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The system of one harmonic oscillator interacting with a continuum is studied. The problem
is solved for two cases: the exact (full) Hamiltonian and the truncated Hamiltonian [the rotating-
wave approximation (RWA)]. Comparing these two solutions, we formulate the conditions of the
applicability of the RWA. The case in which the solution can be treated as Markovian is also
discussed. The conditions for the existence of discrete levels are obtained. It was shown that
under certain conditions, nonoscillating terms in the solution, leading to the instability of the whole
system, can exist. Such terms cannot be obtained within either the Markovian or the rotating-
wave approximation. Two particular cases of coupling are proposed and the results of numerical
simulations are discussed.

PACS number(s): 05.30.Jp, 03.65.Bz, 63.20.Pw, 32.90.+a

I. INTRODUCTION

In many cases we need to describe physical systems
that can be called "open" systems, that is, the interac-
tion with the environment should be taken into account.
One of the problems of this type is the effect of quantum
damping, when a relatively simple system is coupled to a
continuum: a large number of oscillators or a heat bath.
The analysis of such problems is rather complicated Rom
mathematical point of view and analytical results may be
obtained only in the most simple situations, for example,
for one discrete state, a two-level system, or a harmonic
oscillator.

The traditional way to describe time development of
a system is the master equation. Its principal feature is
neglecting memory efFects, that is, the behavior of a sys-
tem is determined by its con6guration only at the present
time. Of course, this assumption does not always hold;
the usual condition if its validity is the smallness of the
characteristic correlation time in comparison with the re-
laxation time of the system (see, for example, [1,2]). It
was discovered, however, that in some cases this con-
dition is satisfied; nevertheless, memory effects are es-
sential. This means that the Markovian approximation,
which is essential for the derivation of the master equa-
tion, does not hold for such problems.

Another restriction of the applicability of the Marko-
vian approximation is the following. The recently devel-
oped technique of ultrashort pulses allows us to obtain
information about a system at very short times, less than
the correlation time of the system. Obviously, the be-
havior of the system at such times cannot be described
within the Markovian approximation. As a consequence,
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the problem of developing theoretical methods that do
not use the Markovian approximation becomes actual.

The problem of one discrete state interacting with
a continuum, which is closely connected with the phe-
nomenon of autoionization, is well known. It was treated
long ago by Rice [3] and later by Beutler [4] and Fano [5].
The energy spectrum of the combined system is usually
continuous. However, under certain conditions the spec-
trum may also contain an isolated discrete level. Thus
the system may remain on this level arbitrarily long. The
existence of such states and their properties was discussed
by Riess [6], Rosenfeld, Voigt, and Mead [7], and Gelbart
and Jortner [8].

The second problem, the interaction between a two-
level system and a continuum, is also of great interest
[9,25,26]. It is well known that this problem is equivalent
to the tunneling between two wells in a dissipative media.
It was shown by Fain [9] that this system may also have
undamped solutions. In the latter work the conditions for
the existence of new discrete levels were obtained and it
was shown that under these conditions tunneling friction
vanishes. The phenomenon was called SuJ)ertunneling.

One of the most recent reviews of the problem of spin
1/2 interacting with the harmonic solid was done by
Leggett et al. [10]. However, the authors did not discuss
the possibility of the existence of isolated modes.

The third. problem of this type, which will be the sub-
ject of the present paper, is the description of a harmonic
oscillator coupled to a continuum. Unlike most other
problems d.ealing with memory effects, the problem of
the harmonic oscillator has an exact solution. This en-
ables us to use it as a test case that helps to evaluate the
applicability of various approximations.

The problem of the harmonic oscillator was considered
by many authors. The case of weak damping (small cou-
pling) is well developed. The complete analysis was done,
for example, by Louisell [11]. The equation derived by
Louisell was used later in several papers [12—14], where it
was applied to some particular cases. Most of the authors

1063-651X/95/52(3)/2510(12)/$06. 00 52 2510 1995 The American Physical Society



52 MARKOVIAN AND ROTATING-WAVE APPROXIMATIONS. . . 2511

dealt with the Markovian approximation: the system was
assumed to have no memory.

In a recent work of Harris [15] an exactly solvable
model was proposed and the results are valid for an arbi-
trary value of the coupling coefFicient. The author used
a model based on the Hamiltonian of Unruh and Zurek
[16], in which the coupling between a separate oscillator
and the bath is assumed to be independent of &equency
in the whole range of frequencies (0, oo), and obtained the
exact solution, which gives strictly exponential relaxation
of the system. But this model is not self-consistent since
such coupling implies the in6niteness of the average of
operators p2 and q . To avoid this difFiculty the author
has to make a cutoff, that is, to introduce the upper &e-
quency. But then the results can no longer be regarded
as exact, but only as an approximation.

In the past few years a number of works dealing with
the non-Markovian damping appeared, but all of them
discuss only particular cases of coupling. One of the ear-
liest works of this kind was performed by Siisse et al. [17],
in which a specific form of &equency dependence of cou-
pling coefficients was chosen in order to obtain analytical
results. But that form of frequency dependence does not
lead to local modes, so the authors limited themselves
only to the effects of nonexponential relaxation.

It is thus very interesting to discuss the general case
and stress the difference between the results obtained
within and beyond the Markovian approximation. Devi-
ations &om the Markovian behavior cause nonexponen-
tial relaxation and under certain conditions new discrete
states, resulting &om interaction between the oscillator
and the continuum, may appear.

