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Finite-amplitude regimes of the short-wave Marangoni-Benard convective instability
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A model of the infinite Prandtl number thermocapillary instability in layers of infinite depth is
developed in the framework of the amplitude equations formalism. Making use of eigenfunctions at a
given Marangoni number Ma as a basis for the nonlinear problem, rather than the neutral stability func-
tions, it is shown that third-order equations may visibly be extrapolated rather far above the threshold.
In particular, results are obtained about the wavelength selection problem between fastest growing
modes (wave numbers around k,„-Ma' for a zero free surface Biot number) and critical modes
(k, ~0 and Ma, ~0). Transient numerical integration of the equations reveals an unbounded growth of
the mean wavelength, thus indicating the absence of an intrinsic wavelength for this physical system.
This is explained in terms of the mean (horizontally averaged) temperature profile distortion by convec-
tion. The final st ady state of this evolution (imposed wavelength) is then approximated analytically.
Earlier results about the competition between rolls and hexagonal patterns are qualitatively recovered.
These solutions are then investigated in the limit Ma —+ ~, where power law relationships are derived for
main convective quantities. In particular, a saturation behavior is obtained for a quantity (the bulk tem-
perature decrease), which can be considered as a measure of the heat transport increase due to convec-
tion.

PACS number(s): 47.20.Dr, 47.20.Ky, 47.54.+r, 47.27.Te

I. INTRODUCTION

Marangoni convection usually refers to the motions
generated at an interface between two fluid phases when
the system is driven out of equilibrium by some imposed
temperature (or mass concentration) gradients. These
motions are induced by the corresponding interfacial ten-
sion gradients, to the extent that interfacial tension de-
pends on temperature (or concentration), and if the adja-
cent fluids are viscous, they can extend relatively far into
the bulk phases. A distinction is generally drawn be-
tween two (mutually nonexclusive) cases: the first hap-
pens when the driving flux is parallel to the interface, the
second when it is perpendicular to it. Since no rest (i.e.,
purely diffusive) state exists for the former case, motions
occur for every value of the constraint (and transitions
between steady and more complex flows are generally ob-
served when increasing the constraint [1,2]). In contrast,
a purely diffusive state does exist when the flux is perpen-
dicular to the interface and is known to become linearly
unstable above a critical value of this flux [3,4].

It is this second situation (the so-called Marangoni-
Benard instability) that forms the subject of this paper.
When the threshold of instability is exceeded, various dis-
sipative structures are experimentally observed, some of
them localized near the interface, in the form of small
cells eventually embedded in larger convective structures
[5], solitonlike propagating waves [6], or interfacial tur-

bulence [7]. In other conditions, Marangoni-Benard con-
vection is rather similar to the classical buoyancy in-
duced Rayleigh-Benard convection [8—11],with patterns
extending far into the bulk of surrounding liquids and ac-
tually reaching (and influenced by) the boundaries of the
experimental vessel. Note that these apparently different
forms of convection generally result in substantial in-
creases of heat and/or mass transfer through the inter-
face.

A well-studied Marangoni-Benard configuration is that
of a liquid layer of thickness h 1ying on a heated conduct-
ing rigid plate and with its upper surface in contact with
an inert gaseous phase. Experimental [12] and theoreti-
cal [13] evidence suggests that the relevant dimensionless
parameter expressing the critical conditions is the
Marangoni number Ma= —cr z Ph /px. , where cr ~ is the
surface tension variation with temperature, 48 is the
thermal gradient amplitude, p is the dynamic viscosity,
and ~ is the thermal diffusivity. Note that experimental
results show that the relevance of Ma may be discussed
for the different case of the steady-oscillatory transition
occurring in configurations where the imposed gradient is
parallel to the interface [2].

Figure 1 reproduces the neutral stability results of
Pearson [13] for this problem, as well as results obtained
by Scanlon and Segel [14] in the case of a layer of infinite
depth (the length h appearing in Ma then represents an
arbitrary length). At a given Ma, perturbations with
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FIG. 1. Linear stability results (curves 1, neutral stability
boundaries; curves 2, loci of fastest growing wave numbers) for
the finite-depth case (dotted curves) and the infinite-depth case
(solid curves), for a zero Biot number. The critical conditions
for the finite-depth case are defined by the critical Marangoni
number Ma, =79.6 and the critical wave number k, =1.99.
Formulas (infinite-depth case) are given for the neutral stability
curve Mak [Eq. (14)] and for the locus of the fastest growing
wave number k,„[Eq.{15)].

wave numbers in the range lying above the neutral stabili-
ty curve possess a positive amplification rate. There also
exists a particular wave number k,„ in this range, which
possesses the maximal arnplification rate. In slightly su-
percritical conditions (Ma=Ma, ), k,„ is close to the
critical wave number k, and does indeed predict the size
of convective (hexagonal) cells observed experimentally.
When Ma is increased, k „is seen to increase and the
prediction of the selected wavelength becomes quite com-
plicated since it involves nonlinear competition between
modes in the unstable range. Progress has recently been
achieved in this direction by Bestehorn [15]. For Ma in-
creasing further, k,„can be made as large as desired
compared to the critical wave number k, (Fig. 1). This
has been physically explained by the larger inertia of fluid
to set in motion for lower wave-number structures [7].

In the present work, we address the question of the ex-
istence of some stable, finite amplitude regime (steady or
even periodic in time) dominated by the fastest growing
perturbation. After all transients have been damped out,
will the convective structure be localized near the inter-
face (as is the case for linear perturbations with k =k,„)
or will it be depth scaled (k =k, ), as in the weakly non-
linear regime? The fundamental interest of this question
is related to the study of the similarities existing between
nonequilibrium instabilities and equilibrium phase transi-
tions [16]. As some equilibrium phenomena, some
'nonequilibrium phase transitions" can be characterized

by intrinsic wavelengths, such as the Turing instability in
reaction-difFusion systems [17]or the Kelvin-Helmoltz in-
stability in hydrodynamics [18]. For these instabilities,
the stability boundary possesses a minimum of the con-
trol parameter at a finite wave number independent of the
actual experiment size. It is seen in Fig. 1 that this is not
the case for the Marangoni-Benard instability (the critical
wave number in a finite layer of depth h scales as 1/h,

such as for the Rayleigh-Benard instability). However,
we may conjecture that this does not rule out the possibil-
ity of an intrinsic wavelength, linked to the presence of
faster growing modes (as it seems to be the case for the
Rayleigh-Taylor instability [19]). Note that the finite
wave number of the fastest growing mode generally de-
pends on the driving force amplitude (the thermal gra-
dient in our case). Attempts to answer to the question of
the preference of such modes at a given supercritical
driving force obviously have to incorporate nonlinear
effects in the analysis.

