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We study the spatial properties of a nonlinear discrete Schrodinger equation introduced by Cai,
Bishop, and Grgnbech-Jensen [Phys. Rev. Lett. 72, 591 (1994)] that interpolates between the integrable
Ablowitz-Ladik equation and the nonintegrable discrete nonlinear Schrodinger equation. We focus on
the stationary properties of the interpolating equation and analyze the interplay between integrability
and nonintegrability by transforming the problem into a dynamical system and investigating its Hamil-
tonian structure. We find explicit parameter regimes where the corresponding dynamical system has
regular trajectories leading to propagating wave solutions. Using the anti-integrable limit, we show the
existence of breathers. We also investigate the wave transmission problem through a finite segment of
the nonlinear lattice and analyze the regimes of regular wave transmission. By analogy of the nonlinear
lattice problem with chaotic scattering systems, we find the chain lengths at which reliable information

transmission via amplitude modulation is possible.

PACS number(s): 05.45.+b, 42.65.Pc, 71.10.+x, 78.20.Dj

I. INTRODUCTION

The nonlinear Schrodinger (NLS) equation is one of
the prototypical nonlinear partial differential equations,
the study of which has led to fundamental advances in
nonlinear dynamics. The study of the NLS equation was
motivated by a large number of physical and mathemati-
cal problems ranging from optical pulse propagation in
nonlinear fibers to hydrodynamics, condensed matter
physics, and biophysics. We now know that the NLS
equation provides one of the few examples of completely
integrable nonlinear partial differential equations [1].
Since most work in nonlinear wave propagation involves
at some stage a numerical study of the problem, the issue
of the discretization of the NLS equation was addressed
early in Ref. [1]. Ablowitz and Ladik notices that among
a large number of possible discretizations of the NLS
equation there is one that is also integrable [2]. The
study of the integrable version of the discrete nonlinear
Schrodinger equation, called hereafter the Ablowitz-
Ladik, or AL equation, showed that it has solutions
which are essentially the discrete versions of the NLS sol-
itons [2]. Another discrete version of the NLS equation
was studied in detail later [3]; the latter, usually referred
to as the discrete nonlinear Schrodinger (DNLS) equation
or the discrete self-trapping (DST) equation, has quite a
number of interesting properties, but it is not integrable
[4]. We note that the motivation for studying the two
discrete versions of the NLS equation, viz., the AL equa-
tion and the DNLS equation, respectively, are quite
different: The AL equation, on one hand, has very in-
teresting mathematical properties, but not very clear
physical significance; the introduction of the DNLS equa-
tion, on the other hand, is primarily motivated physical-
ly. In particular, the latter seems to arise naturally in the
context of energy localization in discrete condensed
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matter and biological systems as well as in optical devices
[3-9]. Even though in these problems one typically as-
sumes that the length scale of the nonlinear wave is much
larger than the lattice spacing and therefore the NLS
equation provides a good description for those problems,
the study of the DNLS (and AL) equation is important
when the size of the physical system is small or the non-
linear wave is strongly localized. In such cases, the inter-
play between nonlinearity and discreteness can lead to
novel effects, not present in the continuum analysis. In
particular, novel properties such as the possible absence
of localization in the DNLS or AL system in the presence
of disorder can occur [10-12].

The motivation for the present paper is an equation in-
troduced recently by Cai, Bishop, and Grgnbech-Jensen
[13] that interpolates between DNLS and AL equations
while containing these two as its limits [14]. By varying
the two nonlinearity parameters of this new equation one
is able to monitor how “close” it is to the integrable or
nonintegrable version of the NLS equation. The new
equation finds its physical explanation in the context of
the nonlinear coupler problem [16]. However, its basic
merit is that it allows us to study the interplay of the inte-
grable and nonintegrable NLS-type terms in discrete lat-
tices. In addition, one can address the issue of “nonlinear
eigenstates” of the new equation and their connection to
the integrability-nonintegrability issue.

The present paper is organized as follows. In Sec. II
we introduce the model with the combined integrable and
nonintegrable discrete-nonlinear-Schrédinger-equation-
type terms and investigate its stationary solutions and
their stability. We apply converse Kolmogorov-Arnold-
Moser (KAM) theory to identify stability regions and use
the concept of the anti-integrable limit to show the ex-
istence of breathers. In Sec. III we use the conservation
of probability current to turn the nonlinear lattice equa-
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tions into a two-dimensional real map, and investigate the
stability properties and bifurcation behavior of the map
dynamics. We place particular emphasis on the route to
chaos via a period-doubling sequence. In Sec. IV we in-
vestigate the wave transmissivity from a Hamiltonian
scattering point of view and show numerical results for
the transmitted intensity of the “fixed output” problem.
We summarize our results in Sec. V.

II. DESCRIPTION OF THE MODEL
FOR THE NONLINEAR DISCRETE
SCHRODINGER EQUATION

The main purpose of this paper is to study the follow-
ing stationary discrete nonlinear Schrédinger equation:

E¢n—(1+‘u‘|¢n|2)[¢n+1+¢n—1]+7|¢n|2¢n=O ) (1)

where ¢,, is a complex amplitude, u and y are nonlineari-
ty parameters, and E is the phase of the stationary an-
satz. Equation (1) is obtained from the following time-
dependent nonlinear discrete Schrodinger equation:

dy,(t) )
= =l O () + 4,y (0)]

=yl ()P, (1), )

by substituting ¥,(¢)=¢, exp(—iEt) in Eq. (2). We note
that Eq. (2) interpolates between two well studied discret-
izations of the NLS equation, viz., the DNLS and AL
equations obtained by setting =0 (with ¥y+0) and ¥ =0
(with u#0), respectively [13]. The time-dependent prop-
erties of Eq. (2) were partly discussed in Refs. [13,15]
whereas its stationary properties in the aforementioned
extreme limits were analyzed through map approaches in
Refs. [17-20]. The stationary real-valued AL system
satisfies an integrable mapping which is contained in the
18-parameter family of integrable mappings of the plane
reported by Quispel, Roberts, and Thompson in [21]. In
this paper we will present an analysis of Eq. (1) and dis-
cuss the interplay of the integrable and nonintegrable
nonlinear terms in the context of the complete equation.
Equation (1) may be rewritten as

E+vyl¢,l?
1+plg, > ™"

which obviously reduces to a degenerate linear map if
y=Eu. Although reduction of the complex-valued am-
plitude dynamics to a two-dimensional real-valued map is
possible (see Sec. III), we concentrate in this section
on the study of the recurrence relation ¢,
=¢,+1(¢,,9,_,) appropriate for the investigation of sta-
bility of the nonlinear lattice chain. Equation (3) can also
be derived as the relation which makes the action func-
tional

F=3 (i [E—J;—

Snt1t 1= ’ (3)

1n(1+,L|<;s,,|2)+3‘;-|¢,,|2

_(¢:¢n+l+¢n¢:+l)} (4)

an extremum. In the limit =0, the latter is replaced by

F=3% {E|¢nIz’*‘%?"‘f’n14_(¢:¢n+1+¢n¢:+1)} . ®)

The extremal sets {¢,} define the orbits and together
with appropriate boundary conditions determine the
solutions of a particular physical problem. However,
concerning the stability properties one has to distinguish
between the (dynamical) stability of the physical solutions
and the (linear mapping) stability of the corresponding
map orbit generated by the recurrence relation
Sns1=0bn+1(d,,9,—-1) [22,23]. In general, a dynamical
stable (metastable in Aubry’s terminology) solution
minimizing the action corresponds to a linearly unstable
map orbit, whereas physically unstable solutions corre-
sponding to maximum energy configurations are reflected
in the map dynamics as linearly stable orbits. In the
present study we focus on the transmission properties of
the “nonlinear lattice” of Eq. (1), since finding the linear-
ly stable map solutions (propagating wave solutions) is
essential.