In the above-listed works the analysis was performed
within the rotating-wave approximation. This approxi-
mation was discussed, for example, by Fain [9], but ex-
act restrictions of its validity have not been yet obtained.
When one tries to avoid it, very serious difficulties arise.
Even relatively simple systems, such as a harmonic os-
cillator coupled to a two- or three-level system, require
very complicated mathematical analysis [18,19].

A comparison between the rotating-wave approxima-
tion and. the exact solution for the harmonic oscillator
was presented by Ondrechen, Nitzan, and Ratner [20]
and later by Lindenberg and West [21]. But the authors
did not obtain nondamped solutions and discussed only
relaxation terms.

There is one classical problem that lies very close to
ours. It is the oscillations in a harmonic-oscillator chain
with an impurity [22]. The authors obtained the con-
ditions for the local modes to appear, in the situation

II. CENEB.AL CASE: THE FULL HAMILTONIAN

We write the Hamiltonian of the system in the form

II = woata+ ) u„btb„+ ) (G„b + G'bt) (a+ at),

where the first two terms represent the uncoupled sys-
tem and the environment and the last one their interac-
tion. We can reduce differential equations for each of the
operators a, at, 6„,bt to a system of algebraic equations
by performing the Laplace transform, solve it, and then
carry out the inverse Laplace transform. This derivation
is presented in Appendix A and here we give only the
results.

For the operator a(t), we get the expression

(a(t)) = I(t) + ) e""'Res(zg), (2)

where zg are local modes and I(t) denotes the contour
integral (A12) of Appendix A

when one element of the chain is replaced by a lighter
one, and proved that this leads to the violation of the
ergodic properties of the system.

We are going to choose the coupling coefIicients in the
most general form and avoid using the rotating-wave ap-
proximation. We obtain the terms representing the re-
laxation of the system and discuss when they have ex-
ponential behavior. The conditions for the existence of
local modes are also obtained. It is shown that nonoscil-
lating terms, leading to the instability of the system, may
appear. We show that these terms may exist even in the
cases usually assumed to be pure Markovian. We discuss
why such terms do not appear in a harmonic-oscillator
chain with an impurity, although at a first sight it seems
to be a particular case of our problem. As a result, we
will be able to write more exact conditions for the va-
lidity of the Markovian approximation. In Sec. III the
analysis is repeated within the rotating-wave approxima-
tion. This helps us to discuss the applicability of this
approximation. In Appendix B we propose and discuss
two particular cases that allow us to obtain analytical
results. Finally, we prove a general assertion that within
the exact treatment one cannot obtain a pure exponential
relaxation of a quantum system.

[~o —y' —2~o&(y)] + 4~ox" (y)

4Pg (eiyt e iyt) (~2 y—2)
(y) ,' ( t(0))

[~o2 —y2 —2(uoE(y)) + 4~o2y2(y)
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where
Ca7g

2 1 1
+(y) = —P IG(~) I'

y —u y+u

v(y) = ~IG(y)I'~, (~z, ~2) —~IG(—y)l'x, (—~z, —~~),

(5)

IG(~-) I' = IG-I'~(~-)

The P in (4) denotes the principal value. Here the
functions E(y) and rp(y) are real, E(y) is symmetric, y(y)
is antisyznmetric, and y(y) ) 0 for y & 0.

We first consider this term in the Markovian approxi-
mation. This case corresponds to weak coupling, that is,
E(y) and y(y) are assumed to be small and independent
of y in the vicinity of up. Under this condition we can
expand the integration to the whole real axes and use
the residue theorem. The zeros of the dominator can be
easily found

y = + idp2 —2idpF 6 2iidpp k(idp —E) 6iy.

Hence we obtain the time dependence in the form
e+'~ ' ~ &, the well-known result for the Markovian
approximation.

In Appendix 8 we present some examples and calcu-
late the value of this integral. We will see under what
conditions I(t) has a Markovian type of relaxation.

We now proceed to the second term in (2), the residues.
It turns out (see Appendix A) that if poles exist, they are
either pure real or pure imaginary. Let us consider these
two cases separately.

If the poles have no real part, we get the modes without
damping, that is, isolated modes that may lie only in the
intervals Iyl ( idz or Iyl ) id2 (note that idz may be zero
and id2 infinity; in that case isolated modes cannot exist).

Isolated modes exist if the following conditions are sat-
isfied:

f
4P2 21

IG(~d) I
—d~d ( idp/4,

@PE

IG(~) I'
(d —QJy

1

u+ uq
did ) (idp —idz)/2idp

for the pole in the region Iyl ( idz, (7)

f
ag

IG(~) I'
CO2 —Cd

1

u2+ u
did & (id2 id@)/2idp

for the pole in the region Iyl & id2. (8)

In that case the oscillating terms corresponding to the
local modes have no damping. Hence (a(t)) has no limit
as t —+ oo; this result could not be obtained within the
Markovian approximation.

The contribution to the sum of residues can also be

Coznparing this result with (7) we see that the non-
oscillating term due to this pole appears immediately
after the disappearance of the isolated mode.

We can now describe the whole dynamics of the poles.
When the coupling is not strong enough, none of the
conditions is satisfied and the poles do not exist. As
the coupling increases, two poles appear at the points
+iuq and then approach the origin. The poles reach the
origin when inequality (9) [or the first inequality in (7)]
turns into equality. After this, the poles begin to diverge
&om the origin along the real axes. For such strength
of coupling we obtain two nonoscillating solution: one of
them is decreasing and the other is increasing.

Before we continue, we would like to say some more
words about these nonoscillating terms because they look
rather unusual. Instability of this kind can be obtained
in much simpler cases, even in the problem of two inter-
acting harmonic oscillators. This problem is, of course,
classical, discussed in every book on znechanics (see, for
example, Ref. [24]). Nevertheless, the possibility of the
existence of such solutions is not described there. Let us
look how the instability can be obtained.