After describing the model in Sec. II, in which the
derivation of weakly nonlinear results is also presented,
we discuss this wave-number selection problem for a
two-dimensional geometry (rolls) and in the case where
the Prandtl number can be considered infinite (the possi-
bility of boundary-layer instabilities [20], although not
observed in our analysis, is also briefly discussed). This is
done in Sec. III. Buoyancy effects will be neglected, in
order to concentrate on the effects of thermocapillarity.
Calculations are achieved for a semi-infinite system [14]
(i.e., ignoring the presence of a rigid lower boundary and
thus focusing on interfacial short-wavelength effects).
This simplification allows us to obtain approximate
analytical results (Sec. IV) about the convective heat
transfer far from the threshold and about other relevant
quantities such as interfacial velocities and surface tem-
perature variations. We end this section by extending
some of these results to three-dimensional disturbances
and reconsidering the problem of the competition be-
tween rolls and hexagonal convective structures.

II. PROBLEM FORMULATION AND
%'KAKLY NONLINEAR RESULTS

We consider a semi-infinite viscous Boussinesquian in-
compressible fluid in contact with an inert gas phase.
The interface is located at the z=O coordinate plane of a
Cartesian reference frame with unit vectors 1; (i =x,y, z)
and is assumed undeformable (this will allow obtention of
analytical results and is justified since interfacial defor-
mation is known to primarily affect long-wavelength
modes [21,22]). The fluid is located in the domain z&0
and a constant heat flux is injected into the system (a con-
stant temperature gradient —P is maintained at
z~ —~). All equations and boundary conditions are
scaled by d (an arbitrary length) for length, d /lr for
time, pd for temperature, and pa/d for pressure. The
Marangoni number Ma= —o.TPd /plr is defined with
respect to the length d, instead of the fiuid thickness h
(h /d ~ ao ). Let V= V„+W1, be the fluid velocity ( V„ is
the horizontal velocity), T the temperature, and p the
pressure perturbations with respect to the purely conduc-
tive (zero velocity) reference solution. A solution vector
U will then be defined by

U(r =x 1„+y1~,z, t)=
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which is assumed to belong to a certain set, say, E, of
sufficiently derivable functions satisfy the boundary con-
ditions of the problem: these are

V„, 8', DT,p ~0 for z~ —{x},

8'=DT+BiT =0 for z =0,
(2)

(3)

where D is the dimensionless z derivative and Bi is the
free surface Biot number Bi=ad/A, (a is the free surface
heat transfer coefficient and A, the thermal conductivity of
the fluid).

The system of partial differential equations for the
solution vector U can be written under the general opera-
tional form

to simplify the process of deriving amplitude equations
[14,23 —26].

A. Derivation of amplitude equations

&e erst decompose U into Fourier modes

U(r, z, t)= f U+&z, t}exp(ik r)dk

so that horizontal Fourier components Uk all belong to E
[i.e., fulfill boundary conditions (2) and (3)] and satisfy

8 Uk
X+ Uk ) =MaM+k Uk ) +Bk

X( U) =MaM ( U)+ B +N( U, U),aU

where the linear part X( U) is given by

6V„—V„p

68' —Dp

X(U)= DW+V„.V„

AT+ 8'
[DI;l.=o

the "evolution part" is de6ned as

B(U)= 0
T

and the "constraint part" is given by

0
0

M(U)=
0

—[V,T].=o

Finally, the bilinear form X is expressed as

(4)

(7)

+ JNk k k(Uk -Uk k)«'- (10)

X+k Uk ) MaMH~ —
U~~ ) =o „BHU~ ) . (12)

The resolution of (12},detailed in Appendix B, shows that
for any Ma) 0, 0& k & Ma/2 Bi, an isolated eigenvalue

ok exists (and is such that o.k+k )0). This eigenvalue
is the growth rate of the corresponding eigenmode U~z(z),

appearing in Eq. (11). For every value of Ma and k, there
also exists a continuum of solutions of (12) that are
bounded for z~ —~ (and correspond to eigenvalues
o & —k ). This infinite set of solutions could eventually
be used to develop the remainder term U&z(z, t) of Eq. (11}
(the superscript D stands for "damped"), but it turns out
to be simpler to compute U&k directly, by a method ex-

plained in Appendix A. As exchange of stability holds in
our problem [27], eigenvalues cr k are real and satisfy

—1
2 2 o '+2k o +2k BierMa= ——2ko + Bi++o+k'

(13)

which is obtained by projecting (4) on exp( ik r )—and by
replacing V'„by ik in linear operators (this is the meaning
of the index k). The bilinear form N is defined in a simi-
lar way. Each Fourier mode is further decomposed as

U+~z, t }= A+~ t) U~q(z)+ U&~(z, t),
where Uf(z) is an eigenvector with eigenvalue ak
(k =

~
k

~ ) of the linear spectral problem

N(U„U2)= 0

V] V T2 = v]„V„T2+w/DT2

(8)

Mak =8k (k +Bi), (14)

The neutral stability condition is found by the limit of
Eq. (13) for o~0:

In the above relations, V„=l„(B/Bx)+ 1 (8/By) is the

horizontal gradient, V=V', +1,D is the total gradient,
and 5=V is the Laplacian operator.

Apart from the fact that pressure is not directly elim-
inated from the equations, the set of equations (4) togeth-
er with boundary conditions (2) and (3) is equivalent to
the problem formulation of Scanlon and Segel [14]. Note
also that we have included the Marangoni condition as
the last component of (4), which has already been shown

which is the asymptotic form (k —+ ~ ) of the neutral sta-
bility condition of Pearson [13],as also seen in Fig. 1. A
relation between the maximal eigenvalue cr,„,k,„,and
Ma may be found by difFerentiating (13) at constant Ma,
setting Bo /Bk =0. This gives, for Bi=0, for example,

o,„=2(1+~2)k,„=aMa with a=0.086 (for Bi=0) .

