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Microcirculations in turbulent Rows
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Velocity circulations over infinitesimal fluid contours (microcirculations) are considered. A statistical
evolution of microcirculations is studied (in particular, initial tendencies) with various initial orienta-
tions of fluid contours relative to the vorticity field. The obtained exact results suggest another direction
for numerical experiments in turbulence.

PACS number(s): 47.27.—i

In well developed three-dimensional (3D) turbulent
Qows, the major nonlinear effect of vortex stretching is
statistically balanced with viscous dissipation [1,2]. It
was predicted [2—4] that balance between these two
effects takes place not only globally but also conditionally
for any fixed magnitude of vorticity co and that contribu-
tions of other terms in the vorticity balance are —Re
(Re is the Reynolds number). This prediction was
confirmed recently by direct numerical simulations [5],
which revealed that rates of vortex stretching and dissi-
pation increase exponentially with co. It was also argued
[5] that local imbalance of these two major opposing
effects leads to the formation and destruction of twisted
vortex strings, observed experimentally [6]. A detailed
theory of these events can drastically reduce the effective
number of degrees of freedom for numerical simulations
of turbulent fiows (from the classical estimate [7]
N-Re to the number X, -Re ' associated with vor-
tex strings [8]). The present paper constitutes a simple
step toward the understanding of dynamics and statistics
of vortex filaments and corresponding microcirculations
in turbulent Qows.

Consider the following equations for the 3D vorticity
field in viscous incompressible Quid:
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Here m, is vorticity, U; is velocity, v is kinematic viscosi-
ty, and we have a summation over the repeated indexes
from 1 to 3. The first term on the right-hand side of (1)
represents the effect of vortex stretching, which is absent
for 2D flow.

The intensity of the vortex filament is determined by
the velocity circulation over a contour encircling this fila-
ment:

f v, 51, =f co, 5s( . (2)

Here 5s; is an oriented element of cross section S, limited
by contour C. The evolution of an infinitesimal Quid sur-
face element s; (we omit 5) is determined by the equation

Indeed, for a linear infinitesimal element r; we have
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where x, (t, a} is the trajectory of the fiuid particle with
the initial position a and r;0 is the initial element. Con-
servation of volume [incompressibility (1)] and the first
part of Eqs. (4) give

ds; t)vj(r, s, )=0, r; . + s =0 . (5)
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where in our case, x,&=Bx;/Bak, v;=aviv /Bx;, J=l,
and v =0. The solution of Eq. (3) can be presented in
terms of inverse trajectory a(t, x): s; =(t)aj /Bx; )sjo.

To deal with finite quantities, let

s.
O. =

Sp
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The initial area of surface element so is assumed, for sim-

plicity, to be the same for all points. The y field (8} is as-
sociated with microcirculation of velocity and local inten-
sity of the corresponding vortex filament.

Taking into account that so is constant, we get from (3)
and (8)
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For the evolution of y from (1), (8), and (9) we have

dr=
dt

=vo Aco. (10)

In 2D incompressible flow, the area of the surface ele-

Equation (3) follows from the second part of Eqs. (5), if
we remember that r; is initially arbitrary (see the similar
derivation in Ref. [9]). We can also consider the surface
element as the vector product of two linear elements
si E'ijk ljpk, where e;jk is the unit antisymmetric tensor.
Conservation of volumes (5) and (3) follows from (4) and
general equalities:
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ment is invariant of motion (s —=so) and y coincides with
vorticity co, which has only one component. In 3D Qow,

y plays a role similar to vorticity in 2D, which is the
inviscid invariant of motion (Kelvin's theorem, applied to
the infinitesimal contour).

Integration of (10) over a simple-connected fiuid sur-
face gives

$ U, 51, =vI b,a&;5s, =v
gati
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BCOk= —ve;k 5l; .
C BXJ

Let us note that (11) has an important application to the
case of free-surface turbulent fiows when the contour is
totally or partially on a free surface [10]. Moreover,
when the contour is totally on a free surface, (11) is
correct even for a nonbarotropic fiuid [10].

For a statistical description of the y field in turbulent
Bow, we consider three difFerent initial conditions for
Quid contours. In case I, o., is initially independent of the
vorticity field and statistically homogeneous and isotro-
pic. In case II, o.; is initially oriented along the vorticity
field (o;0=ra;Omo

' ). Thus, case I corresponds to arbi-
trarily chosen Quid contours, while case II corresponds to
the dynamics of vortex filaments (at least initially}. We
will also consider a more general case, case III, described
below.