If we consider two identical coupled oscillators with the
Hamiltonian

4)JI = -(p'. + p„')+ —'( '+y')+ y,

we will immediately obtain the new &equencies of this
system

2= 2—
(dg = Ct)p —Cl)

2 2
CO2 = 4)P + 0!.

Obviously, if the coupling constant is suKciently large,
u& will be negative, that is, we will obtain a nonoscillat-
ing solution. It should be noted that this solution does
not contradict the law of energy conservation. The os-
cillator takes the energy from the potential energy: the
situation when one of the &equencies becomes imaginary
corresponds to the case when the potential energy is no
longer described by a positive definite form. This means
that the initial equilibrium point is no longer the point of
a stable equilibrium and the infinitely increasing solution
is restricted only by anharmonic terms.

When we consider a large number of oscillators, the
situation is almost the same, but with one difFerence: in
this configuration each oscillator of the thermal bath in-
teracts with only one singled out oscillator with frequency
up. This means that the &equency shift of each of oscilla-
tors in the continuum is too small to give instability (its
magnitude is proportional to 1/n, where n is the number
of oscillators in the bath).

The singled out oscillator, on the contrary, is coupled
to the whole continuum and due to this its &equency

made by the poles with zero frequency. In that case we
obtain two solutions equal in absolute value and difFerent
in sign. The condition for these poles to exist can be
written as

f

GPSS

21
IG(id) I' —did ) idp/4.

~1 QJ



52 MARKOVIAN AND ROTATING-WAVE APPROXIMATIONS. . . 2513

may become imaginary. Physically, this means that only
anharmonic terms, even if they are very small, make the
motion of the oscillator finite.

Compare the results with that for the harmonic-
oscillator chain with an impurity [22]. In the latter case
the nonoscillating terms do not appear. This difference
can be explained in the following way. If we look at the
Hamiltonian of our problem (1), we will see that it is pos-
sible to vary the coupling strength, while the &equency
(dp remains constant. Hence inequality (9) can be satis-
6ed if coupling is sufBciently strong.

On the other hand, the Hamiltonian used by Cukier
and Mazur [22] is

(ii) The discrete levels and nonoscillating terms should
be absent. The solution can be called Markovian only
if the second inequality in (7) and the inequality (8) are
not satisfied. As shown in Appendix B, the discrete level
above ~2 usually appears when the lower one already
exists. Hence the condition of the absence of isolated
modes is

IG(~)I', , & (~o —~i)/4~'
@PE

If this inequality is satisfied but the two sides of it are
of the same order, the relaxation is still nonexponential
because the domain that gives the main contribution to
integral (A12) lies too close to the bounds of the contin-
uum. Hence we should rewrite it as

kyar

2 4o,
(dy = 4)p sin

2(21V + 1)
' m ' k = 1, 2, . . . , 2N,

where m is the mass of the equal mass particle, o, is the
force constant, the interaction coeKcients

1
p~ 2 ~ kms1n 2~+~ ) k = 1)3, . . . ) 2N —1

0, k = 2, 4, . . . , 2N,

the &equency

0 = prado/2)

and p is ratio of the masses of the regular particle and the
impurity. This ratio plays the role of the function G(ur)
in our problem. Varying the impurity mass corresponds
to varying the coupling strength for the Hamiltonian (1).

If we write an inequality analogous to (9), then both
the right- and left-hand sides will be proportional to cou-
pling. It turns out that a pole equal to zero (correspond-
ing to the translational motion of the chain as a whole)
always exist; hence this inequality turns into an equal-
ity for all values of coupling: if we increase the latter,
the two sides of (9) increase together and the condition
of the existence of a nonoscillating solution can never be
satisfied. This problem was also mentioned. by Ullersma
[23], the author did not discuss the consequences of the
case when the Hamiltonian is not positive def1nite.

Now we have all the information that enables us to
write down the conditions under which our solution can
be assumed to be Markovian.

(i) The relaxation term I(t) should have exponential
behavior. It takes place in the well known case of weak
coupling when the following condition is satisf1ed:

IG(~o) I'/~o «1. (10)

This inequality is usually referred to as the only condition
of the validity of the Markovian approximation, although
in the general case this is not so.

where pp and qp denote the momenta and coordinates of
the equal mass particles and P and Q the momentum
and coordinate of the impurity,

IG(~)I', , «(~o —~i)/4~'
CaP 1

(d —Col
(12)

This inequality is independent of (10). The ratio
]G(ur) ~2/uo may be small; nevertheless, the pole ex-
ists, and we cannot use the Markovian approximation.
Some examples illustrating this assertion are given in Ap-
pendix B.

Moreover, a general statement that a quantum sys-
tem cannot possess a pure exponential decay may be for-
mulated. The exponential decay may be obtained only
within certain approximations. In Appendix C this as-
sertion is discussed in detail and its proof is given.

We also want to note the the above results are temper-
ature independent. The initial temperature of the bath
will appear in the formulas when we consider the relax-
ation of higher powers of the operator a: aat, a, and so
on.

In the next section we discuss the rotating-wave ap-
proximation and stress the difFerence between the general
solution obtained above and the solution written within
this approximation.

