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Phase ordering in the Ising model with conserved spin

J.F. Marko
Center for Studies in Physics and Biology, The Rockefeller University, 1280 York Avenue, New York, New York 10091 68-99

G.T. Barkema
Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, Nehru York 1/858 M01-

(Received 27 February 1995)

We have studied conserved-order-parameter domain growth following a quench from T = oo
to T ( T at critical concentration in the two- and three-dimensional Ising model, using a type
of magnetization-conserving spin-exchange dynamics which suppresses diffusion along interfaces.
Domain sizes grow in proportion to the — power of time after the quench over a wide range of
annealing temperatures. The effective diffusion constant associated with the growth law is thermally
activated, leading to a long lag time exp(coust/T) before the onset of power-law growth. During
this lag period, transient phenomena associated with activated barrier crossings are observed. We
also study dynamic scaling of the structure factor and two-time correlations in the asympototic
growth regime: many of these results differ from those obtained from continuous-Beld theories of
phase separation such as model B.

PACS number(s): 05.70.Lu, 64.75.+g, 64.60.Ht

I. INTRODUCTION

Binary mixtures undergo phase separation via forma-
tion and growth of bubbles, or domains, of the two coex-
isting phases. In many cases, the characteristic domain
size grows according to a power law of time. The kinet-
ics of demixing have been studied extensively for binary
alloys [1], liquid mixtures [2], and polymer blends [3]. In
cases where hydrodynamic flows [4] and other nondiffu-
sive transport processes may be ignored, these coarsening
processes may be modeled using dynamical Ising models
with locally conserved magnetization. The two values
that may be taken by each spin represent the two species
of particles that are demixing. The coarse-grained mag-
netization of such models is generally believed to be de-
scribed by a Langevin equation (so-called model B) [5]. If
one phase occupies a small volume &action, in which case
the minority phase is organized into spherical bubbles,
the theory of Lifshitz, Slyozov, and Wagner (LSW) [6]
suggests that the average domain size asymptotically in-
creases as R t" with n = 1/3.

Simple scaling arguments suggest that the LSW
growth law holds for arbitrary volume fractions and in
all space dimensions [7]. Consider the asymptotic growth
regime where the domain size R is much larger than any
other lengths such as the domain wall thickness and the
size of the constituent particles. If the surface tension be-
tween the two types of domains is o then the excess &ee
energy (the remaining &ee energy stored in the domain
walls) per volume is on the order of o/R for any dimen-.
sion d. As this excess &ee energy will be inhomogeneous
on the scale R we expect chemical potential gradients on
the order of o'/R . These gradients give rise to forces on
the constituent particles, driving a current on the order
of Mo/R2 where M is a transport coefficient. This cur-
rent is the volume of one phase transported across a unit
(d —1)-dimensional area of interface per unit time, and.

is thus on the order of the domain wall velocity dR/dt.
Therefore dR/dt R 2 or R t i .

Beyond scaling arguments of this sort, there is no re-
liable analytical theory of phase separation, and most of
what is known comes &om large-scale computer simula-
tions. The LSW growth law described above has been
observed in simulations of model B in two [8—10] and
three dimensions [11], and the two-dimensional square-
lattice Ising model with locally conserved magnetization
[7,12,13] for various volume fractions.

Here we expand a previously published report [14] of
the Grst observation of the LSW growth law for a three-
dimensional (3D) dynamical Ising model at critical con-
centration. We should have emphasized in our earlier
paper that the pioneering study of Marro, Lebowitz, and
Kalos [15] observed a growth exponent n = 1/3 at 5%%uo

volume &action in 3D. However, those authors did not
observe n = 1/3 at higher concentrations.

Our observation of n = 1/3 growth at critical concen-
tration, in the "spinodal decomposition" regime where
there are no nucleation barriers and where the interpen-
etrating domains look more like sausages than bubbles,
was achieved by use of a new Monte Carlo (MC) algo-
rithm which differs &om the Kawasaki dynamics [16] gen-
erally used for such studies. This new approach slightly
suppresses diffusion of material along interfaces in fa-
vor of interdomain bulk diffusion. This accelerates the
approach to the asymptotic growth regime because a
smaller &action of time (real and computer) is spent on
intradomain transport processes, which are suspected to
generate power-law corrections to scaling [7].

Even. with this acceleration, the power-law LSW
growth begins only after a long transient period, the
duration of which we have been able to measure as a
function of annealing temperature. The transient period
is strongly activated: at T = 0.01T in 3D it lasts for

10 MC time steps. Such times cannot be reached
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by conventional MC techniques, but are easily attained
using our algorithm. The ability to probe sluggish dy-
namics is a feature of our techniques and should make
them of general interest and applicability.

We begin in Sec. II by describing our new MC tech-
nique and comparing it to conventional Kawasaki spin-
exchange dynamics. In Sec. III we present results for
asymptotic power-law growth. Domains are observed to
grow as ti~s in both two dimensions (2D) and three di-
mensions (3D) over a wide range of annealing tempera-
tures. In 2D, our structure factors are nearly identical
to those reported by Amar et al. [12] for Kawasaki dy-
namics, and scale in a way consistent with the hypothesis
that the domain patterns at difFerent late times are sta-
tistically similar [5,15]. However, we find that our 2D
structure factors difFer &om those reported for model 8
[10,11]. We also discuss two-time correlations during the
ordering process, and we 6nd that these also difFer &om
recently reported 2D model B results [17]. Our 3D re-
sults also difFer in various ways &om results available
for model B [11). These results make us suspect that
the asymptotic domain growth in dynamic Ising mod-
els is not described by model B. In Sec. IV we discuss
phenomena that occur during the long transient period
before the asymptotic growth regime.

II. MONTE CARLO KINETICS
FOR THE ISING MODEL

magnetization is zero. In the thermodynamic limit the
equilibrium properties of this ensemble are equivalent to
those of the "canonical" ensemble where only con6gura-
tions with total spin zero occur.

We are interested in suitably defined dynamics where
the total spin (i.e. , the difFerence in volume occupied by
the two components of the mixture) is fixed at zero. We
suppose that at time t = 0 our Ising model is in equi-
librium at T = oo or J = 0; the total spin is zero but
otherwise the spins are +1 at random. We imagine that
at t = 0 the temperature is quenched to a temperature
T ( T, (T/T, = J,/J). We then watch the spins move
around for times t & 0. Domains form and grow in size,
eventually becoming as large as the system. This is a
model for the experiment where a binary mixture at crit-
ical concentration is quenched &om an initial tempera-
ture well above the demixing critical temperature T, to
a final temperature below T .

