
istic vertical size of the inhomogeneity is of the order of
I, Ao A„[see Eq. (56)]. Therefore the characteristic
height of these "spots" is less than a scale A„of inhomo-
geneity of turbulence. On the contrary, the characteristic
horizontal size of these inhomogeneities is much greater
than A„, since the mode with maximum growth rate has
a minimum lateral wave number k. Therefore the above
analysis suggests formation of the panlike structures in
inhomogeneous turbulent Quid flow with div u g 0. A
physics of this instability is considered in the next sec-
tion.

VI. DISCUSSION

A theory of turbulent transport of a passive scalar
(mean field and fiuctuations) in random compressible
flow is developed. In this investigation we suggested a
possible mechanism of slow (inhibited) difFusion of small-
scale Buctuations of a passive scalar in a compressible
(i.e. , divu g 0) turbulent velocity field. The reason for
slow diffusion is that accumulation and outflow of the
particles of the passive scalar in a small volume are sep-
arated in time and are not balanced in a compressible
Bow. Molecular difFusion breaks a symmetry between
accumulation and outflow, i.e., it breaks a reversibility
in time and does not allow leveling of the total mass
Buxes over the consecutive intervals of time. Certainly
the compressibility of the turbulent How results only in
a redistribution of the particles of the passive scalar in
the volume. In the whole volume the total quantity of
particles of the passive scalar is conserved.

It is shown also that the magnitude of the Huctu-
ations of the passive scalar generated in the presence
of external gradient of the mean mass concentration
VQ in compressible fiow of fiuid can be fairly strong:
g(q~) lo ln(Pe)~VQ~, where lo is the characteristic
scale of the turbulent velocity field.

In Sec. IV in order to study passive scalar Huctuations
we considered a model of a homogeneous and isotropic
turbulence with ((V u) ~) g 0. Generally the velocity u of
such a How has potential and vortical components. The
simple model of the turbulent velocity field analyzed in
this work was chosen for simplicity and to make the cal-
culations more transparent for the reader. Also it is done
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to elucidate a mechanism of slow diffusion of fluctuations
of the passive scalar concentration in a compressible flow.
The obtained results are likely to be valid also in more
sophisticated and realistic models of compressible turbu-
lent ffow with div u g 0. The suggested mechanism of
slow dift'usion of passive scalar fluctuations can be of rel-
evance in atmospheric flows and turbulent combustion.

It was also demonstrated in this study that the ini-
tially large-scale distribution of a passive scalar in a com-
pressible turbulence (V u g 0) evolves generally into a
strongly inhomogeneous large-scale structure. This pat-
tern formation in the passive scalar field is caused by the
instability which can be excited under certain conditions.
Remarkably this effect disappears in the incompressible
case, i.e., when V' u = 0.

This instability is related to the appearance of an ad-
ditional flux of particles. This flux of particles cannot be
reduced either to turbulent dift'usion or to flux of parti-
cles due to mean flow. Now we calculate the additional
ffux of particles. Equation (1) for the number density of
particles for large Peclet numbers yields

1 dnpV vp oc ——
np dt

On the other hand, a nonzero V'. vp for the particles is
determined by the value V' v for the surrounding fluid,
because v„= v + v, and V . v, = 0 (see Sec. VA).
Therefore the change of number density of the particles
bnp for the turnover time 7 p of turbulent eddies is given
by bnp oc —np7pV v. The mean flux of particles is given
by

Jp ——(u6'np) oc —~p&(u(V u)),
where u is the turbulent velocity of the surrounding fluid.
In particular, when V u = A - u we obtain

J„oc —~pX(u )A .

Evolution of the mean number density of the passive
scalar particles is determined by

BN
Bt

+ V Jp ———V Jz,

where JT ———DVN is the fiux of the passive scalar
particles caused by turbulent dift'usion. Therefore

BN
Ot

oc V. (~p(u )AX) —V. JT .

Thus, formation of inhomogeneous large-scale structures
of the passive scalar particles is caused by compressible
(V u g 0) and inhomogeneous fluid ffow. This pat-
tern formation is not accompanied by an accumulation
of mass of the surrounding fluid [see Sec. V C].