III. ROTATING-WAVE APPROXIMATION

In this section we repeat the above analysis within the
rotating-wave approximation (RWA). A comparison of
the results will help us to formulate the conditions of
its applicability. Besides, this section is interesting Rom
the following point of view: within the rotating-wave ap-
proximation the problem of an oscillator coupled to a
continuum is identical to a two-level system coupled to
a continuum, discussed by many authors (see, for exam-
ple, Davidson and Kozak [26] (and references therein)
or Fain [9]). Indeed, suppose that the oscillator is on
its second level. If we consider an interaction with a
continuum with the initial number of bosons equal to
zero (for example, the problem of spontaneous emission
of bosons), the only permitted transition is to the ground
state. This means that all upper levels do not affect the
behavior of system. In other words, the dynamics of our
system coincides with that of a two-level system. If we
add counterrotating terms to the Hamiltonian, these two
problems become difFerent: the oscillator can now rise to
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higher levels and the behavior of these two systems will
be different.

We thus see that within RWA two different problems
have one and the same truncated Hamiltonian. Conse-
quently, the analysis presented is useful not only for con-
sidering the harmonic oscillator, but it can also describe
two-level system. (It is known that at the present time
the latter problem cannot be solved without the rotating-
wave approximation. )

This part of our work has something in common with
the works of Davidson and Kozak, who used the rotating-
wave approximation to study the relaxation and the line-
shape of the emitted photon of a two-level system inter-
acting with a continuous spectrum of radiation [25,26].
In Ref. [26] the authors studied the applicability of the
Wigner-Weisskopf approximation and showed that for
small values of coupling coeKcient it gives the same re-
sults as the RWA. The behavior of isolated modes and
deviations from the exponential decay within the RWA
were discussed in [25].

We follow now the technique, presented in Sec. II.
Within the RWA the Hamiltonian (1) is reduced to

II = urpata+ ) (u btb„+ ) G„(b at+ bta) . (13)

The integral part of the solution is given by

FIG. 1. Graphic solution of the secular equation in order
to obtain isolated modes. The rotating-wave approximation.

8(d
P G ((u) & cd2 —(dp in the region y & —~2,

4)g —(d

P G (~) & ~q —up in the region y & —~q
(d y

—(d

(i9)

At this stage we can stress the difference between the
exact and the RWA solutions. First of all, we see that
in the former case the pole in the region lyl & uq dis-
appears as ~q —+ 0, whereas within the RWA it may not
(see Fig. 1). The presence or absence of an isolated mode
is a property that has a strong inBuence on the behav-
ior of the system, so we can use conditions (19) as the
conditions of applicability of the RWA. If they predict
isolated modes, while the exact conditions (7) and (8) do
not (or vice versa), it is obvious that we have to use the
full Hamiltonian. If, for example, (dq ——0, we cannot use
the RWA if

~iyt
x

2 (a(0)) dy,
[~p+y —F (y)]'+ [~ .(y)l'

(i4)

where

F„„(y)= —P G (~) g+QJ

v (y) = G'( —y)xy(-~i, —~2)

and the poles are the solutions of the equation

s + i~p + i F„w„(y) + sgn(x) p„w„(y) = 0 (16)

or

(y) = —(~p+y)

v .(y) =-I~l.
(17)

Since p„„(y) & 0 for all y, it follows that there are no
poles if y E (—w2, —wq); otherwise they have no real part.
We represent this equation graphically in Fig. 1.

The conditions for existence of the poles are:

GPSS

P G (~) &(up,
0 Cd

(20)

CLCt)P G (u) ) (up/4.
(d

(2i)

Hence, if the above inequality is satis6ed, the RWA is
also not valid.

IV. CONCLUSION

that is, when there exists a pole below zero.
If wq g 0 and coupling is sufficiently strong, condition

(19) always predicts a pole, while the exact analysis leads
to the result [Eq. (7)] that there exists a maximal bound-
ary value of the coupling and the pole exists only in the
case when coupling does not exceed it. So the following
restriction appears: the RWA cannot be valid when con-
ditions (19) predict a pole while (7) and (8) do not and
vice versa.

The second difference between the RWA and the full
Hamiltonian is the existence of the nonoscillating terms
that can be obtained only within the exact consideration.
These terms exist if [see (9)]:

D:—F (—ur2) ) u2 —wp in the region y & —w2,
E—:F~ (—ldy) & (dy —(dp in the region y ) —wq, (18)

or, using the expression for F~w„(y),

The conventional way to describe relaxation processes,
such as the interaction between a simple system and a
continuum, is based on the master equation. This equa-
tion is derived by using the Markovian approximation.
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The commonly accepted conditions of its validity are the
smallness of damping in comparison with the oscillator
frequency [see inequality (10)]. The problem of the har-
monic oscillator coupled to the continuum is one of the
simplest models that can help us test the Markovian ap-
proximation because it is possible to obtain for it an exact
solution.

We showed that the usual exponential relaxation takes
place only for weak coupling and only in the case when
the strength of coupling vanishes near the boundaries of
the continuum. The usual condition of the validity of
the Markovian approximation relates only to the behav-
ior of the relaxation term I(t), but it turns out that the
solution may contain terms without damping and even
nonoscillating terms with exponential increase. The lat-
ter leads to instability of the whole system. Obviously,
in that case the behavior changes dramatically. We have
seen that these parts of the solution may exist even for
extremely small values of G2/wp.

We have introduced the additional condition (12).
When this condition is not satisfied, we cannot treat the
behavior of the system as Markovian; both conditions
(10) and (12) should be satisfied if we want to obtain the
Markovian behavior of the system. Moreover, if (12) is
satisfied but the two sides of it are of the same order, the
relaxation is still not exponential.