B. Correlation function, scattering function,
and domain size

The size of domains during phase separation can conve-
niently be obtained from measurement of two-point cor-
relations [5]. These correlations can be directly obtained
via elastic light or neutron scattering [1—3]. The two-
point real-space correlation function of the spins in an
Ising model is simply

A. Phase separation and the Ising model

We are interested in mixtures of two species of particles
(atoms or molecules) which demix into two coexisting
phases each rich in one of the two species. A simple
model for the equilibrium statistical mechanics of this
situation is the Ising model, with Hamiltonian

E/k~T = —J) o;cr~

(i j)

where J ) 0, the spins 0; take on the values +1, and
where nearest-neighbor sites (i, j) are on a regular lat-
tice. The two spin values at each site of the Ising model
represent the two types of particles. As the probability of
any state in equilibrium is given by the Boltzmann distri-
bution e ~"~, the ferromagnetic interaction J causes
configurations where like particles are clustered together
to be low in energy and therefore more likely at low tem-
peratures.

The Ising model (in zero magnetic field, as written
above) has a second-order phase transition from a dis-
ordered state at small J to an ordered state at large J.
In 2D on a square lattice the phase transition occurs at
J =

2 ln(l + ~2) = 0.4407; in 3D on a simple cubic
(sc) lattice J, = 0.22163; on the body centered cubic
(bcc) lattice J 0.15737; on the face centered cubic
(fcc) lattice J 0.10206 [18]. The ensemble used in
equilibrium calculations is one where all spin configura-
tions and therefore all values of total spin occur, and in
zero magnetic Geld symmetry ensures that the average

where the sum is over all N sites r' of the lattice, and
where periodic boundary conditions are assumed.

During conserved-order-parameter domain growth g(r)
develops a distinctive oscillating-decaying shape [7]. For
r = 0 the correlation is unity, and decays for increas-
ing ~r~, crossing zero and becoming negative at some dis-
tance. A sensible definition of domain size is the distance
R at which this zero crossing occurs. The size R can be
computed in this way either in a speci6c lattice direc-
tion (for the sc lattice, the 100 direction is convenient,
and was used in our previous paper [14]), or for the cir-
cularly averaged g(r). The length B roughly measures
the average distance from the center of a domain to the
surrounding domain walls and 2R is the mean domain
diameter.

The scattering structure factor S(k) is the Fourier
transform of the correlation function g(r):

S(k) = —) e'"'o.(r) (3)

This can then easily be averaged over directions k to
obtain the circularly averaged structure factor S(k). The
function S(k) goes smoothly to zero at k = 0 because
of the conservation law. As k m oo, S(k) = k &~+i&

because one observes scattering &om the sharp interfaces,
behavior often referred to as "Porod's law" [11].Between
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these limits, S(k) has a peak, as one would expect for the
Fourier transform of an oscillating function.

The domain size can also be computed from the first
moment k* of the circularly averaged structure factor
[11,12]:

j dk k S(k)

jp dk S(k)

The moment defined in this way is the characteristic spa-
tial frequency of the domain structure, and therefore the
diameter of the domains is roughly vr/k*.

properties of the phase ordering process —e.g. , the do-
main size growth Law and the spin-spin correlation func-
tion at large distances have been proposed to be in-
dependent of microscopic details of the dynamics, and to
depend only on conservation laws, symmetries, and di-
mensionalities [5]. A large part of the aim of theory is
to figure out exactly which observables are in this way
"universal. " The many different admissable dynamics
present a useful tool for studying universality. In addi-
tion, we will show how a judicious choice of dynamics can
increase the efIiciency of numerical computations.

C. Time autocorrelation of spins

An additional behavior that can be used to character-
ize domain growth is the same-site two-time autocorrela-
tion of the spins [17,19]:

A(t)—:) 0.(r, tp) 0(r, t). .

This object simply tells us how likely it is for a spin to
have remained in the same state &om some reference time
to &Ototimet) to.

In our notation we suppress the reference time to, but
we must keep it in mind, as in principle the behavior of
A(t) could difFer depending on whether tp is before or
during the power-law scaling regime [17]. We shall focus
on the case where to is in the scaling growth regime since
before that time the spin configuration is highly depen-
dent on initial conditions and other nongeneric aspects of
the growth process. What one expects is that for t )) to
this correlator should decay algebraically with t. The
conventional definition of the exponent is A(t) t

D. Dynamical Ising models

What makes particular MC dynamics suitable for
studying phase separation? The underlying physics is
that of local rearrangement of the constituent particles
in response to intermolecular forces, motivating MC dy-
namics where spins at adjacent sites are swapped at
rates determined by the nearest-neighbor interactions of
the spins being exchanged. The precise rules by which
these nearest-neighbor spin exchanges (MC "moves" or
"steps") occur define a "dynamical Ising inodel. "

We naturally wish the equilibrium ensemble to be
the well-studied Ising model Boltzmann distribution de-
scribed above. This equilibrium will be obtained if the
MC dynamics are ergodic, and if they satisfy detailed
balance [20]. The latter condition requires the ratio of
forward and reverse transition rates between each pair
of states to be equal to the ratio of the Boltzmann fac-
tors for those two states. These constraints (local spin
exchange moves, ergodicity, detailed balance) are very
loose. Many MC rules satisfy them and without further
prejudice all are equally admissible.

This arbitrariness of the dynamics is important. Some

Kawasaki dynami cs

The most commonly used exchange dynamics are due
to Kawasaki [16]. At each MC step, a nearest-neighbor
pair of spins are chosen at random and the change in en-
ergy LE that would occur if the spins were exchanged
is computed. The step is then accepted with probability
min(e +@~"~,1). The ratio of the forward and reverse
processes is the desired e / "~, ensuring detailed bal-
ance. Ergodicity is fulfiLLed, since one can obtain any spin
state in a finite system by some sequence of steps with a
nonzero probability IIrom any other spin state.