A. Stability and regular solutions

The second-order difference equation (3) can be regard-
ed as a symplectic nonlinear transformation relating the
amplitudes in adjacent lattice sites. This transformation
can be considered as a dynamical system where the lattice
index n plays the role of the discrete time n. The result-
ing dynamics of the two-component (amplitude) vector
(¢, +1,9,)7 is determined by the following Poincaré map:

¢n+l En -1 ¢n
é, 10 ||¢,—

where the nonlinear transfer matrix depends on the am-
plitude ¢, through

__E+tvls,l?
E,=— " . @)
1+pld,

The stability of the orbits {¢,}, (n=0,...,N), or
equivalently the transmission properties of the nonlinear
lattice of chain length N, is governed by the solution
behavior of the corresponding linearized equations in the
neighborhood of an orbit ranging from (¢g,¢,) to
(py—1,0x). For a semi-infinite (or infinite) one-
dimensional lattice chain the (finite) sequence {¢,}
(n=0,...,N) defines an orbit segment. Mapping the
variations from (8¢y,8¢,) to (8¢y_;,84y) is accom-
plished by the product of the real 2 X2 symplectic Jacobi-
an transfer matrices

M,: ©6)

N—1
J)=T[ Jm,) , 8)

n=1

where J(M,)=[3(¢,1,¢,)]/3(d,,b,_1)] is the real
unimodular matrix

E,(l¢,1) —1

Jm,)= l 1 E )

with



52 SPATIAL PROPERTIES OF INTEGRABLE AND . .. 257

[E+2yl, 1> +uyld,[*]
[1+pul,?T?

Before proceeding with the stability analysis of the non-
linear discrete Schrodinger equation (1), we note that in
the corresponding linear tight-binding model given by the
equation ¢, . +¢,_=E¢,, the (stable) solutions in the
passing band of |E| <2 are parametrized by a wave vec-
tor k €[ —r, 7] corresponding to the linear dispersion re-
lation E =2 cos(k). Upon increasing the nonlinearity pa-
rameters ¥ and yu from zero, the nonlinear dispersion re-
lation for ¢,=¢,=const reads as E=2cos(k)
+[2u cos(k)—v]|dol? and the stability of the orbits can
alter where rational values of the winding number
k/(2w)=p/q, with integers p,q, yield periodic orbits
whereas irrational values result in quasiperiodic orbits.

First, we study the linear stability of periodic orbits
é, +4=¢, with cycle lengths g. The linear stability of a
periodic orbit is governed by its multipliers, i.e., the ei-
genvalues of the corresponding linearized map. In exam-
ining the linear stability of the periodic orbits we make
use of the fact that solving the linearized equations be-
comes equivalent to a band problem of a linear discrete
Schrédinger (tight-binding) equation with periodic poten-
tial (see, e.g., [24—26]) where we can invoke the (linear)
transfer matrix method [27].

In the following we derive a sufficient criterion for
linear stability. We substitute 8¢, =¢,, and the linear-
ized equation corresponding to (3) can be written in ma-
trix notation

E,(l¢,1)= (10)

Pr+1
Pn Pn—1

where M,(E,)=J(M,) and E, are given in Egs. (9) and
(10), respectively. The matrix product

=M,(E,) , (11)

qg—1
M,=1] M(E,) (12)
n=0

transfers (@, ¢_;) to (@,,¢,_;) through a complete
periodic cycle of length g. Since the periodic orbit
members enter the individual transfer matrices M (E,),
Eq. (11) represents a linear equation with periodic poten-
tial E,=E,(|$,]) and @, ,, =exp(ikq)g, [28]. Thus M,
has eigenvalues exp(=+ikq ), and its trace is given by

Tr[M,]=2cos(kq) , (13)

which leads to the condition |Tr[M, 4 11 £2 for the stable
Bloch solutions and to two equivalence classes for the to-
tal symplectic transfer matrix M, corresponding to
different stability properties. For the real unimodular
matrix M, these equivalence classes are determined by

q
the solution of the eigenvalue problem,

a>—(Tr[M,])a+1=0, (14)

where the roots a;, determine the multipliers of the
periodic orbit [29]. When |Tr[M,]| <2, then M, has a
pair of complex conjugate eigenvalues a,, on the unit
circle leading to a stable elliptic periodic cycle or an os-
cillating Bloch-type solution (passing band state). When

|Tr[M, ]| >2, this yields real reciprocal eigenvalues cor-
responding to an unstable hyperbolic periodic cycle
which has to be excluded as physically unacceptable,
since it increases exponentially with larger chain length
(stop band or gap state).

Computation of Tr{[J¢Zi[M,(E,)]} for a general
periodic orbit of arbitrary cycle length g requires tedious
algebra. However, if v, u, and E satisfy the inequality

Euzvy, (15)

then |E,(|$,|)| <|E| and each individual transfer (Jaco-
bian) matrix M has the important property

IMUED|=T(EDI (16)
where
E, —1
T\(E,)= 1 0 a7

is the individual unimodular transfer matrix of a linear
lattice chain at constant E, =E. The norm of a matrix 4
is defined by || 4 | =max, || 42|, i.e., the natural norm
induced by the vector norm ||z|| [30]. We note that the
inequality (16) imposes no restriction to the amplitudes
é,, since it is a global feature of the mapping in the pa-
rameter range satisfying (15). For the linear lattice chain
the total transfer matrix satisfies |Tr[T,(E)]|
=|Tr[[[4=)T,(E,)]| <2 as long as |E,|=|E| <2, ie., is
in the range of the passing band. Furthermore, because
all the local Jacobians are identical, it is easy to show
that the global trace Tr[T,(E)]=2cos(fq), where
0=cos (LTr[T,])=cos "(1E). With the help of
| 4" <||4]|" and the modified inequality (16),

9= ~

IT UIT(ED—IM(E)} 20, (18)
n=0

we infer that
>

—1
TLiM,EN| | (19)
n=0

q—1
I1(T\(E,)]
n=0

Further, a natural matrix norm satisfies the inequality
max|a, | <|| 4] . (20)

Using (19) and (20), one sees that the spectral radius of
the matrix [[4=¢[T;(E,)] forms a majorant to that of
the matrix [[¢Z[M,(E,)]. Since the eigenvalues are re-
lated to the trace via Tr[ 4 ]J=(a+1/a), it can be readily
shown that, whenever (15) holds, then

q—1
H[T1(En)]H

n=0

Tr

qg—1 _
1M (E)]

n=0

Tr

=|2cos(0q)| <2 .

Hence all periodic orbits for the nonlinear lattice chain
are linearly stable. Moreover, since for symplectic map-
pings the linear stability is both necessary and sufficient
for nonlinear stability [29,31], the existence of KAM tori
close to the periodic orbits is guaranteed for the com-
bined AL-DNLS chain, when Ex >y and |E|<2. With
the help of this sufficient stability condition we show in
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Sec. III below that the reduced two-dimensional (real-
valued) map then possesses a stable period-1 orbit which
is surrounded by integrable quasiperiodic solutions.