The second important point of the present work is
the comparison between the solution obtained within the
rotating-wave approximation and the exact one. We have
formulated the conditions under which these two solu-
tions are close, that is, the rotating-wave approxima-
tion is valid. The application of this approximation to
our problem is of independent interest. We showed that
within the RWA the problem under consideration is iden-
tical to that of a two-level system coupled to a continuum.
Hence the results obtained in Sec. III are also valid for
the two-level system.

a, a~, 6„,bt by performing the Laplace transform, we ob-
tain

C'+COO

a(t) = e' a(s) ds
2%i

v+i~ (e" Ui(s)a(0) + Uz(s)at(0)
2%i

+ ) Vi„(s)b„(0)+ V2„(s)bt (0) ds, (A2)

where

s —i~p + B(s)
8 + Ldp + 2z(dpR(s)

(A3)

R(s)
s + Ldp + 2'i&pB(s)

(A4)

8 —ZGPO iG„
8 + Ldp + 22QJpB(s) s + xM~

(A5)

8 —X(dp iG*
s2 + ~pz + 2uupR(s) s —zan„' (A6)

B(s) = —) IG I 8 + ZCdv 8 &~v
(A7)

The integration path lies to the right of all singularities
of the integrand.

To obtain these singularities and use the residue theo-
rem we have to consider function R(s) in detail. First of
all we rewrite it as an integral, setting 8 = x+ iy:

CaP2

B(x+ iy) = i IG(~)l—
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where IG((u„) I' = IG„I'p((u„).
It turns out that R(s) has branch cuts on the imaginary

axes from wi to u2 and from —uz to —wi (in the case
~q ——0 and u2 ——oo, the branch cut covers the whole
axes). Hence

APPENDIX A: FORMAL SOLUTION
FOR THE FULL HAMILTONIAN

We write the full Hamiltonian of the system in the
form:

where

lim R(x + iy) = iE(y) + sgn(x) y(y),

1

y+4)

(A9)

(A10)

H = upata+ ) u„btb + ) (G„b + G„*bt) (a+ at),

(A1)

where the first two terms represent the uncoupled system
and the environment and the last one their interaction.
Solving differential equations for each of the operators

v (y) = ~ IG(y)I'xw(~i ~2) —~ IG( —y)I'xu( —~i —~2)
(A11)

and the crossed integral sign in (A10) denotes the prin-
cipal part. Here the functions E(y) and p(y) are real,
E(y) is symmetric, y(y) is antisymmetric, and y(y) ) 0
for y&0.

Summarizing, we can say that the integral (A2) resides
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in two diferent parts: the integral round branch cuts
[denote it by I(t)] and, if the integrand has poles, the
sum of residues.

1. Relaxation part of the solution

First consider the integral round the branch cuts I(t).
We consider the average value (a(t)),

[We have rewritten (A2) for the average values, assuming
that initially the thermal bath was in equilibrium; hence

'o»=o]
The integrand has two branch cuts: one from —u2 to

—uzi and the second Rom ui to u2 Us.ing (A3) and (A4)
and the notation (A10) and (All), we arrive at

[~o —y' —2~oF (y)]'+ 4~o V '(y)
1 ~' (ei"~ —e i"

) (m —y )+— ~(y), , 2', , (~'(0)) dy.
[~0 —y' —2~oF(y)] + 4~0%'(y)

(A12)

2. Discrete levels

Now we consider under what conditions functions U;
and V; have poles and calculate residues in these points.
The poles can be found &om the equation

8 + M + 2xlaJpR(8) = 0.

Separating the real and imaginary parts in R(s), we ob-
tain

R(x + iy) = xyFi(x, y) + iF2(x, y). (A13)

It can be easily seen that Fi(z, y) ) 0 for any x, y;
F2(zy) ) 0 for y & wi and F2(xy) & 0 for y
uz+x . Then,

function for IyI & ui and IyI ) a2. Its approximate be-
havior is presented in Fig. 2, where the left-hand side of
(A16), the function f(t) = (urp2 —y2)/2up, is also dis-
played. The intersection points of these two curves give
us the locations of isolated modes and we can now write
down the conditions of their existence.

It is easy to show that A = F(0) ) 0, B = F(ui) ) 0,
C = F(ur2) & 0, and F(oo) = 0. [B or C or both can go
to infinity. This depends on the behavior of G(w) near
the points y = ui and y = ur2. If, for example, G(uri + 0)
and G(u2 —0) tend to zero, B and C are finite. ]

Hence isolated modes exist, provided the following con-
ditions are satisfied:

A ( f(0), B ) f(uri)

y + ct)p 2woF2 (x) y): 0)

zy[1+ ~oFi(x, y)] = 0.
(A14)
(A15)

for the pole in the region IyI (ui,

»nce Fi(z, y) ) 0, there are only two possibilities to
satisfy equation (A15): x = 0 or y = 0. Hence, if poles
exist, they are either pure real or pure imaginary. Let us
consider these two cases separately.

3. The solution +=0: Poles without damping

As we have already seen, lim ~p xF2(z) is nonzero if
IyI 6 (~i, u2), that is, Eq. (A15) cannot be satisfied for
such y. If IyI & ~i or IyI ) ~2, we may omit the sign of
principal value, since no singularities remain now on the
integrating path, and rewrite (A14) substituting (A10),

f
4Pg 21

IG( )I' —d~ & ~o/4
(d

f
Ca)2 1

IG(~) I'
(d —(dy 4) + (dy

did ) ((do —(di)/2(dp

for the pole in the region IyI ( uri, (A17)

C & f(cu2) for the pole in the region IyI ) w2,

or, using the expressions for A, B,C, and f (ug)

~o —y = 2~o IG(~) I

2 — 2= 2(d d&

@PE

(A16)

If this equation has solutions, we obtain isolated modes,
that is, oscillating terms without damping. Although we
do not know the exact values of function G(w), some
general results can be obtained.