Simulations of phase ordering following quenches to
T ( T, at critical concentration in 2D have been car-
ried out by Huse [7], Amar, Sullivan, and Mountain [12],
and by Roland and Grant [13], using Kawasaki dynarn-
ics. The general result obtained was that the domains
grow with time as R t ~ . We wiLL discuss these results
in more detail below.

Published 3D Kawasaki simulations do not indicate
that the n = 1/3 growth law holds near critical concen-
tration. Instead, domains have been observed to grow
very slowly, especially at low temperatures, with efI'ec-
tive exponents well below 1/3 [15,21]. Some of our own
studies of phase ordering using Kawasaki dynamics [22]
for times of up to 10 MC steps per site (MCS) at temper-
atures near O.5T, were described by efI'ective exponents
n ( 0.2 (see the low'er two curves of Fig. 2 of Ref. [22]).

Kawasaki dynamics thus appear impractical for studies
of phase separation in 3D. An explanation was suggested
to us that transport of spins along domain walls, or "sur-
face dift'usion" might dominate the bulk transport of ma-
terial on which the LSW scaling argument depends, at
the times (( 10 MCS) accessible to Kawasaki dynamics.
This idea can be made more quantitative by noting the
basic rates for processes contributing to surface diffusion
and. to bulk diftusion. Consider a + spin at the surface
of a domain wall between + and —spins, as shown in
Fig. 1, that diffuses from a position A to a difI'erent posi-
tion B. The Kawasaki rate for the exposed spin to slide
along the interface from A to B (i.e. , surface diffusion,
the dotted arrow in Fig. 1) is 1, since the energy does not
change during this process. If the particle detaches from
the surface at A, diKuses through the domain of —spins,
and reattaches at B (i.e. , bulk diffusion, dashed line in
Fig. 1), an energy cost of 4J is involved in the detach-
ment, making bulk diffusion an activated process. Thus,
in Kawasaki d.ynamics, bulk diftusion is suppressed by a
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For greater efBciency we do not use the usual accept-
reject Metropolis approach with a fixed time step [20].
Instead we choose a step Rom the ensemble of all possible
spin exchanges according to how likely it is to occur per
uiut time, making a time step of appropriate (variable)
duration. One step of our dynamics for a 3D cubic lattice
consists of (a) increment time [23] by

FIG. 1. Motion of single + spins contributing to surface
difFusion and bulk difFusion. Dotted line: a + spin can move
from A to I3 by surface difFusion along the interface between
bulk + and —regions. Dashed line: the same + spin can
move from A to B by bulk difFusion if it detaches from the
interface, moves through the sea of —spins, and reattaches
at B.

factor e relative to surface di8'usion, which likely will
delay the dominance of bulk transport required for LSW
growth. Also, Kawasaki dynamics arbitrarily equates the
basic rates for motion of spins at domain walls and in the
bulk. These two facts prompted us to consider alterna-
tive spin-exchange dynamics in which the motion of spins
along interfaces could be suppressed.

At = ) (1 —q/z)N~e

(b) select list q with probability Iq —— At(1
q/z)Nqe q, (c) select randomly one site i from list q,
(d) select randomly a neighbor j of site i, with o'i g a, ,
and (e) ffip 0', and ai, adjust the Q values of i, j, and
their neighbors, and update the lists.

Ergodicity is argued to be satisfied as for other spin-
exchange dynamics [20]. To prove detailed balance, let
us consider a move in which a spin at site i with coordi-
nation number Q(i) is selected, and exchanged with the
spin at site j with coordination number Q(j), one of its
nearest-neighbor sites on which a spin with opposite sign
is located. Let us denote the con6guration before and
after this move with A and B, respectively. The transi-
tion rate &om conffguration A to configuration B by this
process is given by

A. net exchange dynanaic8
mith redtaced surface diffusion

(z)
AmB

In our approach we keep track of the coordination nurn-

ber of each site i:
in which the factors arise from steps (a), (b), (c), and
(d), respectively. A process from state A to B could also
have started with selection of site j: this process has a
transition rate

The Q(i) run from 0 to z, where the lattice coordina-
tion number z = 4 for the square lattice, z = 6 for
the sc lattice, 8 for the bcc lattice, and 12 for the fcc
lattice. Isolated spins i whose neighbors are opposite
in sign have Q(i) = 0, while spins i in the interior of
domains whose neighbors all have the same sign have

Q(i) = z. The coordination numbers provide sufficient
information to compute energy changes due to spin ex-
changes. The change in energy resulting &om an ex-
change of two nearest-neighbor spins i and j with oppo-
site sign and coordination numbers Q(i) and Q(j) in the
initial state is AE = 4J[Q(j) + Q(i) —(z —1)].

We order all sites into z + 1 lists of sites with equal
coordination numbers and hence with equal local envi-
ronments. The number of sites in the list containing sites
with coordination number q is called N~. The rationale
for this list making is simple. As phase ordering occurs
(for temperatures not too close to the critical temper-
ature) + and —spins are organized into progressively
larger domains, and thus an ever-increasing &action of
the sites will have q = z. It is most eKcient to keep track
of the sites by coordination q since nontrivial exchanges
involve only the continually shrinking set of sites with

q ( z.

/p(2) —4JQ(g)1

The total transition rate &om A to B is thus given by
the sum of T& B and T&

(i) (2)

After this move, the spins at sites i and j have coor-
dination numbers (z —1) —Q(i) and (z —1) —Q(j), and
the ratio of the total transition rate for the forward and
reversed process is thus given by

—4J[Q(i)+Q{j)—(z —1)]
+BmA

This is exactly the ratio of the Boltzmann weights of
configurations A and B, and detailed balance [20] is ful-
filled. Detailed balance in addition to ergodicity guar-
antees that equilibrium is described by the Boltzmann
distribution for Hamiltonian (1). A similar Monte Carlo
scheme with a varying time step can also be employed for
Kawasaki dynamics by modifying steps (a) and (b) to ob-
tain selection of neighboring sites i and j with probability
proportional to min [1,e ~' ~~'~ ~~~~1].

If we now compare the two processes illustrated in Fig.
1 we see that the rate for a move along the Bat interface
is as highly activated as detachment. Surface diBusion
therefore does not dominate, in contrast with Kawasaki
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dynamics. The transition rates for all moves of an iso-
lated spin (i.e. , detachment from a domain, bulk trans-
port, and reattachment to that domain) in our dynamics
are identical to those in Kawasaki dynamics, allowing
the time scales of the two algorithms to be directly com-
pared. In the LSW theory, the late-time growth is due to
the dominance of bulk diffusion over all other transport
processes. It is therefore reasonable that these dynamics
will enter the LSW scaling regime for earlier times than
Kawasaki dynamics.