On the other hand, from the stability condition
|Tr[M, ]| <2 one can also deduce a necessary condition
for the stability of a periodic orbit. The transfer matrix
depends parametrically on E,. Therefore, in order to be
compatible with |Tr[M,(E, )]I <2, we have to distinguish
between allowed and forbldden E,,if y > En. Because of
E,=E,(|¢,]), the allowed E, become amplitude depen-
dent, imposing constraints on the latter. Since each
member of a periodic orbit family exhibits the same sta-
bility type [29], it is sufficient to consider only one of the
periodic points of each family, e.g., |TrtM(E,)| <2. A
periodic orbit point is compatible with the allowed E
range of the passing band when the amplitude fulfills the
necessary condition

172
-1 ] , (21)

which reduces to |¢,/><(1—E /2)/y in the limit p—0.
When the condition (21) is violated a stop band (gap)
state is encountered.

Generally, whenever the inequality (15) holds, we are
able to prove that all solutions of the combined AL-
DNLS equation (3) are regular. The linear stability of
general orbits (periodic orbits as well as quasiperiodic
ones) is governed by a Lyapunov exponent (LE)
representing the rate of growth of the amplitudes and is
defined as [22,29,32]

E—2

1+
2—y/u

1
EMERS

A= im A
1 N T M
llm ——1In II )1 I Jum,)] (22)
N—w 2N n=0 n=0

An orbit is, respectively, linearly stable (unstable) with
respect to the initial conditions if A=0 (#0). It has been
proven that almost all initial conditions (except for a set
of measure zero) lead to the largest LE [33,34], which in
our case is the single non-negative LE, A=0. In the pa-
rameter range Ex >y and |E| <2 we get with the help of
inequality (16) and the norm properties || 4"|| <|| 4||" and
PHE uA I1B]

1
Ay= 2N o BIVEINI =S 5 (I D
=1
e

H [ - 1n||T (EHN

n._

Since Ay is bounded from above by zero, the LE van-
ishes,

A=0, (24)

and hence all solutions are linearly stable. Particularly,
sensitive dependence with respect to the initial conditions

is excluded so that the combined AL-DNLS system
possesses only stable regular orbits, whenever the
sufficient condition Ex =y holds. The (local) LE is also
directly related to the transmission coefficient in the end
of a finite segment of length N of the one-dimensional lat-
tice chain through Ay=—1/(2N)In|Ty|? [35]. In the
parameter range given by the inequality (15), the AL-
DNLS chain is transparent (see Sec. IV below). We note
that in the range outside that of the sufficient condition
for regularity (Epu=v), and for the special case of con-
stant amplitude ¢, =d¢,, i.e., for a period-1 cycle, the con-
dition |Tr[M,]| <2 can be satisfied, if ITr[J(My)]] <2.
Especially, for large amphtudes the trace of all local
Jacobians E,, ( |¢,, )=E, (|$,|) becomes a constant

lim |E,|= 25)
| QI_'°° M
which implies that, if ¥ >0 and p > 0 satisfy the inequali-
ty

u>y, (26)

the global trace is |Tr[J(JM)][|=12cos(N8)| <2, where
6=cos”![y/(2u)] and the large amplitude motion is
stable regardless of E.

B. Application of converse KAM theory

As already stated above, Eq. (1) can be reduced to a
real-valued two-dimensional map using the probability
current conservation. But, since the resulting map equa-
tions [see below Eq. (61) in Sec. III] are not in the ap-
propriate form to allow immediate application of the con-
verse KAM theory [29,36,37] it is convenient to cast the
complex-valued Eq. (1) into a four-dimensional symplec-
tic twist map R*—R* f(x,y)=(X,7), by defining
6,=1/V2(Q,+ig,) and x=(Q,q) together with the
canonically conjugate variables y=(P,p) where
P,=Q,—Q,_and p, =g, —q, 1.

We can exploit a variational principle to derive the
corresponding map orbits in terms of a Lagrangian sys-
tem [22,36,37], where each orbit is assigned an action

W=2L(xn,xn+1) , 27)
with the Lagrangian

In

1 1
L(x,,,x,,+1)=; E—_E 1+E.u'(Qr%+q3)

Y _ 2 2y, 1 _ 2
+ [2,[1. 1](Qn+qn)+2(Qn+1 Qn)
+ 2@ i1 =) 28)

Stationarity of the action for an orbit requires § W =0,
yielding

ax [L(xn_l,xn)+L(xn,xn+1)]=0 ) (29)

n

and the equations of motion are obtained from
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aL(xn,x,,+1) aL(xn,xn+1)

ax » Yn+17 . (30

In=—
n 0%, 41

The map f(x,y)=(X,¥) is a twist map since the inner
product (8y,dx /dy8y)=|8y|? is uniformly positive
[22,36,37].

We now apply the converse KAM theory of MacKay,
Meiss, and Stark [37] to our four-dimensional map.
These authors derived a criterion for the nonexistence of
a class of invariant tori for symplectic maps, called La-
grangian graphs. A Lagrangian graph is a set of the form
y =F(x) for some C' function F and all the invariant tori
constructed by most proofs of KAM theory are Lagrang-
ian graphs [38]. In order to apply the converse KAM cri-
terion we collect the necessary definitions and notations
for the action principle. The orbits {x;,y;}, i=m,...,n
of a symplectic twist map f have stationary action, i.e.,
DW,,,=0 under variations by fixing x,,x, for all
m <n—1. If an orbit segment minimizes W,,,, it is said
to have minimal action. An orbit segment has a nonde-
generate minimal action if the second variation 8°W,,,
with respect to (x;), i=m+1,...,n—1 is positive
definite and an orbit has minimal action if each finite seg-
ment has minimal action [22,36,37].

The converse KAM criterion is based on a theorem by
Herman [39], stating that for a symplectic twist map
every orbit on an invariant Lagrangian graph has
minimal action. From this theorem one conversely con-
cludes that if the orbit has a segment which does not have
nondegenerate minimal action, then it does not lie on any
invariant Lagrangian graph [37]. MacKay et al.
developed a simple test for the positive definiteness of the
second variations 82W_1,,, which we apply in the follow-
ing to our four-dimensional map.