We can see from Eq. (A10) that R(y) is a monotone
FIG. 2. Graphic solution of the secular equation in order

to obtain isolated modes. The general case.
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1

4aJ2 + (d
du) ) ((u2 —(up)/2(up

We can see that F(ui) = +oo and F(u2) = —oo. So
the condition of the existence of the isolate mode below
caiy ls

for the pole in the region!y! ) u2. (A18) G & Gp ——
4Pp

4 ln!(u2/uzi!
(B2)

If isolated modes exist, the oscillating terms correspond-
ing to them have no damping. As a consequence, (a(t))
has no limit as t ~ oo; this result could not be obtained
within the Markovian approximation.

4. The solution y=o: Poles with zero frequency

In this case we perform similar operations and obtain
the following equation for the poles:

and the mode above cu2 exists always. When the coupling
constant G exceeds Gp, the isolated mode turns into two
nonoscillating terms, as described above. It follows that
if uz ~ 0 then Gp —+ 0, that is, there always exists the
nonoscillating solution.

As a second example we take the parabolic profile of
coupling that has a maximum between cuq and u2, van-
ishes at cuq and u2, and identically equals zero for y ( uq
and y ) u2. Inside the interval (~i, u2) we describe this
pro6le as

~,'+ x' = 2~, !G(~)!'
(d +X (A19)

Similar to the previous analysis we can formulate the con-
ditions of existence of the. poles. It turns out that there
are only two solutions of this equation, equal in absolute
value and difFerent in sign [since (A19) is a quadratic
equation in x]. As the left-hand side of (A19) increases
in x and the right-hand side decreases, we obtain the
condition for the intersection to take place

G2

&2 —(dp 4)p —(d y

(d2 —gx! ~i —(u2 + (y —~i)(y —ru2) ln
4O] —g

F(y) =—

[The constant factor ((d2 —ldp)((dp —Mi) was added to
normalize the expression: the value of G(w) at the point
u = up is now equal to G.]

Functions F(y) and y(y) take the form

f
CaPg 21!G((u)!'—der ) ~p/4.

4P1

(A20) +(y+ u, )(y+ (u, ) ln !~2+y
)

~i+y ) (B3)

Comparing this result with (A17), we see that non-
oscillating term due to this pole appears immediately
after the disappearance of the isolated mode.

Now we have all the information about the behavior
of the integrand in (A2) and can calculate this integral
by the residue theorem. As already said, our solution
consists of two parts and we can write it down in the
most general form

(a(t)) = I(t) + ) e'""'Res(yi, ) + e ' Res(xp)

+ e "Res(—xp).

APPENDIX B: EXACTLY SOLVABLE MODELS

F(y) = —G ln

G2

v(y) =
&

-G'
0

/g2 ~2
/g2 QJ 2 )

for y g ((ui, (u2)
for y e (—(uz, —(u, )
otherwise.

(B1)

In this section we apply the method presented above
to a number of simple systems [that is, special cases of
the function G(y)] to illustrate the results. As a first
example we consider a constant coupling G inside the
interval (mi, ur2) and zero outside. The functions F(y)
and p(y) in that case take the form

' 4G2(ur2 —y) (y —~i)/((c)2 —cup) ((aIp —wi)
for y C (uzi, (u2)

V (y) = «G'(~z+ y)(y+ ~i)i(~2 —~p)(~p —~i)
fol' y E (—ld2, —ldi)

otherwise. (B4), 0

In the latter case, because of the continuity of G(ur), the
function F(y) is finite at the points y = ui and y = ur2.

Consequently, unlike the previous example, the poles do
not exist if coupling is weak and appear only when it
exceeds a certain value defined by Eqs. (7) and (8).

We would like to mention here once again the review of
I eggett et al. [10]. The authors considered several cases
of &equency dependence of the coupling strength. They
introduced the spectral function J(ur) [an analog of the
function F(u) in our paper] and assumed its f'requency
dependence in the form J(ru) = Aw'e ~ . The case
8 = 1 was called the "Ohmic" case. In these terms the
two cases considered by us are the following. The case of
constant profile of function G(u) corresponds to s = —1
and that of parabolic profile to s = 0.

We performed numerical simulation and obtained the
location of the poles for these two particular cases as
a function of the coupling constant G. The results are
presented in Fig. 3. We choose the following parameters:
ur2 ——1.5uro and ~i = 0.5~o [Fig. 3(a)] and ~i ——0.9~p
[Fig. 3(b)]. The continuous line represents the case of
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0.0 0.5 1.0

Ed/Cdp

0.0 0.5 1.0

FIG. 3. Frequencies of the isolated modes
as a function of coupling coeKcient. (a) The
case ui ——0.5. (b) The case &ui ——0.9. The
continuous line represents the parabolic cou-
pling and the dashed line the constant cou-
pling.

Strength of coupling G

(a)

Strength of coupling G

(b)

the constant coupling and the dashed one the parabolic
coupling.

The relaxation term I(t) can be calculated numerically
by formula (A12). We have calculated this term as a
function of t using different values of the parameters. The
initial values were chosen to be (a(0)) = (at(0)) = 1; wi,
u2, and G were varied. The absolute value of I(t) as a
function of t is presented in Figs. 4(a)—4(d). Figs. 4(a)
and 4(b) relate to constant coupling and Figs. 4(c) and
4(d) to parabolic one.