III. ASYMPTOTIC POWER-LAW DOMAIN
GROWTH AFTER A QUENCH

A. Method

We begin at t = 0 with a configuration in which an
equal number of + and —spins are placed randomly on
a lattice, giving a T = oo random spin state with crit-
ical concentration. Next, we apply our spin-exchange
dynamics at the annealing temperature T ( T for times
t ) 0. This is standard procedure for simulation of a deep
quench at t = 0. We are faced with the familiar conHict
between our desire for large I and the finite size and
speed of our computer. For our algorithm implemented
on a RS6000 computer workstation we can comfortably
study systems of 512 spins in 2D and 128 spins in 3D.

What one observes during a typical run is a transient
period during which the domain size B is nearly station-
ary, followed by a power-law regime during which the
domain size increases according to the LSW growth law
R t ~ . When the domain diameter 2B approaches
about 1/10 of the width of the system, finite system size
effects appear, usually manifest in growth faster than
t / . When there are only a few domains across the sys-
tem, they become increasingly correlated, accelerating
the final stages of phase separation.

We are therefore limited to domain diameters smaller
than about 50 in 2D, and 13 in 3D. A single run &om the
quench to domains which stretch 1/10 of the way across
the system requires roughly 20 h of computation for the
512 systems, and about 12 h for the 128s systems (there
is some quench-depth dependence to these times). Many
realizations of domain growth must be averaged because
for these system sizes there are strong sample-to-sample
Huctuations, particularly at later times where there are
a small number of domains.

B. Two dimensions

We studied the Ising model on a square lattice withI x I sites in order to compare domain growth using our
dynamics with the large-scale Kawasaki-dynamics study
of Amar et al. [12]. We examined three annealing tem-
peratures, doing 17 runs at T/T, = O. l and L = 256,
five runs at T/T, = 0.6 and L = 512, and six runs at
T/T = 0.01 and L, = 512. We also carried out 15 runs
at each of T/T = 0.01 and 0.6 for 2562 spins which gave
essentially the same results as the 5122 runs.

1. Domain sise follows LSW 1/8 latv

In Fig. 2 we show the averaged characteristic domain
size 1/k* determined from the first moment of the struc-
ture factor S(k) [12] for the three quenches. In each case
we observe power-law growth at late times with an ex-
ponent close to n = 1/3. At T/T = 0.1 [Fig. 2(a)], the
scaling regime occurs for MC annealing times t & 10
or for domain diameter vr/k* ) 6. At the higher tem-
perature T/T, = 0.6 [Fig. 2(b)] scaling occurs beyond
about t ) 10, or for m'/k' ) 9. At the very low temper-
ature T/T = 0.01 [Fig. 2(c)], we have power-law growth
for t ) 10, or for vr/k' ) 20. The time for onset of
power-law growth is highly activated, varying in propor-
tion to e for large J. A similar result was obtained for
Kawasaki dynamics by Fratzl et al. [24], who noted that
the domain sizes versus time for different quench depths
could be superimposed if time was measured in units of
Jc

For T/T, = 0.1, from t = 10 to 10 the domain size
follows the growth law n = 0.355 +0.004; for T/T, = 0.6,
&om t = 10 to t = 10 we obtain n = 0.326 + 0.005;
for T/T, = 0.01, from t = 10i to 10 we obtain
n = 0.358 + 0.005. The errors quoted are statistical, and
do not take into account systematic errors due to finite
system size. It is sensible to have slightly larger effective
exponents at lower temperatures since in finite systems
weaker thermal Quctuations will lead to stronger corre-
lations that will accelerate the latest stages of simulated
domain growth.

These results are in good agreement with the results of
Amar et al. , who found, with Kawasaki dynamics after
quenches to T/T, = 0.5, an asyxnptotic growth regime
beyond about t = 104 or m/k* ) 6.5 for quenches to
0.5T, (see Fig. 10 of [12]; their Bi is related to our k'
by Ri ——2m/k'). The exponent that they reported using
100 runs to 10 MCS was n = 0.330 + 0.005.

g. Dynamical scaling of structure factor

We have computed the scaled structure factor
(k') S(k/k*) for late times, for T/T, = 0.1 [Fig. 3(a);
t = 10i2 to 10 with samples spaced by half decades],
T/T, = 0.6 [Fig. 3(b); t = 10 to 10 every half decade],
and for T/T, = 0.01 [Fig. 3(c); t = 10 to 10 every
half-decade]. In each case a collapse of the data is ob-
served with a peak at k/k' = 0.8, indicating dynamical
scaling of the growth process. The location of the peak
and the overall shape of the scaling function are the same
for all quench depths, and also agree with the results of
the large Kawasaki-dynamics simulation of Amar et al.
(see Fig. 9 of Ref. [12]). This suggests that our dynam-
ics lead to the saxne long-wavelength phenomena as do
Kawasaki dynamics.

At each temperature there is a well-defined Porod de-
cay [S(k) k ] for large k which results from scatter-
ing from the randomly oriented Bat interfaces. At small
k, things are less clear due to our limited systexn sizes,
but it appears that S(k) k ' . This is consistent with
the Kawasaki dynamics results of Amar et al. , who find
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S(k) k~ s to k2" [25]
All of the late-time scaled structure factors of Fig. 3

are the same (apart &om a vertical shift needed to correct
for the difFerent binodal magnetizations at di8'erent an-
nealing temperatures). Our scaled structure factors also
match those of Amar [25] for 5122 systems at T = 0.5T
annealed for 2 x 104 and 1 x 10 Kawasaki MCS. We
conclude that in 2D the scaled structure factor is inde-
pendent of the annealing temperature and details of the
Mc dynamics.

8. Autoeof'r elations in time

Figures 2(a)—2(c) show the same-site time autocorrela-
tion, which approaches a power-law decay A(t)
Each decay represents a diferent initial time to, and of
course A(to) = I. The exponent An depends on the
choice of to. Yeung et al. [17] have argued that the auto-
correlation decay depends on the statistics of the ordering
field at the initial time to. We find evidence for this in a
strong dependence of the apparent exponent An on to.