For the evolution of the n-order moment of y in sta-
tistically homogeneous turbulent fiow, we have from (10)

(y2m) ( 2m 2m 2m)
COO

(14)

Here the overbar means conditional averaging with fixed
co, (see details about such averaging in Ref. [3]). By
definition (8), initially &7=1. Isotropy of cr; distribution
gives

2m ] 2m

2m+1
Thus, initially,

( y2m) ( jm)1

2m +1
For the tiine derivative from (12) we have

(16)
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Initially o.=1, and, by using isotropy, we can write

cally homogeneous and isotropic vector field can be ex-
pressed only in terms of products of the unit tensor 5; .
Thus all odd moments are zero. This proves that (13) is
correct initially. The time derivative of this moment, ac-
cording to (12), is also initially proportional to an odd
moment of u; and, therefore, is zero. Similarly, by using
(1), (9), (10), (12), and the initial independence of rr; from
the vorticity field (and thus from the velocity field), we
see that high-order time derivatives are also zero initially.
This proves (13) at any time.

For even moments in case I we can write

a &y") =nv&y" 'O, aCO, ) . (12)
0;P = A CO;CO

(y2m+I ) —(} m 0 (13)

Here ( ) means statistical averaging and we used the
definition of the total time derivative, incompressibility
(1), and homogeneity of the fiow.

In case I, odd moments are zero at any time:

where scalar A may depend only on the magnitude of
vorticity co, and ~, is the only distinguished vector in
conditional averaging (compare with Ref. [3]}. Multipli-
cation of (18) by t&i;co ', with the use of (15), gives
A = I /(2m + 1 ). Thus initially

Indeed, initially the moment (13) is proportional to the
odd moment of o; (recall that in case I o; is initially in-
dependent of vorticity). One-point moments of a statisti-

I
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Simple algebra, with the use of homogeneity, gives
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Let us note that all even moments of the y field decay ini-
tially even if vorticity increases because of vortex stretch-
ing. Numerical experiments can give us a detailed evolu-
tion of the y field.

For the Quid surface elements in homogeneous tur-
bulent fiow we have from (9)

&cr;o ) =(o;&7 o ') =
—,'5; (22)

Having in mind incompressibility and initial statistical in-
dependence of cr, from turbulence, we see that the right-
hand sides of Eqs. (21) are zero at t =0. Time
differentiation of the first part of Eq. (21) gives

In case I at t =0,
(21)
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The first term in (23) is zero at t =0 by the same argu-
ment that was used above. The second term in (23) is
evaluated with the use of (9), (22), homogeneity, and in-
compressibility. A similar procedure is applied to the
second part of Eqs. (21). At t =0 we get

at' ~ ( »J )' at' » ( » )
(24)

Thus, in case I surface elements are spreading, at least in-
itially. So far we have not assumed isotropy of tur-
bulence. For isotropic turbulence, it was shown by a
different approach [11,12] that surface elements, dis-
tributed initially independently of turbulence, will not
shrink in a finite time: &cr ) ~1 in our notation. A de-
tailed time dependence of & o. ) and & o ) can be obtained
numerically from Eq. (9) with a given realization of the
velocity field.

Now consider case II, when initially o.; =co, co '. All
moments of the y field are now positive at t =0:

&y") =&co"), n=1, 2, . . . .

a 2 = ()&, & &= —&()&.a
at Bt

(30)
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From (9), (10), and (32) we have equations

do; BU. y =v~
dt Bx, ' dt

We can assume that

(32)

(33)

Here a(ro) is the conditionally averaged deformation rate
with fixed vorticity [3]. For isotropic turbulence, a de-
pends only on the magnitude of vorticity co, and numeri-
cal experiments [5] show that a(co) )0 for all co. Thus, in
case II, surface elements are shrinking initially. This is
expected because vortex stretching in incompressible
Quid requires reduction of the cross section.

In a more general situation (case III) we consider
simultaneously three elements cr, (a=1,2, 3), which are
initially orthogonal:

o-, o~=S
p at t=o.

The vector y field is defined by

Equation (12) gives

With the use of homogeneity,
T
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This means that surface elements, which are initially or-
thogonal (31), remain independent in the sense that they
do not have the same line of intersection. A violation of
(34) is associated with a singularity in the velocity gra-
dient. It is known [13] that for the Navier-Stokes equa-
tion the Hansdorff dimension of the space-time set of pos-
sible singularities is no more than 1. Under condition
(34), we can decompose the vorticity field in terms of the
vector y field:

For n = 1, Eq. (27) can be written in the form
2

Ol; Bolj Cch BOl;
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Thus all moments of the y field are decaying initially.
Let us note that for even moments the relative rate of de-
cay

&
+2m )
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&
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at t =0 is the same for ca.ses I and II.
For surface elements in case II we have at t =0, from

(21),

(35)

This formulation of hydrodynamics in terms of inviscid
invariants of motion y deserves a more detailed study in
the future. Numerical experiments can substantially ex-
tend this statistical analysis of microcirculations.
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