The large-scale pattern formation can occur only in
an inhomogeneous turbulent flow since the compressibil-
ity alone is not sufficient to excite the instability. The
inhomogeneous turbulence occurs in various flows, e.g. ,
turbulent boundary layer or turbulent stratified flows.
Notably the characteristic size of a large-scale pattern is
less than the characteristic length scale A„of (u ) vari-
ation.

TABLE I. The parameters for aerosol particles in the at-
mospheric turbulent boundary layer.

a, (pm) D (cm /s) Pe vo/p (cm /g)

0.1 2.2 x 10 (1.3 —45) x 10 (5.6 —190) x 10

1.3 x 10 (2.3 —77) x 10" (3.2 —110) x 10

10 14 x 10 (21 —71) x 10 3.5 —120
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The analyzed instability may be of relevance in some
atmospheric phenomena, e.g. , atmospheric aerosols (see,
e.g. , [50—52]). Now we consider the latter phenomenon
in more detail. The atmospheric turbulence exists in a
layer that is located at an altitude Rom 100 to 1500 m
from the Earth's surface. In this region an atmospheric
turbulent boundary layer is formed. The characteristic
values of parameters in this layer are as follows: up
30 —100 cm/s; lp 10 —10 cm. The coefficient of
diffusion D, the Peclet number Pe = u lp/pD, and the
value vp/p = 4vras/(29m+Pe) depend on the size of
the aerosol particles a, . These parameters are presented
in Table I for different a, (see, e.g. , [50—52]). Here p
is the density of the matter of an aerosol particle, m+
is the mass of proton. The typical value of the density
p 2 g/cms. The value A„can be estimated as the
characteristic size of the turbulent boundary layer, i.e. ,A„(l —15) x 104 cm. The latter implies that the
characteristic time of excitation of the instability ~

A„/DT varies &om 1 to 10 h. The value Pe
D a, and the damping rate of the instability due
to the gravitation (i.e. , sedimentation of the particles)
is of the order of ep a, . Using this and the data in
Table I we can estimate a maximum size of the particles
for which the maximum pp & 0. The result is given by
a, & 4 —30 pm. Note in passing that the above condition
on the particle size in the inhomogeneous patterns is in
compliance with the measured size of particles in regions
with high concentrations of atmospheric aerosols.

The maximum value of the concentration of the parti-
cles of the passive scalar (or aerosol particles) inside the
inhomogeneity formed due to the excitation of instability
can be found by means of the nonlinear theory. One of
the possible nonlinear mechanisms of stabilization of the
instability is related to a dynamic coupling of particles
and surrounding turbulent fluid flow.
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APPENDIX A: SOLUTION OF EQ. (3)

Let us check that Eq. (5) is a solution of Eq. (3).
According to Eq. (5) in a short time At the scalar field
varies as

C(t+ At, «) = M{C(t,(~,)) .

We expand the function C(t, $«) in the Taylor series in
the vicinity of the point x:

t9C
C(t, g~, ) = C(t, x) + (g« —x)

&m
1 02C

+—
~ (g~g —x) ($~g —x)p +

2 OXmt9Xp

It follows from Eq. (4) for the Wiener trajectory that

At

(g~g —x) = — v (t„g,) ds+ (2D)'~ w (At) .
0

(A2)

Expanding the velocity v (t„g,) in the Taylor series in
the vicinity of the point x, and using Eq. (A2), yields

OV
v (t„g,) = v (t„x)+ — vi(t, x) do.

BX) 0

+(2D) '~2wi (s) (A3)
~I

(Al) Substitution of (A3) into (A2) yields

At Dt g 8 At g
(g~q —«)~ = — v (t„g,) ds+ ds vi(t, g~) do—v 2D ' ivi(s) ds+ +2Div

0 (t, ,x) (t„x)
(A4)

We calculate the integrals in (A4) by means of the "mean
value" theorem. The result is given by

(g~g —x) = —v (ti, x)At+ V'2Dm + O[(At) j,
(A5)

where ti is within the interval (t, t + At). Substitution
of Eq. (A5) into (Al) and averaging over Wiener tra-
jectories yields the field C(t + At, x). Now we calculate
the value [C(t + At, x) —C(t, x))/At for At -+ 0. This
procedure results in the equation

Using Eq. (4) for the Wiener trajectory we obtain

At

(g~, —«) = — v (t„g,) ds + (2D)'~ w (At) .
0

(83)

Expanding the velocity v (t„g,) in the Taylor series in
the vicinity of the point x, and using Eq. (83), yields

BC BC l 82C= —v + — (2Db „) . (A6)
OVm

vm, (ta ~ $~ ) v~(ta, «) —vl s
&l

Equation (A6) coincides with Eq. (3). Therefore Eq. (5)
is a solution of Eq. (3).