Although analytical results can also be obtained for
Bi+0, they are not reproduced here for conciseness. As
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remarked by Scanlon and Segel [14], the niinimum (criti-
cal} value of Ma for which instability occurs is zero, due
to the absence of stabilization by a rigid lower boundary
of the modes with increasingly large wavelength. Howev-
er, due to their large inertia, the growth rate of these
modes is vanishingly small for all Marangoni numbers.
This is depicted in Fig. 2: it is seen that modes with wave
numbers between 0 and k*=(Ma/8)' (for Bi=0) are
unstable, so that their amplitude A+z t } in the decomposi-
tion (11) show grow exponentially in time, as long as non-
linear effects can be neglected. In fact, it is shown in Ap-
pendix A that the amplitudes 3+z t) obey evolution equa-
tions of the form

at
=crk A-+ Z-,-A-, A- -,dk'k'k k' k —k'

+f fz&

These equations are strictly valid near threshold. When
the Marangoni number is increased, higher-order terms
should be included. Equation (16) may then be con-
sidered as resulting from a truncated modified Galerkin
scheme [15,25]. Another hypothesis underlying the
derivation of (16) is that the dynamics of damped modes
(i.e., of UP) is determined by the evolution of the "pri-
mary" modes A+&t)U~& (this amounts to neglecting time
derivatives of damped modes). This slaving principle
[25,26,28], strictly valid near the threshold, is here as-
sumed to be qualitatively valid in the strongly nonlinear
regime. This can be partly justified by the fact that
damped modes cannot bifurcate (cr ( —k ), as large as
Ma can be (see also [33]).

Despite these assumptions, our model is expected to
reAect physical reality even far from threshold provided
the eigenmodes U&k are used for the Galerkin basis rather
than the neutral stability functions U&k. In order to illus-

trate the differences between these different approaches,
we now turn to the derivation of weakly nonlinear results
[14,23 —26], for which the latter option is sufficient.

/ I

0 = 4.83 k,„

40

0
k(Ma —Ma )

4(2k +Bi) (17)

where a superscript 0 will denote a value of a coefficient
computed by using neutral stability functions. Note that
Eq. (17) is an insufficient approximation for low Biot
numbers. As an indication, the mode k=O is found to be
amplified for Bi=0 and Ma &0 (which differs from the
exact behavior of the growth constant, as seen in Fig. 2).

From Eqs. (9) and (11), it is seen that a roll mode with
wave vector ko is described by A-=ai(t)5(k —ko)k

+a, (t)5(k+ko), where 5 is the Dirac delta function and
an overbar denotes the complex conjugate. Substituting
into (16) leads to the Ginzburg-Landau equation

Ba& 0 0~k ~ 1 + (2Z 111 +Z —111 }+1 l
u i I

' (18)

where Z&&& and Z j &&
stand for Z& -- and Z

0 0 0 k0k0 k0

respectively. Defining a reduced distance to the thresh-
old by

e = ( Ma —Mai, ) /Mai, (19)

it is seen that at e=O, the rest state a, =O undergoes a
pitchfork bifurcation to the steady amplitude

32(Bi+3k 0 )

(Bi+ko )(39 Bi +248 Biko+ 353k 0 )
a&, =

(20)

obtained after evaluation of the cubic coefficients (see de-
tails in Appendix C).

Although strictly valid near the threshold, the limita-
tions of this weakly nonlinear model for large e are well
known. Consider, for example, the temperature pertur-
bation averaged in the horizontal direction (i.e., its k=O
Fourier component}

B. %'eakly nonlinear results

Making use of U+zz, t)= A+&t)U+zz)+ UP(z, t), instead
of Eq. (11), and following a procedure similar to that de-
scribed in Appendix A, we are left with amplitude equa-
tions identical to Eq. (16), although with different
coefficients. It is obvious that coefficients of the quadra-
tic and cubic terms do not depend on Ma. It can also be
shown that the coefficient of the linear term is the first
term of the Taylor expansion of o i, (Ma) around
Ma=Mak, i.e.,

20 (T) =T&z o(z)=2~a,
~

Toi(z)=O(e), (21)

-20

-40

FICx. 2. growth rate o. as a function of the wave number k
for di6'erent Marangoni numbers Ma and for Bi=0. The dotted
line represents the locus of the fastest growing perturbations,
given by Eq. (15).

where Toi(z} is the only nonzero component of Uoi(z)
(Appendix C). The total averaged temperature profile is
obtained by adding the reference profile —z to (21) and is
represented in Fig. 3 for several values of e. It is seen
that in a region of depth O(1/ko) below the interface,
the temperature profile is distorted (and somewhat homo-
genized) by Marangoni convection. It is also seen that
unrealistic temperature distributions (strongly negative
values of the mean temperature, leading to large unrealis-
tic cold spots in steady regimes) are obtained for e superi-
or to about 1.5. Defining 6 as the bulk temperature de-



52 FINITE-AMPLITUDE REGIMES OF THE SHORT-WAVE. . . 2607

6=0

(=0.5

(Ttot)

6-

domain of lateral length L =2irlko with periodic bound-
ary conditions. The amplitude of the Fourier modes is
given by

2+kt) =
n = —X,n%0

a„(t)5(k —nko) (23)

with a„(t)=a „(t) and N sufficiently large to ensure nu-
merical convergence. Substituting (23) in relation (16)
leads to

I

-7 -5

+m
o'

m a m + g Zp, m ap a m —p + Q Zp q, m ap a
q
a m —p —

q &

(24)

crease with respect to its value of the conductive rest
state, we may compute that

6 = —2~a„~ litn TP), (z)

32(Bi+3ko)(5 Bi+7kO)

ko(39Bi +248koBi+353ko)
(22)

where the superscript 0 again denotes the weakly non-
linear result. The result (22) of course diverges for
g~ 00.

The importance of obtaining a better approximation of
the bulk temperature decrease 5 is justified by the fact
that it can be considered as equivalent to the classical
Nusselt number Nu (more exactly to Nu —1, which is
also quadratic in the amplitudes). Indeed, for systems in
which the temperature difference is kept constant (such
as Rayleigh-Benard convection between conduction
boundaries), Nu is defined as the dimensionless ratio of
the total to the conductive heat Aux and therefore is a
measure of the increase of the heat Aux due to convec-
tion. For systems where the heat Aux is kept constant (as
in the present work), the decrease of the temperature
difference between bulk and interface may also be per-
ceived as an increase of the apparent thermal conductivi-
ty of the system due to Marangoni-Benard convection.
In the following sections it is shown that by using eigen-
vectors (12) instead of neutral stability functions a more
realistic description of convective fields for large Ma can
be obtained, together with interesting power laws for the
variation of convective quantities in the limit Ma —+ oo.