10 (

p
I I I I I I I I I I I I

(a) d=2, T/Tc —— 0.1, L=256

10 I I I I I

(b) d =2, T/Tc 0.6

I I I I I I I I
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FIG. 2. Domain size and time autocorrelation in two dimensions. (a) T/T, = O. l; (b) T/T = 0.6; (c) T/T, = 0.01. In
each case the domain size 1/k' (circles) approaches t ~ growth behavior (upper dashed line has a slope of 1/3). The time
autoeerrelations depend en the reference time to, but far to in the scaling range the decay approaches an exponent An = 1
(lower dashed line has a slope of —1).
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For a 2562 system at T/T, = 0.1 [Fig. 2(a)] and for
initial time tp ——10 the autocorrelation decay over the
time range t = 10 to 10 is described by the power
law An = 0.66 6 0.02. Moving tp to later times results
in an increase in this apparent exponent. For tp ——10
over the range t = 10 to 10 we have an exponent of
An = 1.01 + 0.05. For t = 10 ', over the range t =
10 3 to 10 we have an exponent An = 1.0+0.1. Thus
for tp in the scaling regime we find an autocorrelation
exponent An = 1.0. At this annealing temperature, we
observed a growth exponent n = 0.36, and thus we find
that A 2.8 in the scaling regime.

The same eEect is observed for a 512 system annealed
at T/T = 0.6 [Fig. 2(b)]. For to ——1 over the time range
t = 10 to 10 the autocorrelation decay is described
by An = 0.43 + 0.04. For tp ——10 the terminal power-
law decay over the range &om t = 10 to t = 10 is
described by an exponent An = 0.52+0.05. For tp

——10
and t in the range t = 10 to 10 a yet higher exponent
An = 0.93 + 0.10 is obtained. Use of tp ——10 gives a
similar decay which over the range t = 10 to 10 has an
effective exponent An = 1.00 + 0.07. For tp in the scaling
regime tp & 10 ', we again Gnd An = 1.0. Since n —0.33
over this time range, we conclude that A = 3.0.

In 512 systems at very low temperature T/T, = 0.01
[Fig. 2(c)] similar autocorrelation decays are again ob-
served for t p in the scaling regime. For tp ——10 we
observe a decay An = 1.45 + 0.25 over the time range
t = 10 to 10 . For a later tp ——10, the expo-
nent observed over the time range t = 10 to 10
shifts to An = 1.10+ 0.15. Again we see that An = 1 for
t p in the scaling regime, although in this case the expo-
nent appears to shift down to this value as tp is moved
to later times.

In conclusion, for tp in the scaling regime where domain
size B t ~, so that the statistics at tp are intrinsic to
the ordering process and not to some arbitrary initial
condition, our 2D dynamics have An 1, or assuming
n = 1/3, A = 3. Our results are consistent with the
inequality A & (4 + d)/2 recently derived by Yeung et
at. [17] for to in the scaling regime. In the same paper
it is reported that A = 4 for model B in two dimensions
and tp in the scaling regime, which is in conBict with our
result.

10 C. Three dimensions

10
0. 1 1

scaled wave number k/k'

In three dimensions, we previously studied [14]
quenches of 64 spins on a sc lattice. Those runs were
aimed at determining the domain size growth law. We
subsequently carried out 128 runs in order to study the
structure factor.

FIG. 3. Dynamical scaling of structure factor in two di-
mensions, in logarithmic coordinates. (a) T/T, = 0.1; (b)
T/T, = 0.6; (c) T/T, = 0.01. A k decay characteristic
of Porod scattering from the sharp domain walls occurs at
large k (dashed line to right has a slope of —3); at small k,
S(k) k at later times (dashed line to the left has a slope
of 4).

Domain growth on a 64~ aimple cubic lattice

We studied quenches kom a random, critical concen-
tration initial state to annealing temperatures T/T, =
0.7, 0.5, 0.4, 0.3, 0.2, 0.15, and 0.01. Even T/T, = 0.7
is quite far &om the critical temperature, and the equi-
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librium interface widths (thermal correlation lengths) in
the anal states were less than one lattice spacing in every
case [18].

To measure the typical domain size B, we calculated
the two-point correlation function g(r, t) and determined
its first zero crossing by solving g(Rx, t) = 0, where x
is the 100-direction unit vector. In Fig. 4 we show R(t):
at each annealing temperature a transient period occurs
after the quench during which R(t) hardly grows, and
is followed by an asymptotic regime where R(t) shows
power-law growth. The duration of the transient regime
increases drastically as T ~ 0. At low temperature,
sharp steps in R(t) occur during the transient regime:
these will be discussed below.

To extract the power-law R(t) exponent n,~
(dlnR/dint) in the limit t ~ oo &om our simulation
results, we Grst constructed 50 samples &om each set us-
ing the bootstrap technique [26]. For each sample we
carried out a least-squares fit of the (ln(t), ln(R)) data
to the form ln(R) = n,~in(t/to) + exp[ —cln(t/ti)], in
the regime where R & 2.0. The second term in this
function corrects for the transient behavior just before
the asymptotic regiine. Our results are n,~ = 0.37(3),
0.35(2), 0.31(4), 0.28(2), 0.30(3), 0.33(3), and 0.32(3),
for T/T, = 0.01, 0.15, 0.2, 0.3, 0.4, 0.5, and 0.7, respec-
tively. These results are consistent with the exponent
n = 1/3.

The duration of the transient is due to the activated
nature of bulk difFusion at late times, which follows from
the energy barriers for removal of spins &om domains.
If we rescale the time for each simulation by the charac-
teristic time r = e 2~, the asyinptotic R(t) curves col-
lapse. This is illustrated in Fig. 4 by the dashed lines
R(t) = A[t/r]i/s, with r = ei2~ and A = 1.6, which fall

close to the asymptotic R(t) values &orn the simulations,
over a large range of temperatures and times. The energy
scale 12J is the excitation energy for a spin at a corner
on the sc lattice. Such sites are guaranteed on randomly
oriented planar interfaces, and must be present in the
domain patterns that occur at late times.