The elements of the second-order variation matrices
a"=L,;(n,n+1)+L,(n—1,n) and b"=L,(n,n+1),
where [n,n+1] stands for (x,,x, ;) and the subscript
refers to the derivative with respect to the kth argument,
are given by

1
T+ g2
X {(E—2)[1+1u(g2—0D)]
+(4y —pI[3Q2+a2+ Q2 +g2P ) +2
(31)
(@")p=(a")[0,<q,], (32)

_ 1
[1+4u(Q7+a)]

(an)”

(@")p=(a")y (y—Eu)Q,q, , (33)

and
(b™")1=(b")p=—1, (b");,=(b"),;=0. (34)

The existence of an invariant Lagrangian graph re-
quests that it intersects the vertical symmetry plane of
Q0,=gq,. Therefore a® must be positive definite on that
plane. Since a symmetric 2 X2 matrix is positive definite
if both its diagonal elements and its determinant are posi-
tive, we obtain the following necessary condition for the

existence of an invariant Lagrangian graph through the
(initial) point @, =g,:

172
1 |E |
Q3=q%=—| |1+ -1/,
" Y
E <0, y>0, u>0 (35
1 E 172
2=g2<—| 1+ | -1,
Qo=a0=7, |7’|]
E>0, y<0, u>0 (36)
1 E 172
d=gi<—— | 1+=£ | -1,
Qo 90 |#| y

E <0, y>0, u<0. @37

In the limit £ =0 the conditions reduce to

l=g2>-—"— E>0, ¥y<0 (38)
Q06=40 2|7/| Y
Q%=q%$l21—j/—|, E<0, y>0. (39)

Note that for an attractive (repulsive) self-interaction of
v >0 (y <0) the amplitude has to be below (above) a cer-
tain value to ensure that an invariant Lagrangian graph
exists at all.

The necessary criterion for the existence of an invari-
ant Lagrangian graph through a point in phase space is
especially important in studying the stability properties,
since once it is violated, the nonexistence of a closed in-
variant KAM circle for the reduced two-dimensional
map is ensured (cf. Sec. III). On the two-dimensional
plane the KAM circles act like confinement boundaries
for trapping solutions in their interior regions.

C. The anti-integrable limit and localized solutions

In this subsection we apply the concept of the anti-
integrable limit introduced by Aubry and Abramovici
[40,41]. We are particularly interested in the impact of
the integrable AL term of Eq. (2) on the formation of
breathers, i.e., the occurrence of time-periodic, spatially
localized solutions. Recently, MacKay and Aubry have
proven the existence of localized solutions in the form of
breathers for weakly coupled arrays of oscillators [42].

In order to establish the transition to the anti-
integrable limit in Eq. (1), we introduce a hopping param-
eter t regulating the strength of the coupling between ad-
jacent lattice sites. The spatial behavior of the breathers
of the DNLS system can be described by a stationary
equation with real amplitude ¢ ER [42]. The action for
the real-valued AL-DNLS system now reads

XY 2y4 Y 42
E—L (4 + L6

F=3 li

~ 2 (Gu i1 >2] : (40)

The map orbits are determined by
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E+yé?

= Ty 41
1+ud? b “n

(g, 1+, -1—2¢,)=
The anti-integrable limit for the AL-DNLS system is ob-
tained for vanishing hopping parameter ¢t =0, where the

action is represented as the sum over local on-site poten-
tials V(¢,,):

= 1 v 2y 4 ¥ g2
F = — |E— In(1+pud;)+ . (42)
Al % 2 P ud 2u ¢
=3y Vig,) . (43)
n
The orbits for the stationary problem are determined by
8Vba) _
—a¢;—:V(¢")_°’ (44)
yielding
$o=0, ¢.,=+tV —E/y, E<0, y>0. (45)

Since orbit points at sites n +1 and n are mutually in-
dependent of each other an orbit can be associated with
an arbitrary sequence of three symbols assigned to
(¢0,P+). Hence the orbits are trivially equivalent to a
Bernoulli shift establishing the existence of chaotic orbits
[40,41]. We can prove that some chaotic solutions of the
anti-integrable limit persist, if the hopping parameter ¢
does not exceed a critical value ¢
Theorem. For
Lorit = M 46)
4‘2¢ + U4 l

there exists a unique solution of Eq. (41) such that for all
n

crit*

¢, —Fil<8i=|r—u.l, 47)
|, —Pol <8 , 48)
with
uy=+|—1|E—3L
* ©
2 1/211/2
+|E2+ [33’—] —10E3’—H ] , (49)
© 7
|3-E—E+8t
8=
2u | X +ar
Hlu
172 172
[3’—+4t
X |14 [1+4|E+4¢| £ 5 ,
3I——E+8tl
u
(50)

and (3y)/pu—E +8t <0.
Proof. Equation (41) can be rewritten as

t(, 1 td,_1—24,)=V(¢,) . (51)
From (47) we obtain that

sup, |, 11+¢,1—28,| <4126 —u.|, (52)
which yields

4t2¢,—u | =V (e, . (53)
When

max, |V'(¢,)l _ |V'(lui])l
424, —u | 4128 —u|’

then Eq. (41) has infinitely many solutions. But, in each
interval given by the inequalities (47) and (48), there is
one and only one solution and hence the problem is
uniquely defined.

Sketching the graph of V''(¢,) it can be readily seen
that V''(¢,)>0 in the interval given by (47). Further,
when (48) holds then V"'(¢, ) < —4t. The Jacobian opera-
tor D?F is tridiagonal with diagonal elements V' +2¢ and
off-diagonal elements —¢. Since |V’ +2¢| <2¢t, the opera-
tor D2F is invertible and its inverse is bounded. Hence it
follows from the implicit function theorem that an orbit
has a locally unique continuation for small ¢ [40-45]. B

It can be easily shown that 97, /0u<0 and
9|8, ol /3 <0. From this we note that the presence of
the integrable AL term has a destabilizing influence on
the continuation process of the solutions of the anti-
integrable limit in the sense that, for higher u values the
continuation can be carried out up to lower ¢ values.
Moreover, the amplitudes of the continued solutions de-
crease with increasing p. This is immediately reflected in
a decreased stability of the breathers, especially for those
for which all but one site is unexcited (one-site breathers).

t (54)

crit

III. REDUCTION OF THE DYNAMICS
TO A TWO-DIMENSIONAL MAP

A. The mapping of the plane

We now study the dynamics of Eq. (1) utilizing a pla-
nar nonlinear dynamical map approach. The discrete
nonlinear Schrédinger equation (1) gives a recurrence re-
lation ¢,.,=¢,.,(¢,,4,_,) acting as a four-
dimensional mapping C?*—C2. By exploiting the conser-
vation of probability current, the dynamics can be re-
duced to a two-dimensional mapping on the plane
R?—R? [17,18]. Following Wan and Soukoulis [18], we
use polar coordinates for ¢,, i.e., ¢,=r, exp(if,), and
rewrite Eq. (3) equivalently as

E+yr?
Tn+1€08(A0, ) +r, _cos(AB,)=—71, , (55)

1+pur;
r,,_HSin(A9n+1)—‘r,,_lsin(A9,,)=0 N (56)

where A6,=6,—6,_,. Equation (56) is equivalent to
conservation of the probability current
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J=r,r,_sin(AG,) . (57)

We further introduce real-valued SU(2) variables
defined by bilinear combinations of the wave amplitudes
on each ‘“dimeric” segment of the lattice chain:

xn=¢:¢n—l+¢n¢:—l=2rrirn—lcos(Aen) ’ (58)
yn=i[¢:¢n—l_¢n¢:—l]=2‘l ’ (59)
2, =19, 1> = ¢, s’ =ri—ri_, . (60)

The relations with the polar coordinates (r,,0,) are also
given. Note that the variable y, is a conserved quantity
since it is proportional to the probability current, i.e.,
Y, =2J. The variable z, is determined by the difference
of the amplitudes of adjacent lattice sites whereas infor-
‘mation about the phase difference is contained in the
variable x,. We remark that our map variables differ
from those used by Wan and Soukoulis [18] in their study
of the stationary DNLS system.