+(2D)'~2 w((s) + . .2 BVm

Oxi
(84)

APPENDIX 8: EQUATION FOR LRC

The total field C(t+ At) at instant t+ At is expressed
in terms of the field C(t) by means of the equation

C(t + At, «) = M(C(t, g~, )) .

We expand the function C(t, ('«) in the Taylor series in
the vicinity of the point x:

OC
C(t, g~, ) = C(t, x) + (g« —«)

Ox
02C

((« —x) ((« —x)p +
2 BxmOxp

It is assumed that the velocity v is constant (time in-
dependent) in small intervals (0, At); (At, 2At);. . . , and
changes every small time At (the velocity is statistically
independent in the diH'erent time intervals). Substitution
of (84) into (83) and calculation of the integrals in (83)
accurate up to (At)2 yield

1 &Vm
(g~t —«)~ = v~At + —vi (—At)

2 Xf
At

v2D uri d—s+ v'2D~ + .
X$ 0

(85)

(82) Combination of Eqs. (85), (82), and (Bl) yields
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v vp(At) + 2Div ivp —42D&t(v ivy, + v„v) )

t (t+ t»t, x) = M(C(t, x) +
~

z —t»t + —zt (Et) + V'21»zz
»9C ( 1»9v

Ov
~' ) 1 02C

&—2D
"

m)ds
~

+-
X) 0 2»9z»9z„

where we keep terms & O[(kt) ].

APPENDIX C: EQUATION FOR THE MEAN
PASSIVE SCALAR FIELD FOR SMALL PECLET

NUMBERS

The solution of the equation of convective diffusion (3)
in the form (5) by averaging over the Wiener trajectories
is valid for arbitrary Peclet numbers. However, using
a b-correlated in time process for the turbulent velocity
field is possible only for Pe )) 1. In this appendix we will
show that for small Peclet numbers the equation for the
mean passive scalar field has the same form as in the case
Pe )) 1.

The equation of the convective difFusion (3) can be
rewritten in the form

(q(» «)z-(» ")) = f(q (z)z-(t, x))G(», « —z) ~'z

(u„(t, x)u (t', z)) (t', z)
t9z

xG(t —t', y —z) d'zCt'. (C5)

Note that (qou„) = 0, because qo and u are not corre-
lated. Next, we introduce the fast r = x —z and slow
R = (x+ z)/2 variables. The derivative

BQ (9Q (r 5

E~)

Now let us calculate the second moment (qu ) by means
of Fq. (C4). The result is given by

BC +V (Cv) =DbC+CV v.
Ot

It follows &om Eq. (C5) thatCl

The total fields v and C can be presented in the form v =
V+ u and C = Q+ q where V = (v) and Q = (C), q
is a turbulent component of the mass concentration of a
passive scalar, and the angular brackets mean statistical
averaging. Averaging Eq. (Cl) over the ensemble of the
turbulent pulsations we obtain the equation for the mean
field Q

(9Q

Ot
+ (V V)Q —DAQ = (qV. u) —V. (qu) . (C2)

Subtraction of Eq. (C2) from (Cl) yields the equation
for the turbulent field q

where

(q(t, y)u„(t, x)) =- »9Q

m

D „= uu G~r d rd~.

Vg —— u V u G7., r d rd7. .

Similar calculations for (qV u) yield

(qV u) = —(V,p. V)Q,
where

(C6)

(C7)

Bg——Dhq = —(u. V)Q .
Ot

(C3) Substitution of (C6) and (C7) into Eq. (C2) yields the
equation for the mean passive scalar Beld

Equation (C3) is written in a frame moving with the
mean velocity V. Here we neglect the small quadratic in
the fluctuating field terms (u . V)q —((u V)q). These
terms yield effects that are of the order of Pe, whereas
linear in the fluctuating field terms are of the order of
~ Pe.