2. Domain growth on a 128 simyle cubic lattice

Five quenches &om random, critical concentration ini-
tial states were carried out for annealing temperatures
T/T = 0.1 and T/T, = 0.6 on a 128 sc lattice. This
system size was the minimum that allowed an estima-
tion of the structure factor S(k). Froin S(k), the do-
main size 1/k* was determined &om its first moment k*.
The domain sizes for T/T = 0.1 and 0.6 are shown in
Figs. 5(a) and 5(b), respectively; in each case a growth
law 1/k* ti/ is observed at late times, in agreement
with the 64 results.

For T/T, = 0.1, the domain size from t = 10 to
10i9 s (at t = 10is 5 the domain diameter is ir/k' = 15)
follows a power law with n = 0.327 6 0.007. At T/T, =
0.6, we find that &om t = 10 to 10 (&om ir/k* = 3.5
to about 8) the domains grow with efFective exponent
n = 0.295 + 0.002. The latter exponent is low because
we have not run to very large domains (finite size effects
appear beyond these modest domain sizes), and we did
not do extrapolations to determine the growth law. The
e6'ective exponents that we observe over these limited
time ranges are consistent with the 643 lattice study, and
are converging to n = 1/3.

8. Scaling of structure factor

Domain si
vs. time
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FIG. 4. Domain growth in three dimensions on a 64 lat-
tice. Solid curves indicate simulation results for the domain
size B as a function of time t, after a quench from T = oo
to (from left to right) T/T =0.7, 0.5, 0.4, 0.3, 0.2, 0.15,
and 0.01. The asymptotic behavior is well described by the
dashed lines, which are the power laws B(t) = A[t/r]1 ~, with
r = exp(12 J) and A = 1.6. As explained in the text, the unit
of time is equivalent to Kawasaki spin exchanges per lattice
site. Note that the (logarithmic) time scale is contracted in
the range 10 —10 in order to show the lowest-temperature
data.

The scaled structure factor k* S(k/k') is shown in
Fig. 6. At 0.1T, [Fig. 6(a)] we do not observe dynamical
scaling. The dashed lines show times &om 10 to 10
during which time the domain diameter ir/k* grows from
about 2.5 to 5: surprisingly, during this time window the
scaled structure factor is nearly stationary even though
the growth is not yet near the asymptotic regime. Then
for times &om 10 to 10 ' when the domain diame-
ter grows &om ir/k* = 5 to 15.7 and approaches the t /

growth law, we observe that dynamical scaling does not
hold [solid lines of Fig. 6(a)]. The peak systematically
decreases, and only the tails show a scaling collapse.

On logarithmic axes [Fig. 7(a)] we observe that for
0.1T the tails overlap quite well. We observe a clear

Porod tail at large k expected for sharp interfaces
in three dimensions. At small k, the data collapse over
a larger range of k/k* at longer times, and appear to be
converging to a power law of about A;

.
, about the same

small-k behavior that we observed in two dimensions.
For 0.6T, the scaled structure factor is shown in

Fig. 6(b) for times from 10 to 10 .5. Although the
shape of the scaled structure factor is still evolving at
these times (the whole scaled structure factor is shifting
slightly to the right with time), the change in shape &om
t = 104 to 10 (rightmost two curves) is much less than
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from 10 to 10 (leftmost two curves). In logarithmic
coordinates [Fig. 7(b)] the tails of the 0.6T, scaled struc-
ture factors appear to be converging to a single curve at
the latest times. The high-k behavior is approaching a
k 4 Porod law behavior. From these data it is unfortu-
nately diKcult to see what the limiting small-k behavior
is going to be, or to resolve details of S(k) such as a small
second peak at k 2k' observed for model B [11].

To sum up, over the time range that we are able to ob-
serve, S(k) at 0.6T, appears to be converging to a form
in accord with the dynamic scaling hypothesis, and has

a shape roughly consistent with that observed in simu-
lations of model B [ll]. At 0.1T, we see a qualitatively
completely diferent structure factor that does not satisfy
dynamical scaling at late times.

Two-time aatocov't'elation

Figure 5 shows the autocorrelation function A(t) for
128 systems. At T/T, = O. l [Fig. 5(a)] if the initial
time is to ——10rs (before the scaling regime), we observe
an exponent An = 0.52 + 0.01 between t = 10 and
10 9 . If to is moved to the scaling regime, the expo-

I I I I I ! I I I I I I I I I I I I I
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I I I I I I I I ! I I I I I I
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FIG. 5. Domain size and time autocorrelation for domain
growth in three dimensions, on a 128 sc lattice, for quenches
to (a) T/T, = O.l and (b) T/T, = 0.6. The size 1/k* was
determined from the first moment A.

" of the structure factor,
and grows asymptotically as t

0.0 0.5 1.0 1.5
scaled wave number k/k'

FIG. 6. Dynamical scaling for structure factor for domain
growth on a 128 sc lattice, for quenches to (a) T/T = 0.1
and (b) T/T. = 0.6.
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nent observed over the time range t = 10 to 10 ' is
slightly reduced: for tp ——10 ' we find An = 0 49+0 01)
and for tp ——10 we find An = 0.43+ 0.01. Assum-
ing n = 1/3, the late time A = 1.5 violates the bound
A & (4 + d)/2 = 3.5 of Yeung, Rao, and Desai [17] by a
large margin.

At T/T, = 0.6 [Fig. 5(b)] we have a very limited
time range &om which to extract exponents. For ini-
tial time tp —— 1 we observe a power-law decay with
An = 0.374+0.005 over the time range t = 10 to 10
For later tp, faster decays are observed: for tp ——10
An = 0.70 + 0.02; for tp ——10, An = 0.78 + 0.02 over the
time range t = 10 to t = 10 '5. In the scaling regime

(again assuming n = 1/3) we have A —2.5, which once
again is a good bit below (4+ d)/2. As in 2D, for low
annealing temperatures the apparent exponent An shifts
down as tp is made larger; An shifts up as tp is increased
for higher annealing temperatures.

IV. TRANSIENT PHENOMENA
AT LOVE TEMPERATURES

IN THREE DIMENSIONS

In the low-temperature run (T/T = 0.01) in Fig. 4,
there occurs a very long transient regime during which
R(t) hovers around 2. In Sec. IVB we saw that this
transient has a duration of approximately e . Closer
examination of Fig. 4 reveals sharp steps in B(t) for
T/T = 0.01 at times e4~ and es; similar steps are visi-
ble at higher temperatures. This suggests that the steps
are related to the rates e 4~q for single spin exchanges
involving a site of coordination number q [27).