The system of Egs. (55) and (56) can be rewritten as a
two-dimensional real map M that describes the complete
dynamics:

E+1ily(w,+z,)

x =
1+ lu(w, +z,)

M: (61)
2 _1 Xg+1 " Xn
"t w,+z,

w,+z,)—x,
-z, ,

with w, = \/x3 +2z2+4J2
The map M is invertible, proven by the identities
MM MM ,=1Id and MM =Id, where the map M, is

"

We can cast the map M into the product of two involu-
tions M= AB with A=M,M "' and B=MM,, and
A*=I,B*=I,and M, is

X=x
M;: 2=z . 63)

=X

(62)

Ny &)

—Z .

The inverse map is then given by M "!=B A. This inver-
tibility property of the map A4 can be exploited in study-
ing the transmission properties of the discrete nonlinear
chain (see Sec. IV).

To analyze the dynamical properties of the nonlinear
map M it is convenient to introduce the scaling transfor-
mations 2Jx, —X,, 2Jz,—Z,, Jy—7, and Ju—[g. Fi-
nally, for the sake of simplicity of notation, we drop the
overbars and obtain the scaled map

_E+y(w,+z,)
Yt 1+u(w, +2z,)
z _1 Xy+1 "Xy

"L w,+z,

(w,+z,)—x, , (64)

-z, , (65)

with w,, =\/x,%+z,f+l.

The map M depends on three parameters, namely,
(E,y,u). Whereas for Ep >y, M represents a map, for
which all solutions are bounded, it can contain bounded
and diverging orbits both in the pure DNLS case (y0
and p=0) as well as in the combined AL-DNLS case, if
¥y >2u according to the findings in Sec. I. Only the
bounded orbits correspond to transmitting waves,
whereas the unbounded orbits correspond to waves with
amplitude escaping to infinity and hence do not contrib-
ute to wave transmission. On inspection we find the first
integral for the AL system to be

[y 1%, 2 =K 1plx) 4 —x)+2(z, 41 +2,) ]
=EXx2,,—x2?, (66)

where K is a constant determined by the initial condi-
tions.

The structure on the phase plane is organized by a
hierarchy of periodic orbits surrounded by quasiperiodic
orbits. The sets of the corresponding fixed points form
the invariant sets of the two involutions (fundamental
symmetry lines) and are given by

So:z=0, 67)

.1 E+y(w+z)
Spi:x 2 1w tz) (w+z), (68)

respectively. The symmetric periodic orbits are arranged
along higher-order symmetry lines and the intersection of
any two symmetry lines S§=M"S,, ST=M"S; with
n=0,1,..., falls on a periodic orbit of M. The symme-
try line z=0 is the dominant symmetry line and contains
at least one point of every positive residue Poincaré-
Birkhoff orbit. The organization of the periodic orbits by
the symmetry lines can be exploited for a one-
dimensional search to locate any desired periodic orbit on
the x-z plane [29,46]. For a classification of the periodic
orbits Greene’s method can be used according to which
the stability of an orbit of period g is determined by its
residue p=1(2—Tr[[]4-,DM™]), where DM is the
linearization of M. The periodic orbit is stable when
0<p<1 (elliptic) and unstable when p>1 (hyperbolic
with reflection) or p <0 (hyperbolic) [29,47].
As can be seen from the determinant of the Jacobian,
2 .2
det(DM™)=1+1 Znt1 " Zn_ (69)
2 w,(w,+z,)

the map M is area preserving for periodic orbits, after
mapping through the complete period, i.e,
[1%=,det(DMW)=1. M is thus topologically equivalent
to an area-preserving map ensuring the existence of
KAM tori near the symmetric elliptic fixed points [31].

B. Period-doubling bifurcation sequence

We focus on the period-1 orbits (fixed points of M)
which have in the case of elliptic-type stability the largest
basins of stability among all elliptic orbits. Thus the
stable elliptic solutions encircling the fixed point form the
main island on the map plane, which therefore plays a
major role in determining the stability properties of the
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wave amplitude dynamics.
The period-1 orbit is determined by

g:lmw , (70)
2 1+4ui
z=0, (71)

where w=V'1+x2. Equation (70) possesses one real
root for ¥ =0, resulting in a stable elliptic fixed point and
has either no root or two real roots for y >0. The two
real roots correspond to one hyperbolic and one elliptic
fixed point, respectively. The residue is given by

1 (E4+yB)NE+2ym +yuin?)
4 (1+po)? )

When y =Eu, we recover the degenerate linear case, for
which ¥ =sgn(E)V' E2/(4—E?) and p=1—E?2/4, as in
the genuine linear case ¥y =u=0.

Figure 1 displays for given nonlinearity parameters p
and y the location of the fixed points X versus E. For the
pure DNLS case (=0 and ¢ > 0), shown in Fig. 1(a), we
see that the larger the nonlinearity strength y the more
restricted the X interval as well as the E range for the ex-
istence of the fixed points become. We further observe a
bifurcation of the unstable hyperbolic branch (dashed
line) into a stable elliptic branch (solid line), which results

p=1 (72)

X1

FIG. 1. E versus location of the fixed points X of the map M
of Egs. (64) and (65) determined by Egs. (70) and (71). The solid
lines represent stable elliptic-type solutions, the dashed dotted
lines correspond to hyperbolic points, and the dashed lines be-
long to hyperbolic points with reflection. (a) the DNLS case of
p1=0 and ¥ as indicated on the curves. (b) The combined AL-
DNLS case of £=0.5 and y as curve parameter.

from a reversed pitchfork bifurcation [apparent in Fig.
1(a) for the parameter values y=1.0 and 1.5]. Figure
1(b) shows the E-X plane for the AL-DNLS case for
different ¥ values and u=0.5. A comparison with the
pure DNLS case shows that the presence of the p non-
linearity has a stabilizing effect, in the sense that the un-
stable hyperbolic branch has been shifted towards larger
X values. Furthermore, we observe that in the
(0=0.5,y =1.0) case, the fixed points become stable el-
liptic points in the whole X range of their existence, hence
no bifurcation occurs, on contrast to the bifurcation
behavior for the corresponding (14 =0,y =1.0) case.

Concerning the stability of the period-1 orbit, Eq. (72)
tells us that the residue remains positive and never passes
through zero, if the parameters obey the inequalities
y <E, and |E| <2. As a result, the period-1 orbit cannot
lose stability caused by a tangent bifurcation. According
to the results obtained in Sec. I, all orbits of the map are
regular in this parameter range.