A solution of Eq. (C3) with the initial condition q(t =
0, x.) = qo(x) is given by

q(t, x) = jqz(z) G(tx —z) d z,

»9Q »9 f OQ )+(V. . V)Q=
~

D „
Ot

'
»9 4 "c)~) '

where

D „=Db + u u G~r drdv,

Vg ——V+ uV u G7r drd7.

(C8)

(C9)

(C10)

u t', z G t —t', x —z d zdt', C4
Ozm

where G(v, y) is the diffusion Green's function

2

G(7., y) = (2~D7.) expl—

Comparison of Eqs. (C8)—(C10) obtained for Pe « 1
with Eqs. (7)—(9) derived for Pe )) 1 shows that these
equations coincide in form. Therefore the above de-
scribed phenomena for Pe )& 1 can also occur for Pe (( 1.
However, the instability which can be excited at Pe » 1
is suppressed for Pe (( 1 by strong molecular diffusion
and sedimentation.
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APPENDIX D: MODEL OF A COMPRESSIBLE
HOMOGENEOUS AND ISOTROPIC

TURBULENT VELOCITY FIELD

4vrk2

(see, e.g. , [7,27]). On the other hand,

(D2)

Now taking into account (Dl)—(D3) and returning to r
space we obtain

0'
(u-(x)u-(y)) = —

l
~-& —

Z Z If~(r)
OP Of'

O
f~(r)

~rm ~re (D4)

where we use Eqs. (14) and (15) and substitutions k2 ~
—4 and ik -+ 0/Or . Now we introduce the following
functions:

We consider a model of the turbulent velocity Geld u
with V u g 0. This model corresponds to a homogeneous
and isotropic turbulence with small, but Gnite value of
((V . u)2). We present the velocity u as a sum of two
components: the potential component u( ~ = VP and
the vortex component u( ~ = V' x A. In k space the
second moment is given by

(u~(ki)u„(k2)) = (u u ) + (u u ) + (u u ))

+( (0) (A)) (D1)

All these tensors are proportional to h(ki + k2) since
the turbulence is assumed to be homogeneous. Note that
in isotropic turbulence

( (P) (A)) (
(0) (P)) 0

Indeed, in k space u = iP(k)k and u„=is„i,kiO„(~) (&)

where e ~, is the tensor of Levi-Civita. Therefore

(u( )u( )) = k~k(e.„(,(P(k)O, ) = 0,
since (P(k)B,) = 0 in isotropic turbulence. The tensor

((V.u) )—:—
Z fll ~A p~08, (F". 7= —-uo

I

—+ —F."
I3 (r 8 ')

For r « 1 the function F, = e(1 —ar2) and

((V.u) ) = 10so.uo .

APPENDIX E: MODEL OF AN
INHOMOGENEOUS TURBULENT VELOCITY

FIELD IN A STRATIFIED MEDIUM

Consider a model of the turbulent velocity Geld u that
corresponds to the flow in a stratiGed medium. In this
case V u g 0. The stratification is caused by inhomo-
geneous stationary distribution of the density. Then the
continuity equation V (pu) = 0 can be rewritten in the
form V u = (A. u) where A = —Vp/p. In k space it is
given by

(k u) = —i(A. u) . (E1)

f „(k) = f„(—k),
f „(—k) = f*„(k) .

(E3)
(E4)

Consider a tensor (u (y)u (w)) assuming that this ten-
sor in r space depends only on r = x —z and it is in-
dependent of K = (w + s)/2. This is valid for the case
A„)) A, where A is the characteristic scale of the (u2)
variation. Thus the tensor (u (y)u (x)) in k space is

(u~ (ki) u„(k2)) b'(ki + ki) .