This idea is verified by examination of the coordination
number distribution Nq. Figure 8 shows Nq over the
course of a 64 simulation on the sc lattice, following a
quench to T = 0.05T~. The transient behavior of the Nq
may be divided into "decays, " during which one of the Nq
falls ofF over about one decade in time, and "plateaus, "
during which all of the Nq are essentially constant. Sharp
(exponential) decays of No, N&, N2 at successively later
times are clearly visible. After each decay, the time step
in our simulation grows by about a factor of e4~, enabling
us to reach extremely large times for low temperatures.
At lower temperatures, the plateaus stretch while the
decays continue to require about one decade.

The basic reason for this behavior is that the moves
in our dynamics for sites of coordination number q occur
at rates e 4~q. At low temperature moves of highly
coordinated spins, for example q = 3, have very long
time scales in comparison with sites with q = 0, 1, and
2. Thus we may ignore the dynamics of q = 3 sites un-
less the densities of q = 0, 1, and 2 sites are very low.
But phase ordering involves an increase in the mean co-
ordination number since equilibrated coexisting phases
at low temperature will have q —z at almost all sites.

10
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FIG. 7. Dynamical scaling for structure factor, in loga-
rithmic coordinates, for quenches to (a) T/T = 0.1 and (b)
T/T, = 0.6 (dashed lines to left have slope 4; those to right
have slope —4). In (a), the Porod k behavior is clearly seen
at large k; the data of (b) are consistent with this. At small
k, case (a) shows k ' behavior; case (b) shows a sharper k de-
pendence. The two cases appear to be converging to di8'erent
scaling functions.

FIG. 8. Number of sites N~ with coordination number q, as
a function of time after a quench from T = oo to T = 0.05T .¹, Nq, and Nq undergo sharp exponential decays at times
of 1, e, and e, respectively; at a time of e the scaling
regime begins, and the remaining N~ begin to show power-law
behaviors. Results are obtained from runs on a 64 sc lattice.
As explained in the text, the unit of time is equivalent to
Kawasaki spin exchanges per lattice site.
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Therefore the early stages of phase separation can reason-
ably proceed in stages, where first (immediately after the
quench) all of the energetically unfavorable q = 0 sites
(with all neighbors of opposite sign) disappear, leaving
lower-energy sites where q ) 1 (sites with at least one like
neighbor). Now, one has to wait a time of order exp(4J)
for the q = 1 spins to move. Then, on that time scale the
q = 1 spins will disappear since they will recombine to
make much more stable sites where q & 2. Then nothing
will happen until a time of order exp(8 J) when the next
characteristic time scale is reached, at which even lower-
energy q = 2 spins can move. Iterating this reasoning,
for each q we obtain a time scale exp(4q J) characteristic
to the motion of q-fold coordinated spins.

This step-by-step decay process cannot occur for all

q as it is inconsistent with power-law growth. Numer-
ically we observe that the step-by-step process is inter-
rupted at a magic value q' which is lattice-structure de-
pendent. Beyond the time exp(4q* J), the densities of all
the sites begin to decay together algebraically, and the

growth regime begins. Figure 8 shows sharp decays
of the No, Nq, and N2. But then power-law growth be-
gins at exp(12Jq), and the remaining K~ for q & 3 decay
as power laws of time.

For the 2D square and 3D sc lattices, we observe q* = 2
and q* = 3, respectively; for the bcc and. fcc lattices,
q* = 4 and 6, respectively. These q* values may be ra-
tionalized simply. Consider the 2D square lattice. In the
scaling regime we expect the lattice to play no role in
determining domain morphology. As the domains grow,
the interface curvatures decay as 1/R. Thus at the lat-
tice scale we can think of the interfaces as nearly fIat and
randomLy oriented. Random orientation implies that the
number of q = 2 "steps" sites will be roughly as large as
the number of q = 3 "terrace" sites in the scaling regime.
Thus on the square lattice we expect q' = 2, which gives
the characteristic time e for the onset of power-law
growth observed by Amar, Sullivan, and Mountain [12]
and. by us. In 3D, q* can be similarly rationalized. by not-
ing that arbitrarily oriented planar interfaces on the sc,
bcc, and fcc lattices require q & 3, 4, and 6, respectively.

In the scaling regiIne on the sc lattice Nq for q = 3, 4, 5
approach power-law decays with exponents close to —1/3
in the scaling regime (Fig. 8). This can be easily under-
stood &om the scaling hypothesis, which predicts a single
length B characterizing the domain size, indicating that
domain walls occupy a fraction 1/R of the systein vol-
uine [5]. For R much bigger than the lattice size and the
domain wall thickness (thermal correlation length), the
&actions of the domain wall regions made up of q = 3,
4, and. 5 sites shouM be independent of B. Thus they
should each decay as t ~ . If we add to this conclusion
the conservation law, we see that N6 must approach its
final equilibrium value as t

V. CGNCLUSIONS

The main result of this paper is observation of a do-
main growth exponent n = 1/3 following a quench from a

disordered state, in a spin-conserving 3D dynamical Ising
model. This has been done by the use of an alternative
type of MC dynamics, which, compared to Kawasaki dy-
namics, has identical bulk diffusion and suppressed sur-
face diffusion. We have also presented data for the 2D
square-lattice dynamical Ising model. At low tempera-
tures, transport processes are highly activated, leading to
a postponement of the scaling regime to a time e q ~,
where q* is a number that depends on the lattice struc-
ture. On the 3D sc lattice, q' = 3, and the resulting
very long delay of the scaling regime at low tempera-
tures explains why n = 1/3 was not previously observed
in simulations of that model.

In 2D our alternative dynamics produce late-time do-
main growth in excellent agreement with that observed
by Amar and co-workers [12,24], supporting the assump-
tion that scaling properties of growth processes (e.g. , the
I SW domain growth law and the scaled structure fac-
tor) should be independent of details 'of the microscopic
dynamics. In addition to the t ~ domain growth law,
we find the same time scale exp(8 J) for the onset of the
scaling regime and essentially the same structure factor,
as observed by Amar and co-workers [12,24]. The struc-
ture factor behaves according to the dynamical scaling
hypothesis, satisfies Porod's law at large wave numbers,
and has the same power-law behavior [S(k) k2 s] at
small wave numbers. All of these properties of the late-
time growth are the same for quenches to 0.01T, 0.1T,
and 0.6T .