Figures 4(a) and 4(c) were calculated for wi ——0.5&go

and u2 ——2.0uo and the set of curves on each graph re-
lates to different values of coupling constant G: G =
0.1, 0.3, 0.7. Figures 4(b) and 4(d) were calculated for
uq ——O. l~o, u2 ——5.0~o, and G = 0.1,0.3, 0.5. The con-
tinuous lines represent the solution for the full Hamilto-
nian, and the dashed one for the RWA.

In all the figures we can see the oscillations of (a(t))
as a function of time. These oscillations come from the
finiteness of the upper frequency ~2 and are in good
agreement with the results of Khalfin [28], where they
were discussed.

We know that in the Markovian case relaxation is ex-
ponential. Our results show that deviations from this
law of relaxation appear even for relatively weak cou-

pling, when the isolated modes do not yet exist (see also
Appendix C).

It is interesting to know whether the isolated modes
appear for the parameters used in Fig. 4. Substituting
expressions for the function I" (y) into (7) and (8) we
obtain the conditions for coupling coeKcient G. These
results are summarized. in Table I.

The presence of isolated modes can be easily seen by
examining the starting points of the curves I(t). The
difFerence between I(0) and (a(0)) relates to the total
amplitude of the isolated modes [see Eq. (2)] and this
can be a direct test for their existence.

As we see, for the case of constant coupling the isolated
modes exist always, even for extremely small values of
G2/~o. This fact forces us to use the exact theory rather
than the RWA, although it is commonly accepted that
the validity of this approximation breaks down only for
a strong interaction.

We want to add some words about the applicability of
these two models used for numerical analysis. As known
from the general theory, the profile of coupling multi-
plied by the density of states has some universal features
[27]. It may have singularities in first derivative, which
are the points at which the first derivative tends to infin-
ity. Moreover, the Van Hove theorems (see, for example,

Ch Cl

].0 2.0 3.0
Tl.8

4.0 5.0

Cl

C7

I.O 2.0
Ti.&8

(b)

s.a 4.0 5.0

FIG. 4. Time dependence of the relax:—

ation term I(t). (a) Constant coupling,
~i = 0.5~o, u2 = 2 Ouo. (b) Constant cou-
p»ng, ~i = 0 l~o, ~2 = 5.0tuo (c) Parabolic
coupling, uz —— 0.5&a)p, ~g = 2.0~p.
(d) Parabolic coupling, ui —— O. 1no,

5.0&up. The solid lines represent the
solution obtain for the full Hamiltonian and
the dashed lines represent the solution ob-
tained within the RWA. The coupling coefB-
cient was G = 0.1,0.3, 0.7 for (a) and (c) and
G = 0.1, 0.3, 0.5 for (b) and (d).

1.0 s.a2.0
Ti.F8

I.a 5.0 ).0 2.0 i.a
Ti.ne

(~)

4.0 5.0
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TABLE I. Interval of coupling strength (the ratio G /(do) inside which the local modes or
nonoscillating terms exist. The values of the parameters correspond to the cases presented in
Fig. 4.

Parameters
constant coupling, uq ——0.5, u2 ——2.0
constant coupling, cuq ——0.1, cu2 ——5.0
parabolic coupling, mq ——0.5, ug = 2.0
parabolic coupling, ruq ——0.1, u2 ——5.0

Pole below uq
0 —0.42
0 —0.25

0.13 —0.50
0.28 —0.29

Pole above cuq

0 —oo
0 —oo

0.89 —oo
2.15 —oo

Ref. [27]) state that singular points of that type exist
always. For example, G(~) -+ 0 and ~G'(~)] -+ oo at
the boundaries of the continuum. Neither of our mod-
els satisfies these conditions. So the following questions
arise. To what extent we may trust our model results?
Do the features obtained have universal meaning or are
they only artifacts of the concrete model?

First we consider the behavior of the profile near
boundary points, that is, uq and u2. Within the
parabolic model, G(~) -+ 0 as cu —+ ~i, ~2 and G'(ur)
remains finite. Within the model of constant coupling,
G'(u) becomes infinite at these points; moreover, G(ur)
is not a continuous function there. So the real profile is
somewhere between. these two models. We may expect
that the behavior of the real system will also be between
these models. As one can see by comparing Figs. 4(a) and
4(c) [and 4(b) and 4(d), respectively], there is no essen-
tial difFerence between them. This fact can be an indirect
confirmation of the reliability of our results. Speaking
about singularities inside the profile, one can expect that
they will not afFect much the results, as in all equations
G(u) stands only under the integral sign, and the sin-
gularity of the first derivative is too weak to inHuence
appreciably the integral value.

for a system to be found in some de6nite state, cannot
follow the exponential law of relaxation for all times. We
will also investigate the decay of the mean value of quan-
tum mechanical operators and show that they possess
the same property, provided they are either nonnegative
or nonpositive definite.

1. Relaxation of the density matrix

We first study the behavior of the density matrix. Let
u, v be the index of the dynamic system and o. the index
of the thermal bath. Then the density matrix of the
subsystem is

(CI)

where p„. p is the density matrix of the whole sys-
tem. Thus the density matrix p generally describes
the mixed states even if p . p corresponds to the pure
states. We consider a system described by the Hamilto-
nian

H =Hp+V, (C2)
APPENDIX C: IMPOSSIBILITY

OF EXPONENTIAL RELAXATION

Any physical system is subject to quite general limi-
tations on its relaxation behavior. Such limitations were
considered long ago by Khalfin [28]. However, his results
are applicable only to pure states whereas the relaxation
in most realizable systems is described by mixed states.
We will consider here the general case, including mixed
states. We show that strictly exponential relaxation can-
not be realized in physical systems. The principal corol-
lary of this assertion is that any model in which such a
relaxation is obtained as an exact solution is not physi-
cal. The result derived here can be used. as a general test
for verifying the physical feasibility of relaxation theories
and models. Of course, this does not prevent one from
getting exponential decay as an approximate description
of relaxation (see, for example, [29], Chap. 8).