Equation (72) allows a further conclusion to be drawn:
For E > 0 the value of the residue for the period-1 orbit is
always less than one, because the second term on the
right-hand side then remains positive upon parameter
changes and the position of the fixed point is merely shift-
ed and never experiences loss of stability due to a period-
doubling bifurcation. In this parameter range the route
to global chaos is via resonance overlap. Only for E <0
can the residue pass the value of one connected with the
onset of a period-doubling bifurcation, where the stable
fixed point is converted into an unstable hyperbolic point
with reflection accompanied by the creation of two addi-
tional elliptic points. This period-doubling bifurcation
for the period-1 orbit sets in when |E|/y >1 (E <0) and
the newborn period-2 orbits are located at
2 1/2

x==x —1 , (73)

z=0. (74)

Note that the location of the period-2 orbits depends only
on the (E,y) values and is independent of u, the AL-
nonlinearity strength, whereas their stability, determined
by the corresponding residue

_1 , E>—y?
=— , (75)
a7 (y +ulE|)?

depends on the values of all three parameters. Due to the
presence of the denominator in Eq. (75) we recognize
that, for fixed parameters (E,y ), enhancing the u value
reduces the residue. Hence the period-2 orbits become
more resistant with respect to period-doubling bifurca-
tion. Moreover, for u>pu,. the value for the residue of
the two stable elliptic points is bounded from above by
one, so that a further destabilizing bifurcation can be ex-
cluded. This critical AL-nonlinearity strength u (p <1)
can be obtained as

2
1

Mo > l—z_yz e

1—
E

|E| -

1/2
} S (76)

To study the period-doubling sequence as the mecha-
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nism by which the transition from regular to chaotic
motion occurs, we take advantage of the renormalization
technique developed for two-dimensional invertible maps
[29,46,48-50]. We expand the map M up to terms quad-
ratic in the deviation from the bifurcation point

2

duy 41 du, duy

5o . | =A |oo, | 7B [sudvs | - (77)
dv}?

The 2 X2 matrix A has the following entries:
_ _E+2y+puy
A n=-—1L A=

[1+u]
E+
2 1+u
A= IEXY][E+3y+yp—Ep]
22 3 ’
2 [1+u]

and the elements of the 2 X 3 matrix B are given by
By =Ayy B;,=0,

By =Ayptl, Byu=Agp,,
_E+a4y+3yu—Ep+yi?

B3 ) (79)
(1+p?
3= LEX 8y —4Eyu+ 9y +y’u’ —4E'u+ K>
) [1+p]* '

Finally, we bring the De Vogelaere—type map (77) into
the standard form of a closed second-order difference
equation (see Ref. [48] for the details of how to achieve
this form):

Q,+11tQ,-1=CQ,+207, (80)

where the parameter C is determined via the sum of the
eigenvalues of the matrix A :

C=

1 [E+y][E+3y+yp—Ep] 81)
4 [1+u] '
The fixed point of Eq. (80) at 0 =0 is stable for |E|/y <1
and gets unstable for 3> |E| /y > 1, leading to a period-
doubling bifurcation. Both points of the newborn
period-2 orbit are located on the S,-symmetry line, along
which they get shifted upon increasing |E|. Eventually,
at a sufficiently high |E| value the period-2 orbit also
loses stability caused by a next period-doubling bifurca-
tion, which in turn gives rise to the birth of the corre-
sponding period-4 orbit having one point on the S,-
symmetry line and two points on the Sy-symmetry line.
For further increased |E| the period-4 orbit also goes un-
stable in the next step of the period-doubling cascade.
This cascade of period-doubling bifurcations ter-
minates at a universal critical parameter C, called the
accumulation point, where local chaos appears. Employ-
ing a quadratic renormalization scheme for Eq. (80), this
accumulation point has been determined to be
C,~—1.2656 [29,46,48-50]. Solving Eq. (81) for
E_=E(y,u,C,) we obtain

E. =—1—_lj;[2y+(l+u)\/y2—lcw [(1—pD]. ®62
Apparently, for a given DNLS-nonlinearity strength v,
we conclude that enhancing the AL-nonlinearity strength
w results in an increase of the accumulation value |E |
(provided u < 1), i.e., the u term has the stability tendency
to prevent period-doubling sequences.

In Fig. 2(a) we show a number of orbits of the map M
for E=0.5, y=0.2, and p=0.1 together with the sym-
metry lines S, and S;. This map exhibits a rich structure
involving regular quasiperiodic (KAM) curves which
densely fill the large basin of attraction of the stable
period-1 orbit. The elliptic fixed points of the Poincaré-
Birkhoff chains of various higher-order period orbits are
also surrounded by regular KAM curves, while thin
chaotic layers develop in the vicinity of the separatrices
of the corresponding hyperbolic fixed points. Moreover,
outside the structured core containing trapped trajec-
tories inside the resonances, a broad chaotic sea has been
developed where the corresponding unstable orbits may
escape to infinity. For comparison we illustrate in Fig.
2(b) the integrable behavior for the AL map where the
corresponding orbits can be generated from Eq. (66). In
Fig. 2(c) we show the case for which Ep 2>y, i.e., when
the condition of Eq. (15) for regular solutions is fulfilled,
whereas the case with E <0 but 2u >y is shown in Fig.
2(d). We note that in the latter case all solutions are
bounded.

In order to study the global stability properties of the
map M, we plotted in Fig. 3 the stability diagram in the
xo-E plane. For a set of initial conditions located on the
dominant symmetry line, i.e., z=2z,=0 and various
x =x,, we iterated the map equations (64) and (65). The
dark region in Fig. 3 corresponds to stable solutions
where the resulting orbit remains in a bounded region on
the x-z plane of the map, whereas the white region on the
xo-E plane represents unbounded orbits. The curve
separating the two regimes exhibits a rich structure.
Practically, all lines of constant E pass several branches
of either transmitting or nontransmitting solutions, indi-
cating multistable behavior. Multistability in the wave
transmission along the nonlinear lattice chain will be con-
sidered in more detail in the next section.

We further note that with increasing AL-nonlinearity
parameter u the area of transmitting solutions on the E-
x, plane is enhanced. This stabilizing effect of larger u
values is clearly seen in Figs. 3(c) and 3(d), where the re-
gion for stable propagating solutions is not only further
extended to the range of negative E values, but also cov-
ers a wider range for the initial amplitudes x,. Beyond a
certain nonlinearity strength u >y /E, the nonlinear lat-
tice chain eventually becomes transparent for all ampli-
tudes.

In Figs. 3(a) and 3(b) we also superimposed the lines for
the location of the fixed point (period-1 orbit) of the map
M. Following that line the occurring transition from a
bounded to an unbounded regime for initial conditions
around the period-1 orbit is a consequence of stability
loss when passing from elliptic-type stability to
hyperbolic-type instability upon changing E. Due to the
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results for the stability of the period-1 orbits contained in
Fig. 1 they may experience a bifurcation from an unstable
hyperbolic fixed point to a stable elliptic fixed point by in-
creasing E where the corresponding x, values then come
to lie in the basin of attraction of the elliptic point. Ata
critical E value the initial conditions x, leave the basin of
attraction of the elliptic point and fall into the range of
the unstable reflection hyperbolic point. Between the
lower and the upper stability boundaries the elliptic point
loses its stability temporarily, caused by a quadrupling bi-
furcation where the corresponding residue is p=0.75,
leading to a local shrinkage of the area for bounded solu-
tions which appears in Fig. 3(a) for E~—1.075 and
X0 =~(.24.

IV. TRANSMISSION PROPERTIES

In this section we study as a physical application the
wave transmission properties of the nonlinear lattice
chain. Our aim is to gain more insight into the effects of
the combined AL-nonlinearity term and the DNLS-
nonlinearity term with regard to wave transparency of a
finite nonlinear segment embedded in a linear chain.

.30 L L I L L 1

A. Amplitude stability

We study the following transmission problem: Plane
waves with momentum k are sent from the left towards
the nonlinear chain, where they will be scattered into a
reflected and transmitted part:

R, explikn)+R exp(—ikn) for 1Sn =N
¢ = T exp(ikn) for n =N .