III. NUMERICAL RESULTS
AND PHYSICAL INTERPRETATIONS

In this section we present results obtained by direct nu-
merical integration of the set (16) for a two-dimensional

FIG. 3. Total temperature ( T„,) averaged in the horizontal
plane as a function of the vertical coordinate z, as computed
from weakly nonlinear results, and for di8'erent values of
e=(Ma —Ma, )/Ma, . The Biot number is Bi=0 and the basic
wave number is ko = 1. The distortion of the averaged tempera-
ture profile in the convective region near the interface z=O
creates a decrease 60 of the bulk temperature with respect to
the purely conductive value (dotted line, e=O}. 60 is here
de6ned for a=0.5.

where o stands for o I, , Zz for Z k k, and Z
for Z - - -, which are calculated as a function of the

pko, qko, mko'

Marangoni number Ma.
In the following, we will take advantage of the fact that

the length scale d of the problem is still arbitrary. We
may thus choose ko = 1, which means that the dimension-
al length of the periodic box is 2n.d. From Eq. (14), the
critical Marangoni number is given by
Ma, =Mak i

=8(1+Bi).
The system of equations (24) has been integrated for a

wide range of Marangoni and Biot numbers. Despite the
large number of unstable modes in some cases (increasing
with Ma) and the presence of resonant quadratic terms
(which are generally responsible for complicated phase
coupling effects [29,30]), the long-term behavior appears
to be surprisingly simple: a steady state is always
reached, which is strongly dominated by the fundamental
mode n=1. Since the number of modes X needed to en-
sure convergence is increasing with Ma (see Fig. 2), com-
puter resources limited our investigations to Marangoni
numbers of about Ma=500 (for Bi=0 and %=20).

We have also considered a simplified version of the sys-
tem (24), which allows us to simulate the evolution of a
larger number of amplitudes. This model is obtained by
setting all cubic coefficients Z with pram equal to
zero. We then obtain

Ba
o. —g S ~a ~

a +QZp apa p (25)

with S = —2Z . From Eq. (25), this quantity is
seen to represent the strength with which the presence of
the mode q lowers the effective growth rate of the mode
m. The physical mechanism responsible for this stabiliz-
ing effect consists in the distortion of the mean tempera-
ture profile by convection (see Fig. 3), which lowers the
destabilizing temperature gradient. A comparison of the
time evolution and of the steady state values predicted by
the full system (24) and the reduced set (25) reveals that
the results differ only slightly (by less than 10%%uo on the
value of typical convective quantities at steady state, as
shown in Fig. 6). In view of this rather good concor-
dance, the mean temperature profile distortion by con-
vection may be considered as a dominating effect in the
nonlinear competition between unstable modes. Implica-
tions for wavelength selection between fastest growing
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des are discussed later on in this section.and critical mo
S' 't '

legitimate to admit that the simp i e sy
(25), which can be considered as a "mean- e

f the roblem, is useful for simulating the interac-
of a lar er number of modes (up to X=, g

an also be investigated.
Again, even for Marangoni numbers as large as 4000 (for

i.e. e = 500), the long-term behavior is not
dified independently of the initial con i i" i.e. randomlyselected as a numerical "white noise,

chosen complex amplitudes o g
'of ma nitude 10 —10 ):

the final state is still steady and dominated yed b the funda-
mental mode.

A sequence o af typical transient simulation is
in Fi . 4. For sufficiently small initial pertur-p t d g

convective structure dominate y ebatlons, a c
st tok )isob-1' 1 rowing mode (the mode closes o

is the case asserved after a relatively short time. This is
be ne lected. At higher time

this k structure is progressively replaced yintervals, this, „s ruc
via a corn lex1 d larger wavelength structures via a comparger an a

tive cells.process o coa escf 1 ence of neighboring convec
'

state with twoThis evolution finally tends to the steady state wi w
convective cells (one period) occupying the entire

of this steady state will be investigated in Sec. I
It is interes o ct to compare Fig. 4 with the experimental

mass transfer systems. Note that these systems might ac-
d t h h values of Bi since the diffusion

~ ~coefficients are generally much larger in the gas t an in
h i' ui~ hase. However, our simulations were not

Linde, Schwartz, and Wilke interpreted the observed
h f the mean wavelength of the convective pattern

as an efFect due to the nonstationary mass trans er o
ring in t eir ex

d b utting in contact a gas phase contain-
ing a surface active solute with the liquid p ase; e
diffusion of this solute through the interface creates a
growing i usived'ff '

boundary layer, which induces convec-
alestive motions in eth liquid with a wavelength that sca es

with the thickness of this boundary layer.
Since a natura eng11 th scale such as this boundary layer

avelen ththickness is absent in our formulation, the wavelengt
selection observe in ig.b d

' F' 4 has to be intrinsically related
t the nonlinear mechanism of heat or mass) convective
transport. This effect was indeed shown (see 'g.Fi. 3) to
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FIG. 4. Evolution of the stream function
pattern for Ma=3000 (a=374), Bi=0, and
N= 75. Solid closed curves correspond to
clockwise motion. The initial condition was
selected as a random noise of amplitude 10
The stream function is rescaled at each
snapshot (the reduced time is indicated). The
fastest growing perturbation is dominating for
times t(0.03. A continuous growth of the
mean wavelength of the pattern is observed,
the later stages of which tend to a steady state
with two convective cells (one period) in the
simulation domain, after a time of order unity
(in units L /4rr lr, where L is the horizontal
period).
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create a homogenization of the temperature (or concen-
tration) profile in a convective region located below the
interface. This is also apparent in Fig. 5, which
represents the temperature profile averaged along the
horizontal direction corresponding to the evolution de-
picted in Fig. 4. It is seen that the temperature uniformi-
zation due to convection is more important at large
times, when the penetration depth is large. The growth
mechanism can be explained by the following considera-
tions. Suppose that at one particular instant, the convec-
tive structure has a given mean wavelength A, . Since the
convective cells have to preserve a certain height-to-
width ratio, temperature is practically homogenized in a
region of depth A. below the interface. Modes with wave-
lengths smaller than A, may be considered as stable since
they experience a nearly isothermal environment. On the
contrary, modes with wavelengths larger than k can
penetrate deeply enough into the bulk of the liquid and
bring hot Quid from the still conductive zone to the inter-
face. The effective growth rate of these modes remains
nearly unchanged by the convective structure so that
these modes continue to grow (but slower and slower due
to their growing inertia) and tend to replace smaller
wavelength structures. The pattern wavelength k may
thus be expected to grow indefinitely, at least in an
infinite system. In real experiments, the final wavelength
will probably be determined by the actual depth of the
experimental container (thus near the critical wave-
length), indicating that an intrinsic wavelength is likely to
be inexistent for the pure Marangoni-Benard problem.
Note that from the point of view of wavelength selection,
the evolution described above presents some similarities
with coarsening processes observed during spinodal
decomposition phenomena in binary mixtures [36].