All the results presented here are based only on the
semifiniteness of the energy distribution density tv(E),
that is, that the energy spectrum is bounded below by
some value Ei, which, without losing the generality, may
be set zero. It is obvious that any real physical system
possesses this property. We will show that the diagonal
elements of the density matrix, that is, the probability

where Ho is the unperturbed Hamiltonian and V is the
interaction energy. The density matrix p in the Ho rep-
resentation can be written as (see, for example, Ref. [9])

p = ). sos:I.p (o)s M .*M '' '
( )

where S is a unitary matrix that connects the density
matrix in the Ho representation with the density matrix
in the H representation, ELM ——EL —EM, Rl and E~
are the eigenvalues of the Hamiltonian H, and p„„(0)is
the unperturbed density matrix.

As shown below, we need for our consideration only the
diagonal elements of p, which represent the probability
for the system to be found in a correspondent state:

). s„,s„',»„.„(0)s„sM e % (c4)

Let us transform the initial density matrix p„~„~(0) to
the diagonal form. It can be done by a unitary matrix T:
p(0) = T*p(0)T, where py~(0) = per, (0)by~. Then p(0) =
Tp(0)T' or p„„(0)= Q„T„gpgi, (0)Ti',„,. Substituting
this into (C4), we obtain
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S„I,S*,IT„k pai, (0) S„MS„*MT)„,

(c5)

to (C8), we can see that p„„(t) possesses the same prop-
erty. This means that pure exponential decay for a real
physical system can never take place.

Separating the summations with respect to k; u', L; and
v', M, we get 2. Relaxation of operators

u', L

) vM uM
(v', M

(C6)

The mean value of a quantum mechanical operator A
can be written as

(c12)

In the last sum we replace v' by u' and M by L and notice
that the expression in the second set of large parentheses
is the complex conjugate of the expression in the erst set
of large parentheses. Denoting the latter by F„i,(t) we

can write

p„„=) pgi, (0) F„i,(t) (C7)

We need to prove now that p~„, the probability for the
system to be found in the state u, tends to zero as t —+ oo
more slowly than the exponential function. This means
that we should evaluate p „&om below.

Since all the values of pgi, (0) that figure in expression
(C7) are positive, we can always find an integer K such
that 0 ( A = p~~(0) ( pi, i, (0) for any k. Hence

(A(t)) = ) Aggpi, g(t). (c13)

As A is now in the diagonal representation, the numbers
A~A, are its eigenvalues Ag. Assume now that A is a non-
negative definite operator. Then all its eigenvalues are
non-negative and we can use the same reasoning as in
the preceding section. Let A be the minimal nonzero
eigenvalue of A: AI, & A. Then

(C14)

Since A is independent of time, we can always transform
it to a diagonal form. This gives us the possibility not
to take into consideration off-diagonal elements of p(t).
Thus, assuming A to be diagonal, we obtain

(C8)

Let us now analyze F &(t) for a fixed k. Denoting

P„,S„*,l T„ i, by SL,y we obtain

F„g(t) = ) S„I,SL,„e '"''.
L

(C9)

Passing &om the sum to the integral we can finally write

(C10)

where ui„i, ((u) = S„((u)Sg((u).
It follows &om the theory of the Fourier series that

the Fourier transform of the function with a bounded
carrier cannot be an exponential function. Indeed, by the
theorem of Paley and Wiener [30] and since the function
iii„y(m) is zero for negative u, its Fourier transform F„i,(t)
should satisfy the inequality

f in ~F„i,(t) ~ dt ( oo.1+ t2 (Cl 1)

One of the principal corollaries of this condition is that
~F„q(t)

~

cannot obey the exponential law of relaxation for
all times. Indeed, if ~F„i,(t)~ is an exponential function
for t -+ oo, then integral (Cll) diverges. This means
that ~F„g(t)~ should vanish more slowly than the expo-
nential function, at].east as e ~ ~~" ~, o. ) 0. Returning

Using the above results concerning the time dependence
of pI, A, , we come to the conclusion that a quantum me-
chanical operator cannot obey the exponential law of re-
laxation, provided it is non-negative definite. (The same
assertion obviously holds for nonpositive definite opera-
tors. )

We cannot prove the same property for operators that
are neither non-negative nor nonpositive definite. Indeed,
in this case not all Ai, are of the same sign and (C13) is not
a series of only positive or only negative numbers. Hence
it may vanish faster than each of its terms, and nothing
can be said about the behavior of such operators. Al-
though the requirement that the operators should be ei-
ther non-negative or nonpositive definite is rather strong,
many quantum mechanical operators satisfy it. For ex-
ample, it is so for the operator of energy, population n,
angular momentum L, and the squares of all the other
operators (such as p2, q2, etc.).

We want to recall here that we deal with the exact so-
lution and all the statements of this reasoning relate to
this case only. Obviously, an exponential relaxation may
be obtained as an approximate solution of a problem.
The result obtained here can serve as a criterion for the
validity of results in the relaxation theory. The situation
may be compared to the usage of thermodynamical pro-
hibitions (like the impossibility of achieving temperature
equal to the absolute zero). On the other hand, our re-
sult does not say anything about; quantitative d.eviation
from the exponential behavior in any specific model.
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