We denote by R,,R the amplitudes of the incoming and
reflected waves and by T the transmitted amplitude at the
right end of the nonlinear chain. The wave number k is
in the interval [ —, ] yielding |E| <2.

Since the superposition principle is no longer valid in
the nonlinear case, the transmitted amplitude 7T is not
uniquely defined by the incident amplitude R,. To cir-
cumvent this difficulty we solve the inverse transmission
problem, i.e., we compute the input amplitude R, for
fixed output amplitude T (see also [17]). The procedure
relies on the inverse map given by M '=M 0 Mo M,
which we interpret as “backward map” in the following
manner. For a given output plane wave with transmitted
intensity T at the right end of the nonlinear chain

we have (dy.1,05)=[T exp[ik(N+1)],T exp(ikN)].
6000 T T T T T
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FIG. 2. Orbits of the map M given in Eqgs. (64) and (65) for the following parameters: (a) AL-DNLS case: E =0.5, y=0.2, and
p=0.1; (b) AL case: E=—1.0, y=0, and p=1.0; (c) regular regime: E=1.0, y=0.2, and p=0.25; and (d) bounded regime:
=—1.7, y=0.5, and p=1.1. The fundamental symmetry lines S, and S, are superimposed.
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FIG. 3. Illustration of the stability behavior of the map M with y=1.5 in the E-x, parameter plane. Bounded solutions corre-
spond to the dark areas whereas diverging solutions are indicated by the white area (see text). The AL-nonlinearity strength y is (a)

©n=0, (b) u=0.5, (c) u=0.75, and (d) u=0.76.

From the pair (¢y1,¢y) we obtain (ry.,7ry) and
(Oy+1,0x8) as well as (xy,;=2|T|*cos(k),zy,,=0).
The latter are used as initial conditions for the map M ~!
in the study of the fixed output transmission problem.
For a given wave number k the current J is fixed through
the expression J=|T|?sin(k). We see therefore that the
pair (k,|T|) initializes the map M ~! completely. Iterat-
ing the map M ! from n =N to O successively determines
the amplitudes (ry_y, ..., 7y) and phases (Oy _4, ..., 0;)
and eventually results in the value of ¢, on the left end of
the nonlinear chain.

Figure 4 displays the transmission behavior in the
k-|T| parameter plane (momentum versus intensity am-
plitude of an outgoing wave), showing regions of
transmitting (white) and nontransmitting (hatched)
behavior. This representation is similar to that used by
Delyon, Levy, and Souillard and Wan and Soukoulis in
the study of the corresponding stationary DNLS model
[17,18].

For a given output wave with intensity |7| and
momentum k the inverse map M ~! has been iterated by
taking a grid of 500 values of k and 250 values of |T].
Correspondingly, to initialize the map M ~! we populate

Intensity

FIG. 4. Wave transmission properties in the intensity versus
momentum k plane. Hatched regions correspond to the non-
transmitting regime whereas the white regions indicate
transmission. The chain length is N=200. We show the AL-
DNLS case y=1.0 and u=0.25. The dashed curves represent
the boundary between nonescaping and escaping solutions ob-
tained analytically from Eqgs. (83) and (84).
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the z axis with initial conditions x,=2|T| cos(k), z,=0
and iterate on each individual point. When the resulting
incoming wave intensities |R| are of the same order of
magnitude as the transmitted intensity, the nonlinear
chain is said to be transmitting (white area in Fig. 4). In
Fig. 4 we show the AL-DNLS case u=0.25, with y =1.

For wave numbers |k|E[x7/2,7], where the map M
has no fixed point at all, the regions of bounded and un-
bounded solutions are separated by a sharp smooth curve
which can be obtained approximately from the analysis
for the initial wave amplitude stability performed in Sec.
II. Using Eq. (21) the boundary follows from

1 172
|¢T|2:ﬁ[ —1 } , (83)

where ¢4 is the critical value for the wave amplitude
above which stable transmission is necessarily impossible.
On the other hand, application of converse KAM theory
leads to a necessary condition for the existence of an in-
variant graph through a given point. According to Eq.
(37), there exists no invariant closed KAM circle on the
two-dimensional map plane when the wave amplitude
exceeds the value

1+ 2u[1—cos(k)]
Y—2u

172
|¢T|2=i 1—2$cos(k) ~1}, (84)

which yields the curve creating the lower boundary curve
for the largest instability tongue in Fig. 4.

As AL nonlinearity increases, its stabilizing effect man-
ifests itself in an area enhancement of the region for
transmitting solutions. This effect becomes more pro-
nounced for higher AL-nonlinearity strength (not shown
here), eventually exhibiting perfect transmittance, when
Epu=zy.

For |k| <7 /2 the region for nontransmitting solutions
ranges down into the region of linearly transmitting solu-
tions, thus decreasing transparency. The boundary dis-
cerning between bounded and unbounded solutions shows
a complex structure created by numerous narrow
hatched tongues. The white regions between each of
these tongues can be assigned to a corresponding stability
basin of an elliptic periodic orbit and the fractal structure
of the boundary curves originates from the hierarchical,
self-similar structure of islands around islands formed by
higher-class periodic orbits [17,18].

In the transmission diagrams represented in Fig. 5,
several branches are created for k €[ — 7 /2,7 /2] at criti-
cal intensities |T|, indicating bistable or multistable
behavior. Such multistability is illustrated in Fig. 5,
where the transmitted wave intensity is plotted versus the
intensity of the incoming wave for k =0.927. The curve
in Fig. 5(a) illustrating the pure DNLS case
(y=1.0,u=0) shows oscillations resulting in numerous
different output energies for a given input energy. Above
an output intensity of 0.68, a transmission gap ranging up
to 1.08 occurs. Figure 5(b) demonstrates that the pres-
ence of a stabilizing AL nonlinearity of £=0.5 closes the
gap, i.e., transmittivity of the nonlinear lattice is restored.
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FIG. 5. Transmitted intensity as a function of the incident in-
tensity exhibiting multistability of the nonlinear transmission
dynamics for a nonlinear chain consisting of 200 sites. The pa-
rameters are E=—1.2, y=1.0, and (a) x=0. A transmission
gap occurs. (b) The gap has been closed for £=0.5.

B. Relation to chaotic scattering

The dynamics of the wave amplitude in the range
k€[ —m/2,m/2] is extremely sensitive to the choice of
the initial momenta k as well as the initial amplitude.
The occurrence of “spatial” chaos can thus be expected
in the wave transmission. We want to relate the appear-
ing irregularity in the escape process to the features of
chaotic scattering [51-54]. The influence of the chain
length of the present nonlinear lattice model on the
creation of gap and band states was studied.

To analyze the nonpropagating states, manifested in
diverging solutions of the nonlinear discrete Schrodinger
equation, we have employed the concept of the exit time
typical in chaotic scattering studies. The “exit time”
measures the number of iterations N required to let a
characteristic variable exceed some critical escape value.
In our case we take the initial amplitude x, for the
map M=M/(x,z) as the input variable and we obtain
the escape function by following the growth of
Lw,+z,)=I¢,|%. When |4,|? exceeds a certain thresh-
old (taken to be equal to 500) we register the correspond-
ing value of N as N .