A last remark about Fig. 5 concerns the temperature
profile near the interface. Since the vertical velocity is
vanishing at the interface, some kind of thermal bound-
ary layer is created there, in which the temperature gra-
dient quickly recovers its bulk value. In Rayleigh-Benard
convection, boundary layer effects are known to play a
decisive role in the mechanisms of transition to tur-
bulence (especially for high Prandtl number fiuids [20]).
However, despite the very high values of the Marangoni
number, boundary layer instabilities have not been ob-
served in our simulations, probably due to the different
nature of these boundary layers (in particular the absence
of the no-slip condition for Marangoni-Benard problems).
Furthermore, it cannot be rejected that this kind of
phenomenon could appear for larger driving forces than
those investigated in this work (up to Ma=4000).

Finally, let us mention that a direct comparison of the
results obtained from the present model (amplitude equa-
tions limited to third order) with a finite-difFerence reso-
lution of the governing equations is in progress and will

'0

0.0
4

0.
3-

2-

be reported elsewhere. Preliminary results exhibit a satis-
factory agreement concerning the qualitative evolution of
the system (i.e., the growth of the mean wavelength up to
the final steady state with the largest wavelength). This
confirms that the most important ingredient responsible
for this process is indeed the mean temperature profile
distortion by convection. This in turn indicates that
mean-field approximations [32], neglecting all nonlinear
effects except the change of the mean temperature profile
owing to the convective heat transport, can lead to satis-
factory approximations of highly supercritical behaviors.

IV. ANALYSIS OF STEADY STATES

A. Bifurcation of rolls

Since the steady state reached by both full (24) and re-
duced (25) models is strongly dominated by the funda-
mental mode n =l, we seek an approximate solution by
setting to zero all harmonics a„with n ) 1. The set (25)
then reduces to the single equation

(26)

describing a pitchfork bifurcation similar to Eq. (18) but
where the coefficients are now computed from the eigen-
functions Uk and thus depend on Ma. After computa-
tion of these coeKcients, the steady convective solution of
(26) is finally found as

-3

FICx. 5. Evolution of the total temperature ( T„,) averaged
in the horizontal plane as a function of the vertical coordinate z.
The Biot number is Bi=0. Several times are considered, which
correspond to the simulation depicted in Fig. 4. A homogeniza-
tion of the temperature in a domain whose depth is growing
with time occurs, which results in growth of the bulk tempera-
ture decrease 6 with time (see inset).

S),
(Ma —Ma, )o (3+Pl+ )o

(1+Bi) [512(Ma+o )+Ma(3ir —8)(3+&1+o.) ]
(27)

where the growth rate o is solution of the dispersion relation (13) and thus also depends on Ma. According to Eq. (26),
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where the growth rate cr is solution of the dispersion relation (13) and thus also depends on Ma. According to Eq. (26),
t e solution (27) is stable provided o. & 0 (S» & 0) which is equivalent to Ma & Ma =8(1+Bi) (we have set k = 1).C ave

8(Ma —Ma, )(3+&1+o') o —2+ 8(Ma+cr )

Ma(1+&1+o )

512(Ma+a )+Ma(3a' —8)(3+&1+tr)
(28)

B. Competition between hexagons and rolls

In view of the good agreement between the analytical
result (28) and the results of the numerical integration of
(24), we shall reexamine the problem of the competition
between three sets of rolls forming angles of 60 with each
other. We thus consider

Ak =a, (t)5(k —k, )+az(t)5(k —kz)

+a3(t)5(k —k3)+a, (t)5(k+k, )

+az(t)5(k+kz)+a3(t)5(k+k3), (29)

This expression is represented in Fig. 6, together with re-
sults obtained from the integration of the full system (24)
and of the reduced system (25). Another result found in
Fig. 6 is the expression (22), which reduces to
5 =672@/353 for Bi=0 and k0=1. Clearly, this result is
only valid near the threshold. At the contrary, the ex-
pression (28) for b. leads to the result b, = 14/5e near the
threshold [which is overestimated due to the negligence
of the stabilizing coefficient Z»„see Eq. (18)]. Never-
theless, Eq. (28) appears to be a better approximation of
the bulk temperature decrease for large Marangoni num-
bers (because Z»i becomes negligible compared to
Z», ). The corresponding mean temperature profile can
also be shown to be more realistic since it does not exhib-
it cold spots such as those appearing in Fig. 3 but is rath-
er close to Fig. 5. The behavior at an infinite Marangoni
number is given at the end of this section.

BQ2
oaz+5aia3 —[~ilazI'+~z( lai I'+ la3I')]az, (30)

BQ3 =oa3+5a, az —[a, la3I +tzz(la, l + lazl )]a3,

where

6=2Z, 2,
ai=( iii iii)
az= —2(Z. . .+Zz, i+Z z, , ),

(31)

(32)

(33)

and Z „stands for Zk k k (symmetry considerations
P g T

have been used to minimize the number of coefficients to
be calculated).

The discussion of the gradient system (30) is well
known [23—26,37]: writing a„=r„exp [iq„], we obtain
the equation By/Bt = —5 sing(r ir 3 + rzr 3 +r ir z )/r, rzr3
(with r„XO) for y=yz —

q&i
—

q&3, showing that y=O and
~ are the only possible stationary values of y. Then it is
found that qualitatively different fixed points of Eqs. (30)
are (when a=a, +2az&0) the rest solution

r& =r2=r3 0 (34)

where the ordering of unit vectors k;, IiI=1,2,3, is
defined by Fig. 7. From Eq. (16), the corresponding am-
plitude equations are

Q1
=~ai+5aza3 —[~ilail'+~z(lazl'+ la3I')]ai,

2.5-

2-

1.5-

0.5

1.5

30

0.5

20
0

10 40 g=(Ma-Ma, )/Ma,

FIG. 6. Bulk temperature decrease 5 as a function of the dis-
tance to the threshold @=I,'Ma —Ma, }/Ma, for Bi=0. Thick
full curve, results of the numerical integration of the full system
(24}; thick dotted curve, numerical integration of the "mean-
field" system (25); thin full line, the weakly nonlinear result
6 =672m/353; thin dotted curve, the analytical result for 6
given by Eq. (28) of the text. The inset represents a zoom of a
region near the origin.