Therefore kq ———k2 = k. A general reflectively invariant
form of the tensor (u (k)u (—k)) is given by

f-(k) —= (u-(k) u-(-k))
= Bgb „+B2k k„+B3A A„+ B4k

+B5k„A (E2)

Note that the results also can be valid for a weak depen-
dence of the tensor on K. In this case the coefBcients Bz
slowly vary with K. The tensor f (k) must satisfy the
following identities:

The condition (E3) yields B4 —— Bs and (E4) y—ields
B4 ——iBO. It follows from (El) that

(E5)

1 0 s 8 1 OF(r) = ———r —fn(r), F,(r) = —— f (r) . —
p OT Op p Op

2

(u-(~)u-(y)) = 3' lF(r)+ F.(r)]~-

+—
d2dr (,

r„}i dF, r r„+rj dr r2

Now we calculate the value ((V u)2)

Using Eqs. (14) and (D4) after simple calculations we
obtain the correlation function of the velocity field

Equation (E5) yields Bi ——Bo(k + A ) and B2 ——Bs ——

Bo. Therefore the—tensor (E5) is given by

f „(k) = (u (k)u„(—k))
= B.~(k'+ A2)~ „kk„AA„--

+i(k A„—k„A )] . (E6)

We assume for simplicity that Bo depends only on ~k~. In
r space the tensor (E6) is given by
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rdF (
(u-(y)u-(x)) =B. F(r)b -+

2 d„ I
b-—

1
2
—F—(r) (r A„—r„A )

A A„)
A2

(E7)

where

/2 „(K,r) = f(u (—M+K/2)u„(k+K/2))

x exp (ik r) dk,
1K = k) + k2, k = -(k2 —kg),

where we use notations

(u (y)u„(x)) = f (u (k)u (
—k)) exp( —ik. r) d k,

and R and K correspond to the large scales, and r and
k to the small ones (see, e.g. , [53,54]).

For an inhomogeneous turbulence the continuity equa-
tion V' (pu) = 0 is written in the form

and

(E8)
/' K„lf „(k„+ "/= if „A—„. (E10)

2dA
(u') = (u„u„), F(r) = —— (Eg)

Equation (E10) coincides with Eq. (E5) for K„= 0,
i.e., for homogeneous turbulence. Equation (E10) can be
rewritten in the form

Expression (E7) is valid for the case A„)) A. Now
we consider a general case of arbitrary A„and A, i.e.,
an inhomogeneous turbulence. In this case the tensor
(u (y)u„(x)) in r space depends on r and on R. In this
case the correlation function (u u )

where

f „k„= if „A„—,

(E12)

(u (Y)u„(x)) = f(u (k, )u (ke))

x exp i(kq .x + k2 y) dkq dk2

4 Kr expiK R dK,

Comparison of (E11)with (E5) shows that a substitution
of (E12) instead of A in the tensor (E7) yields a general
form of the tensor (u (kq)u„(k2)) for an inhomogeneous
turbulence. The result is given by

f „(k,K) = (u~(kg)u„(k2)) = Bo(k, K)
~

k + A —i(A . K) ——K
~

b~„

1kk„—A A-„+i(k A„—k„A )+ KK„—
4

+—(K A„+ K„A )+ —(k K„—k„K )2
" "

2

To obtain this tensor in r space we have to replace

(E13)

in (E13). This procedure is equivalent to a replacement

in the tensor (E7). The result is given by

(u (y)u (x)) = B, Fo(r, R)b „+—
~

b —
~

— Fo(r R,)(r A ——r A )
r BFo ( r r„)
2 Br q

" r' ) 2

+A A(r, R)i b „— "
i

——
i
r —r„ iF()(r, R,)

( A A) 1 f' 8 8

+—b „~ —4A„~A(r, R) —— A(r, R) + —
~

A + A„~A(, R) . (E14)
1 ( (92 8 i 1 (9 8 1/' 0 8

Note that the condition (E3) in inhomogeneous turbulence in r space is given by
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f „(r,R) = f„( —r, R) .

The tensor (E14) satisfies this condition.
In the case when the vector OEp/OR as well as OA/OR are directed along A and for x = y = z the tensor (E14) is

given by

where

(u2) t' l2A2 l lpA (
(u-(z)u. (z)) =

I
I+ ' ~(z)

I
~-+ ' ~(z)] ~-

3 q 6 ) 4

1 F" 1 F'
~(z) = I+ 4&' Eo 4A +o

A A„)
A2 )

Here we use the relations valid for r ~ 0

(
Ep(r, R) = Ep(R) ]

I —
2 ~, A(r, R) = A(R)

]
I ——

z

Therefore [see Eq. (E9)]

Ep(R) = —A(R).
4
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