Figure 6(a) shows N (x,) for y=1.5, u=0, and
E=—1.1, for 5000 different initial values x, arranged on
the dominant symmetry line z=0 of the map M. The
choice of these initial conditions for the map corresponds
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to the case of the “forward” scattering problem (fixed in-
put problem), where plane waves with amplitudes R, are
sent from the left to the nonlinear chain and the relation
between the initial map variable and the initial wave am-
plitude is xo=2|R|*>cos(k). Except for the two regular
windows of no escape in the intervals —0.2 <x,< —0.1
and 1.8<x,<4.5, this escape number function shows
rapid oscillations and flat parts, which is a typical feature
of chaotic scattering [51,53]. The rapidly oscillating parts
indicate a sensitive dependence of the escape process on
the initial amplitude, whereas in the flat regions the es-
cape number N for different initial amplitudes remains
approximately constant. An expansion of the scale in
Fig. 6(a) reproduces analogous features over many orders
of magnitude, i.e., a self-similar structure. The appear-
ance of smooth and wild oscillating parts is due to the
fact that the escape function exhibits singularities on a
fractal set of initial conditions, which is the hallmark of
chaotic scattering.

A possible application of this work in optical wave
transmission is worth mentioning [16]. In particular, the
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FIG. 6. Illustration of the chaotic scattering properties in the
escape process for the wave amplitudes. (a) The escape length
N as a function of the initial conditions x, (for explanation
see text). (b) The corresponding orbits of the map M showing
the escape set consisting of remnants of KAM curves and unsta-
ble manifolds of saddle points and the invariant nonescaping set
built up from unbroken KAM curves.

onset of the irregular oscillations of Fig. 6(a) determines
waveguide lengths (possible operating regimes) for the
optically coupled devices, since in these ranges practical
prediction of transmitting (nontransmitting) properties is
not possible. On the other hand, the regular regions of
Fig. 6(a) correspond to waveguide lengths that have
determined regular properties and thus can be used reli-
ably for information transmission via amplitude modula-
tion [55].

For an understanding of the behavior of the escape
number function, we show in Fig. 6(b) the ensemble of
those trajectories for the map M from which we con-
structed Fig. 6(a). KAM islands surrounding the elliptic
period-1 orbit, the elliptic period-3 orbit, and also the in-
variant curves contained in the stable islands associated
with the higher-order period orbits around the period-3
islands provide the bounded invariant set of the map.
They yield the two windows of no escape for stable prop-
agating states in Fig. 6(a). Conversely, the scattering
points of the escaping orbits can never penetrate these
KAM circles which act as repellers. The intersections of
the stable and unstable manifolds of the unstable saddles
create the invariant set responsible for the chaotic
scattering. Since there still exist unbroken KAM curves,
this set is nonhyperbolic [54]. The escaping set, which is
the complementary set of the KAM islands, contains a
nonhyperbolic set that produces the sensitivity to the ini-
tial conditions as well as the remainings of KAM islands.
The discontinuity of the escape function is a consequence
of Cantor-like structure of the stable and unstable mani-
folds of the invariant set, whereas the remains of KAM
curves in the invariant set are responsible for the flat
parts of the escape function. In Fig. 6(b) one clearly
recognizes the unstable manifolds of the period-3 saddle
as well as those of the higher-order periodic orbit saddles
surrounding the period-3 islands. These unstable mani-
folds extend to infinity and shape the scattering pattern.

V. CONCLUSION

In this paper we presented an investigation of the non-
linear stationary problem of a discrete nonlinear equation
that interpolates between the Ablowitz-Ladik and
discrete nonlinear Schrodinger equations. We trans-
formed the stationary AL-DNLS equation into a dynami-
cal map problem by associating the lattice indices with
discrete time and pairs of amplitudes of adjacent lattice
sites with a two-component column vector. As a result,
the nonlinear eigenvalue problem of the combined AL-
DNLS equation was shown to be equivalent to a two-
dimensional nonlinear (locally) area-preserving dynamical
map. In the map context, regular bounded orbits corre-
spond to extended periodic or quasiperiodic (transmit-
ting) stationary waves, whereas irregular unbounded or-
bits correspond to (localized) nonpropagating waves.

The different regimes of the dynamical system were
seen to depend on the two nonlinearity parameters u and
v as well as the wave energy E. Using the properties of
the tangent space map we found that, when Eu=y is
satisfied, all orbits are characterized by a (largest)
Lyapunov exponent that is equal to zero, thus leading to
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stable solutions. Consequently, this inequality marks the
regime where transmission through the nonlinear lattice
is ensured. Furthermore, for waves with energies outside
this regime we found that stable map solutions are also
guaranteed when 2u>y. The existence of these regular
regimes shows that the presence of the AL term in Eq. (1)
has the significant function of creating an “integrability
regime” for the nonintegrable DNLS equation. This sta-
bilization property of the AL term was also seen in the
study of the period-doubling bifurcation sequence that
was studied in Sec. III. Quispel, Roberts, and Thompson
[21] conjectured that every autonomous difference equa-
tion obtained by a stationary reduction of an integrable
time-dependent differential-difference equation is an inte-
grable mapping. The converse of this conjecture does not
necessarily hold. The integrable (time-dependent) AL
equation provides such a system where the stationary
equation yields an integrable mapping [cf. Eq. (66)].
Therefore it would be interesting to consider the manifes-
tation of the regular regime obtained in this paper for the
stationary combined AL-DNLS equation in the corre-
sponding time-dependent combined equation (2). Work
in this direction is in progress [56].

On the other hand, application of the anti-integrable
limit showed that the AL contribution in the combined
AL-DNLS system has a destabilizing influence on breath-
er solutions.

Finally, we also studied the transmission properties of
Eq. (1) in two ways and showed that in addition to the
regular transparent regimes, there are also cases where
multistability is possible. This property can be used in
the context of certain nonlinear coupler applications for
efficient transmission of information through the system.
First, we used the converse KAM theory to obtain
bounds for having stable bounded solutions. These
bounds determine the maximal wave amplitude for which
stable propagating (transmitting) waves are possible.
Subsequently we analyzed the wave transmission problem
and compared the transmission with the aforementioned

bounds obtained analytically. The effect of the AL term
is to close the transmission gaps and thus enhance the
transparency of the nonlinear lattice. We finally dis-
cussed aspects of the AL-DNLS lattice from the point of
view of chaotic scattering and found the possible regimes
(chain lengths) at which the chain can be used for reliable
information transfer.

In the present work, we used the AL-DNLS equation
as a test case in the study of the interplay of integrability
and nonintegrability in an extended system. From the
point of view of physics, we can relate the AL-DNLS
equation to wave propagation in nonlinear core couplers
when, in addition to the basic self-interacting term (i.e.,
the DNLS term) we also have a contribution through a
nonlinear coupling of adjacent waveguides (i.e., the AL
term) [16]. In this type of optical applications of the
AL-DNLS equation an interesting case emerges when
periodicity is induced in the system by, for instance, add-
ing a linear periodic local term to Eq. (2). In the simplest
case, if a term proportional to €5, ,,,¥,,(¢) is added, we
have an increase in the size of the unit cell leading to the
simplest multiband extension of Eq. (2). It is known that
in such cases gap solitons can propagate in the forbidden
energy range between the two bands [57-61]. It would
be interesting to study the dynamical properties of the
discrete analogs of these gap solitons in the context of Eq.
(2) and determine the role of the interplay between in-
tegrability and nonintegrability.
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