FIG. 7. Definition of the basic wave vectors for the study of
the competition between rolls and hexagons ( I k; I

= 1).
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the roll solutions

r2=r3=0, r& =(o /a&) 1/2

the up-hexagon solutions

y=O, r& =r2=r3 =[5+(5 +4cra)'/ ]/2a,
and the down-hexagon solutions

r& =r2=r3=[ —5+(5 +4rra)'/2]/2a .

(35)

(36)

(37)

2.8-

2.6-

2.4-

2.2-

2-

UH------

1+Bi

1.8

1.6-
10

The analytical form of the coefficients 5, a„and a2 (de-
pending on Ma) is not written down for conciseness.
Rather, Fig. 8 presents their variation with the distance
to the threshold e for various Biot numbers. Bifurcation
diagrams are represented in Figs. 9 and 10.

Figure 9 represents the bulk temperature decrease 6 as
a function of the distance to the threshold e for solutions
(35)—(37). As expected, up hexagons (upflows at the
center of the hexagons) are the only stable solutions just
above the threshold and rolls become stable only at large
e. Down hexagons (downflow at the center) are always
unstable because 5 & 0 (which is different from the case of
very low Prandtl number fluids [26]). Note that, al-
though not apparent on the figure, the first bifurcation to
up hexagons at @=0 is slightly hysteretic: the depth of
this subcritical region is 3.3% (for Bi=0) in our model,
slightly larger than the 2.3% value of Scanlon and Segel
[14]. This is due to the fact that we have neglected the

20 40 60
I

80

FIG. 9. Bulk temperature decrease b as a function of the dis-
tance to the threshold e for Bi=0. R, rolls; UH, up hexagons;
DH, down hexagons. Solid curves represent stable states, while
dotted curves represent unstable states. The thin solid line
represents the analytical result given by Eq. (28) of the text for
the bulk temperature decrease of rolls.

stabilizing action of "secondary" modes, i.e., those gen-
erated by quadratic interaction of the "primary" modes.
This is done since it is natural to expect that these modes
become unimportant for large Ma, as observed in the case
of two-dimensional simulations, characterized by a strong
domination of the fundamental mode n= 1 (see Sec. III).
When the amplitudes of these harmonics are included in
Eq. (29) and finally eliminated using adiabatic slaving
[25,26,28], the 2.3% value of the hysteresis is recovered.
It is also possible to recover the result 0.56% of Bragard
and Lebon [24] in the case of a layer of finite depth (the
calculation of coefficients is then fully numerical). It is
also apparent that the percentage depth of the subcritical
region increases with the Biot number.

An interesting result of the present analysis is that at
large Marangoni numbers, the stability properties are not
qualitatively modified with respect to the results of Scan-
lon and Segel [14]: these authors predicted that rolls

20 40
I

60
I

80 Vm-

(1+Bi)
r

4
10

1

I I 30

20

0

10

10

2.5

20 40 60 80

20
I

40 60 80

FIG. 8. Coefficients 6/(1+Bi) (upper graph), a&/(1+Bi)
(lower graph, solid curves), and a2/(1+ Bi) (lower graph,
dashed curves) as a function of the distance to the threshold
@=[Ma —Ma, (Bi)]/Ma, (Bi), for various Biot numbers Bi (indi-
cated on each curve).

FIG. 10. Maximal surface velocity V,„as a function of the
distance to the threshold e for Bi=0. R, rolls; UH, up hexa-
gons; DH, down hexagons. Solid curves represent stable states,
while dotted curves correspond to unstable states. The thin
solid line represents the analytical result for the maximal sur-
face velocity of rolls.
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should become stable above a value e, =64 (our value is

el =8.6) of the constraint, while up hexagons should be-
come unstable above ez = 196 (our value is @&

=37). A bi-
stability region (leading to hysteresis effect between rolls
and hexagons) thus exists between el and ez. This quali-
tative concordance reinforces the idea that this hysteresis
region could be a physical reality, although the domain of
validity of the amplitude equations is not guaranteed for
such large values of e. Finally, we have represented the
maximal surface velocity for the bifurcating solutions
(35)—(37) in Fig. 10, showing that this quantity is not
strongly dependent on the particular planform selected.

C. Asymptotic behaviors for Ma~ 00

k Ma
2

for Ma —+~ . (38)

The asymptotic value of the amplitude of rolls is derived
from Eq. (27),

1/3
ross Ma

2'"3'"()+Bi) (39)

and it is calculated from Eq. (28) that the saturation value
of the bulk temperature decreases for a roll structure is

6""'~—' =2.66
3 (40)

independently of the value of the Biot number. This re-
sult is confirmed by all the curves of Fig. 6.

It is readily computed that the maximal surface veloci-
ty is

1/3
rolls 8 Ma 1/3max~ 1/3 1/, —-3.67 Ma

2 3
(41)

while the amplitude of the surface temperature variations
is given by

32M -'"
gT oil

sllrf
2 3

The corresponding expressions for hexagons (although
unstable with respect to roll disturbances for Ma~ oo )

can also be derived analytically. We obtain

5~ —", (1+Bi), (43)

It results from the examination of the previous figures
that the asymptotic behaviors of the relevant convective
quantities for Ma —+ao obey different power laws than
those generally derived near the threshold by using classi-
cal perturbation methods. In particular, a saturation is
observed for the bulk temperature decrease b, (which, as
mentioned earlier, can be considered as equivalent to the
Nusselt number). The purpose of the following calcula-
tions is to derive asymptotic results for 6, for the maxi-
mal surface velocity V,„,as well as for the surface tem-
perature deviation ET,„,f, which we define as the
difference between maxima and minima of temperature
on the free surface.

From the dispersion relation (13), it is straightforward
that

2/3

a, —+3(1+Bi)

( 104 733 03 1 —60 445 052/3 )

243(7+4&3 )

= 11.56(1+Bi)

It follows that

ghexagons 2 O8 (46)

for the bulk temperature decrease of hexagons [both up
and down hexagons lead to the same value for Ma~ ~,
as seen from Eqs. (36) and (37) and in Fig. 9]. This value
is inferior to the value —,'of rolls. However, this should
not be taken as a rigorous justification for the instability
of hexagons since it is well known that the principle of
maximization of the convective heat transport, originally
proposed by Malkus [31], does not lead to stability pre-
dictions that are generally valid [32].