We also studied the same-site two-time autocorrelation
function during the final power-law growth regime in 2D,
and we found. that it has a power-law decay with expo-
nent An = 1.0 + 0.1. As long as both times were in the
scaling regime the same exponent was observed, for all
annealing temperatures and for both 256 and 512 lat-
tices. Yeung, Rao, and Desai [17] have derived the bound
A & (4+8) /2: our results are consistent with this expres-
sion with the inequality changed to an equality. It wouM
be interesting to see if the generally good agreement be-
tween our dynamics and Kawasaki dynamics could be
extended to the autocorrelation exponent.

In 3D, we find n = 1/3 domain growth for annealing
temperatures &om 0.01T to 0.7T . Our study of other
aspects of the ordering process has led to only crude re-
sults because we were limited to lattice sizes of 128,
and two annealing temperatures. Even so, a big differ-
ence between the structure factors at these two annealing
temperatures is apparent. At 0.6T, the scaled structure
factor is converging to a form independent of time in
accord with the dynamical scaling hypothesis. At large
wave numbers, we observe Porod's law. We were unable
to estimate the low-wave-number k dependence of the
structure factor at 0.6T .

For an annealing temperature of 0.1T, we observe un-
expected behavior of the structure factor. The overall
shape of the stucture factor at 0.1T is very different &om
that at 0.6T„andthe tails of S(k) satisfy dynamical scal-
ing while the central peak does not. Porod's law holds
in the large wave nuxnber tail while S(k) A:

' at small
wave numbers, results reminiscent of our 2D study.

These unexpected. results obtained at T = 0.1T sug-
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gest further exploration on a larger, faster computer in
order to see if dynamical scaling holds at later times,
deeper into the scaling growth regime. But, dynamical
scaling is so blatantly violated that it is difficult to see
how it could be restored during the additional annealing
tiine (a decade or so) that could reasonably be studied.

We also studied the two-time autocorrelation on the
3D sc lattice. Again we have observed a large difFerence
between anneals at 0.6T and 0.1T . At 0.6T we have
found a power-law decay of the same-site autocorrelation
function, and if both times are in the scaling regime we
find an exponent of An 0.8. The true exponent may
be somewhat larger as we have only been able to obtain
data near the beginning of the scaling regime, and a slow
drift of An to larger values with increasing to is consistent
with our data. At the lower annealing temperature of
0.1T in 3D we observe An 0.5. This is quite different
&om the independence of An on annealing temperature
observed in 2D in the scaling regime, and deserves further
study. The 3D two-time autocorrelation exponents at
0.1T strongly violate the bound A ) (4+ d)/2 of Yeung,
Rao, and Desai [17].

These qualitative difFerences in dynamical behavior in
3D are plausibly related to qualitative differences in equi-
librium properties of the interfaces at T = 0.1T and
T = 0.6T; the equilibrium interface roughening transi-
tion is at TR = 0.542T, [28]. During growth, equilibrium
is reached on length scales comparable to the domain size
B; i.e., for T & TR, we can expect patches of interface
of radius B to be microscopically Hat and oriented (this
effect is very clear in pictures of our domains). Growth
for T ( T~ should therefore have a structure factor S(k)
which depends on direction of k; by contrast, for T ) T~
we can expect S(k) to be isotropic. Growth above and
below the roughening transition should thus have differ-
ent spherically averaged structure factors, and most likely
different autocorrelations.

A. Dynamic Ising models vs model B

Our results suggest that there may be basic differences
between domain growth in dynamical Ising models and
in model B. In 2D, dynamical Ising models have scaled
structure factors with k'2S(k) = (k/k') at small k,
in confIict with simulations of model B in 2D at zero
temperature [10) which find k' S(k) = (k/k') at small
k. Yeung has noted that at finite temperature model
B should have k'2S(k) = (k/k') over a range of k/k'
which goes to zero as either of k* or temperature go to
zero. One might therefore argue that MC studies observe
a fictitious efFective exponent because of the crossover
between the k and k behavior near k = 0. Our result
that an increasing range of (k/k') behavior is found
at late times even at very low annealing temperatures
(0.01T,) argues against this interpretation.

In 2D, our dynamical Ising model has an autocorrela-
tion exponent A 3, while for model B at zero temper-
ature [17] A = 4. Again one might argue that 5122 2D
Ising systems are not large enough and have not been run
long enough to study the scaling regime. An alternative
is that the scaling properties of dynamic Ising models
difFer &om those of model B in 2D.

In 3D our dynamical Ising model results indicate that
properties of late-time (B ti~s) domain growth depend
on annealing temperature. At 0.6T we see a structure
factor that is converging to a form satisfying dynamic
scaling, as has been observed for model B [11], and in
experiments on binary alloys where t ~ domain growth
occurs [1]. At 0.1T, a difFerent structure factor and dif-
ferent autocorrelation exponents were observed. No sim-
ilar annealing temperature effects have been observed for
model B.

In the absence of an analytical theory of domain
growth, we feel that we should keep an open mind about
exactly what the connection is between model 8 and MC
dynamics, and either model's relevance to experiments.
This question might alternatively be addressed by (a)
experimental studies of the structure factor and autocor-
relation exponent in 2D for polymer films [29] or sur-
factant layers [30] to see if results closer to model B or
dynamic Ising models are obtained; (b) theoretical stud-
ies of model B at finite temperature (most of the detailed
studies of model B [10,11,17] have been done at zero tem-
perature) to check whether some of the efFects we observe
might be caused by thermal fIuctuations.

A final point is that our method for simulating acti-
vated kinetics should be useful for the study of a variety
of problems. We have developed a related model with
enhanced surface diffusion which is tailored to the study
of equilibrium crystal shapes [31]. Our method could also
be effective in studying nonequilibrium crystal shapes or
other interfacial kinetics. It is straightforward to account
for surface fields in order to model nonequilibrium wet-
ting kinetics, spinodal decomposition near surfaces, and
lattice-gas kinetics in porous media. Ising models have
mell-known equilibrium phase diagrams and are prefer-
able to Langevin equations for these types of studies.
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