Finally, the maximal surface velocity tends to

t/hexagons 3 29 M 1/3
max (47)

and the amplitude of the surface temperature deviations
is

gThexagons 16 81 M
—2/3 (48)

To check the assumptions used in our analysis, it should
be interesting to compare the above results with a full nu-
merical integration of the problem. Preliminary finite-
difference simulations indicate a slow growth of the bulk
temperature decrease, as well as an increase of the veloci-
ties (although with an exponent larger than 1/3) coex-
istent with a slow decrease of the surface temperature
variations. This allows us to place some confidence in
our analysis. In particular, the exponents 1/3 and —2/3
may be considered as first approximations that could be
refined by deriving higher-order contributions to the am-
plitude equations. It appears also that the present
asymptotic analysis leads to results that are dificult to
check by finite-difference simulations. Indeed, since con-
vergence of results may only be expected for very high
values of the Marangoni number, numerical di%culties
are encountered, mainly due to the presence of very steep
surface temperature gradients at the cold points, where
the Quid moves downwards.

We conclude this section by remarking about an im-
portant mathematical aspect of the pure Marangoni-
Benard instability. A particular feature of this problem is
that the neutral stability condition provides Ma as a
single-valued function of the wave number k. This means
that above the corresponding critical value, one and only
one eigenmode is unstable, as large as Ma can be. This
has to be contrasted [33] with Rayleigh-Benard instabili-
ties, where n eigenmodes are linearly unstable above the
value Ra„=(k +n ~ ) /k of the Rayleigh number
(pure Rayleigh-Benard convection between stress-free
boundaries). Clearly, the above analysis would require
nontrivial modifications to account for interactions be-
tween these unstable vertical modes. Physically, this
difference between Marangoni-Benard and Rayleigh-
Benard problems is certainly related to the different na-
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tures of the surface and the bulk forces. This could also
explain why neither boundary layer instabilities nor sub-
sequent transitions to- turbulence have been observed in
our model, in the range of Marangoni numbers investi-
gated.

V. CONCLUSIONS

Pure thermocapillary instability in layers with nonde-
formable interface and infinite Prandtl number has been
studied. The model is based on the assumptions that the
dynamics is determined by the interactions of the unsta-
ble eigenmodes of the linear stability problem and that
the evolution equations describing their interactions can
be limited to third order in their amplitudes. Although
strictly valid near the threshold, this model has to be con-
sidered as an approximation (similar to a truncated
modified Galerkin method) far from it. Attention has
been restricted to short-wavelength effects, so that the
layer has been assumed infinitely deep.

The first part of the analysis has focused on the two-
dimensional wavelength selection problem at moderately
large Marangoni numbers, for which the wavelength of
the fastest growing disturbance is much smaller than the
critical wavelength. The transient numerical integration
of third-order amplitude equations has shown that, al-
though a structure dominated by the fastest growing dis-
turbance can appear at a given instant, it is progressively
replaced by longer-wavelength structures. A steady state
is always reached, whose wavelength is equal to the size
of the (periodic) simulation domain. This is confirmed by
a finite-difference integration of the problem. Although
the fastest growing wavelength is a finite quantity, it ap-
pears that the Marangoni-Benard instability cannot in-
duce stable localized structures with intrinsic wave-
lengths independent of the experiment dimensions (at
least up to Ma=4000). The physical mechanism respon-
sible for this convective cells growth process is shown to
be related to the nonlinear convective heat transport,
which creates a distortion of the temperature field in the
region located near the free surface. The distortion of the
horizontally averaged temperature profile (the cause of
the instability) has a stabilizing effect on short-
wavelength modes, but leaves the growth rate of long-
wavelength structures relatively unchanged. This pro-
duces a growth of the pattern wavelength, which presents
some resemblance with experimental results of Linde,
Schwartz, and Wilke [5], although we have not studied
this point in details since transient evolution of the
diffusive (boundary layer) profile is not taken into account
in our analysis.

Properties of the steady states observed in the convec-
tive system have been investigated for both rolls and hex-
agonal structures. Contrary to existing weakly nonlinear
theories, our method (differing by the use of eigenfunc-

tions rather than neutral stability functions) appears to
lead to physically realistic results, at least qualitatively,
for very large Marangoni numbers. This is conjectured
from examination of the behavior of some relevant con-
vective quantities. The decrease of the bulk temperature
due to Marangoni convection has been found to present a
saturation when the Marangoni number is increased
(while the weakly nonlinear result is a linear growth).
The velocities are found to grow as Ma' as Ma~00,
while the surface temperature variations decrease as
Ma . However, due to the assumptions underlying
our model, these behaviors should be considered as first
approximations that could be refined by including
higher-order interactions in the amplitude equations.

The analysis of the competition between rolls and hex-
agons confirms earlier results [14,23 —26], quantitatively
(near threshold) and qualitatively (far from threshold}.
At small Marangoni numbers, up hexagons are the only
stable solutions (the first bifurcation is slightly hysteret-
ic), while rolls are the only stable solutions at very large
Marangoni numbers. Down hexagons are always unsta-
ble (Pr~ ~ ). The transition between up hexagons and
rolls is found to be hysteretic, as in other problems (see,
e.g. , [34]). However, this transition has been found to
occur for lower Marangoni numbers than in [14] and
with a smaller hysteresis loop.
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APPENDIX A: DERIVATION
OF AMPLITUDE EQUATIONS

Using Eq. (11},we may write Eq. (10) as a differential
problem for U&z(z, t):

BAk
X+k Up) MaM+z U+z) =——Ak[X+& U~k) MaM+& U~k)]+ —

6+k U~&)+ f dk'Ak, Ak kNk, k k (U~k„Uf k, )

f '
k k —k k' k —k'

'
k' k k-i k k —k k kk k —k—

7
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—f dk'A
& V&, N-, - -,(U~, U& -, )&

7

+k
(A2)

where Eq. (12) has been used and it has been anticipated
that the velocity (and pressure) components of U&k are
zero. This will become apparent later and is a conse-
quence of the linearity of the equations of motion. In
(A2), & V+&, & denotes the projection on the adjoint neu-

tral stability solution (derived in Appendix B),
rk =

& V+&, 8+& U~&) & is the normalization factor, and the
quadratic coefficients are given by

&V& N-, - —,(U~ U~ —,)&

+k

Now, by inserting the projected part (A2) into the com-
plete equation (Al), we obtain

X+k UP) MaM+q UP')—

= flak A-A- -.N, -, - -, (U~ U~ —,)k' k —k' k', k —k' k'' k —k'

where the time-derivative of U&k has been canceled as a
result of our assumption to neglect the dynamics of the
damped modes (the slaving principle). Note that because
of Eq. (11), the boundary conditions can only be satisfied
if U&& belongs to E. A very rough (and insufficient) model
could be obtained at this stage by projection of Eq. (Al)
onto some functions (generally the adjoint functions [35])
and assuming U&k=o. We would then obtain an equation
of the form (16), but without stabilizing cubic terms.
Rather, we will try to solve (Al) for U&z. This can be
done only if (Al) is compatible, which is not the case at
Ma=Mak (the kernel of the left-hand side operator is
then not empty), except if the second member is orthogo-
nal to the solution of the adjoint neutral stability problem
(Fredholm's condition). This leads to the amplitude
equations

(jAk

a~
=crk 2-+ dk'Z-, -A-, A- -,k'k k' k —k'

wltli qlladl'atlc coefficients glveil by (A3) aild cubic
coefficients given by

Z~~k'k"k

&VA N~~ ~(UA UP ~ )&
7

(A7)

APPENDIX B: SOLUTION OF THE LINEAR PROBLEM

(D k2) V—k ikpk—

(D —k )Wk —Dpk

DWk0+~k V„Ok

(D k)Tk—+ Wk

[DV„k+ik MakTk],

(Bl)

The solution of this problem that belongs to E [i.e., which
satisfies boundary conditions (2) and (3)] reads

k

V„k

8'k
kz

0Jk
y0

4ik(—k +Bi)(1+kz)
—4k (k+Bi)z
—8k (k+Bi)

1 —(k+Bi)z+k(k+Bi)z

(B2)

where k =
~
k ~, and the normalization condition has been

chosen such that Ti, (z =0)= 1. The compatibility condi-
tion leads to the neutral stability relation
Mak =8k (k+Bi). We can now define adjoint vectors

(B3)

Starting from Eq. (12), the neutral stability problem
(o k =0) can be written as

s( Up) =u-, ( U~) —Ma„M-„( Uk )

+ f dk' A-,Nk, k -„,( Uk„U+ -„,), (A4)

where the nonresonant part of a term X is defined by
X =X—r„'& V+,X&6+U~), such that & V&,X & =0
for every X. This ensures that (A4) is compatible for
every Ma. Now, the form of Eq. (A4) suggests an itera-
tive series solution, starting with

U+k= dk' Ak, Ak k, U~kk, (A5)

in which U~kk, is obtained from

(X-—MaM-) U~ =N-, - -, ( U~ U~ -, ) .
7

(A6)

Substituting this result in the right-hand side of (A4)
leads to higher-order corrections [cubic terms for U+k,

generating quartic and higher-order terms in (A2), which
are not considered in our model]. We limit the calcula-
tion of U+k to (A5) and (A6) such that the compatibility
equations (A2) reduce to the amplitude equations (16),

belonging to a set E of adjoint boundary conditions to
be defined later on.

A scalar product is introduced in the usual way (see,
e.g. , [14,24]) by

&v*,s~U)&=&s&(v'), U& (B5)

for all U belonging to E and V to E*. Integration by
parts leads to

& V*,S-„(U)&=f [V„*.S, +W'S, +p*s, +T'$, ]vz

+[X*$~], 0, (B

where S;, i =1, . . . , 5, are the components of (Bl) and
the overbar denotes the complex conjugate. We also
define ihe adjoini operator S~k of Sk by
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S+k( V*)=

(D k—) V„* —ikp*

(D —k )W' Dp—'+T*
D8'*+ ik. V„*

(D k—)T*

(B6)

V„,W*,DT*,p*~0 for z~ —Do, (B7)

8' =DV, =X*+V, =DT*+BiT*+iMa k X*=0

for z =0. (BS)

and the cancellation of the boundary term gives E as
the set of su%ciently derivable functions satisfying

The resolution of the adjoint problem S&k( V+k)=0 (with
V&k&E') gives

—ke"
4(2k +Bi)

ikk (1—kz —k z )

z (1—kz)
—4(1+kz)

—8k
—ikk

where the normalization ( V+k, 6+k Uk ) ) = 1 has been
adopted.

Finally, the eigenfunctions of the spectral problem (12)
read

VcT
rk

k = —4k (k+Bi)
Pk

Tk

ikk e"'(1+kz)
kz

2e kz

kz 2 + 2k (o.+k ) z
2 g

1 1

k Ma o.

(B10)

where the corresponding eigenvalue o. is solution of the
dispersion relation (13). Note that the derivation of (B9)
assumes o +k & 0 [which is verified provided
k (Ma/2 Bi, as seen from Eq. (13)j. Otherwise, when
o.+k (0, imaginary roots are obtained from the charac-
teristic relation and lead to a continuum of solutions
bounded at z —+ —~, but which do not satisfy boundary
conditions (2).

D Tg =W)DT, iko V„—)T ) =D(WiT)), (C3)

2koz
X e

2 0

1

2ko

where the neutral stability functions are given by (B2).
Then, the solution belonging to E is

TP), =(5 Bi +12koBi+7ko)

APPENDIX C: CALCULATION
OF THE MEAN TEMPERATURE PROFILE +(Bi+ko) koe z (5—2koz) . (C4)

For the roll mode 3k=a, (t)5(k —ko)+a, (t)5(k+ko)
(see the end of Sec. III), the k=0 Fourier component of
the perturbation vector is found from (A5) as

The cubic coefficient Z&&& can then be computed from
(A7) as

Uk =0 2la i I'U„(z) (C 1)

where, according to (A6), Ug (z) is the solution of the in-
homogeneous problem

(C2)

Ztii= —&Vf»i, o(Ui Uoi)&

= —f' T,*(W', )'T', dz

ko(Bi+ko) (38i+5ko)
2(Bi+2ko )

(C5)

since Mk 0=0 and the resonant part of N, , is zero, as
Z)o =0 from (A3). Here again the subscripts refer to the
mode number (1 for ko, —1 for —ko). It is computed
that the only nonzero component of U~& (z) is To, (z), the
solution of

A slightly longer but similar computation leads to the ex-
pression of the second cubic coe%cient Z»& and then
finally to Eq. (20). Equation (27) is also obtained in this
way, but by using eigenfunctions (B10) instead of the neu-
tral stability functions (B2).
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