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Decoherence in quantum systems which are classically chaotic is studied. The Arnold cat map
and the quantum kicked rotor are chosen as examples of linear and nonlinear chaotic systems. The
Feynman-Vernon inHuence functional formalism is used to study the effect of the environment on
the system. It is well known that quantum coherence can obliterate chaotic behavior in the corre-
sponding classical system. But interaction with an environment can under general circumstances
quickly diminish quantum coherence and reenact classical chaotic behavior. How effectively decoher-
ence works to sustain chaos, and how the resultant behavior qualitatively differs from the quantum
picture, depend on the coupling of the system with the environment and the spectral density and
temperature of the environment. We show how recurrence in the quantum cat map is lost and
classical ergodicity is recovered due to the effect of the environment. Quantum coherence and dif-
fusion suppression are instrumental to dynamical localization for the kicked rotor. We show how
environment-induced effects can destroy this localization. Such effects can also be understood as
resulting from external noises driving the system. Peculiar to decohering chaotic systems is the ap-
parent transition from reversible to irreversible dynamics. We show such transitions in the quantum
cat map and the quantum kicked rotor and distinguish them from apparent irreversibility originat-
ing from dynamical instability and imprecise measurements. By performing a time reversal on and
following the quantum kicked rotor dynamics numerically, we show how the otherwise reversible
quantum dynamics acquires an arrow of time upon the introduction of noise or interaction with an
environment.

PACS number(s): 05.45.+b, 05.30.—d, 05.40.+j

I. INTRODUCTION AND SUMMARY

A. Quantum versus classical chaos

The problem of quantum chaos has been intensively
studied in the recent decade [1—11]. Although the precise
criteria for quantum chaos are still not well established
at this stage, the salient features of a quantized classi-
cally chaotic system are better understood than before.
In classical dynamics, chaos appears as the result of in-
stability caused by nonlinearity or the compactness of the
phase space, as manifested in the quantum kicked rotor
and the Arnold cat map [6], two examples we will discuss
in this paper. The degree of instability can be measured
by the exponential rate of separation of initially infinites-
imally close intervals, namely, the Lyapunov exponent.
When this local instability occurs for the entire phase
space, global chaos sets in. Ergodicity thus generated is
one of the basic criteria for the validity of equilibrium
statistical mechanics. (Infinite repetition of stretching
and folding in the phase space may be the cause for the
generation of self- organized structures in the microscopic
world. )

In looking for similar phenomena in quantum systems
one encounters basic difFiculties. To begin with, the very
concept of trajectories which is used to define classical
chaos is meaningless in quantum mechanics. The equa-
tions of motion in quantum mechanics are linear. Seeking
nonlinear eH'ects in these linear equations as well as us-

ing concepts of determinancy in a theory based on prob-
abilistic interpretations are intrinsically prohibitive. The
words "quantum chaos" generally refer to possible traces
or shadows of chaos in the quantum system obtained &om
quantizing the corresponding classical systems which are
known to possess chaotic behavior. The study of quan-
tum chaos is devoted to finding how the classical notion
of instability changes when the system is quantized, and
how such changes can be expressed in the language of
quantum mechanics. For example, fingerprints of classi-
cal chaos may appear as scars in the wave function, as
fl.uctuations in the spectrum, or as di8'usion localization,
etc. [6].

How are these classical and quantal characteristics re-
lated to each other in the correspondence between quan-
tum and classical chaos? There are many criteria of
classicality, an issue whose recent resurgence of interest
is stimulated by developments in many areas of physics
(see, e.g. , [12]). Using the uncertainty principle as one
criterion, we see immediately that there is a fundamental
discrepancy between the definition of chaos and quan-
tum uncertainty [13]. For systems with conservative dy-
namics, the initially infinitesimally separated trajecto-
ries in phase space will exponentially diverge in some
direction and converge in some other direction. This will
soon become incompatible with the quantum uncertainty
principle which prevents one from specifying details be-
tween points in the phase space separated closer than the
Planck constant h. Therefore the fact that many classi-
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cally chaotic systems produce infinitely folded, Cantor-
set structures which can continue to arbitrarily small
scale due to nonlinearity is in conflict with quantum me-
chanics.

In classical mechanics, nonlinearity makes the dynam-
ics sensitive to finer scales, leading to various fractal
structures. However, in quantum mechanics, owing to
the linear nature of Schrodinger's equation, one expects
to see limitations to such fine structures. Quantum ef-
fects are known to smooth out the many-folded trajecto-
ries caused by nonlinearity. In this respect, the quantum
efFect is similar to the efFect of noise on classically chaotic
systems [14]. In fact, one can study the scaling property
from the cia.ssical to the quantum regimes in a system
when h —+ 0 as if the system is subject to some external
noise [15].

B. Classicality as an emergent behavior
of quantum open systems

The above description of quantum-classical correspon-
dence takes the point of view that quantum efFect is a
correction to the underlying classical dynamics, which is
the attitude taken by many works on this subject using
semiclassical approximations. However, this is opposite
to how nature works: most of us would agree that quan-
tum mechanics is the fundamental theory which describes
nature, and classical mechanics is only an approximation
to it.

How classical dynamics arises &om the fundamental
principles of quantum mechanics and how our ordinary
classical experience can be reconciled with the quantum
depiction have been the basic questions asked in the foun-
dation of quantum mechanics and in quantum measure-
ment theory [16]. Although many different explanations
exist, the environment-induced decoherence viewpoint
seems to be one of simple and practical importance [17].
In this point of view, the quantum to classical transi-
tion is induced by the interaction of a quantum system
with an environment. The averaged efFect from coarse
graining the large number of degrees of &eedom is the
diminution of quantum coherence and. the appearance of
diffusion and dissipation in the efFective dynamics of the
system. The decoherence time is defined as

tdec = 1 (Asg~ 5

where p is the damping constant, tg;, ——p is the dis-
sipation time scale, Agg~ = h/+2vrmkT is the thermal
de Broglie wavelength, and bx is the characteristic size
of the system (here we assume a coordinate coupling x).
The decoherence time is usually very short for a bath at
high temperatures. We refer the readers to recent reviews
on this topic [17].

This approach has been applied to problems involving
quantum decoherence in quantum measurement theory,
mesoscopic physics, quantum cosmology, and semiclassi-
cal gravity [12]. However, the quantum and classical cor-
respondence of chaotic systems in terms of environment-

induced decoherence has so far been studied only by a
limited number of authors [18—20].

C. Decoherence, localization, and irreversibility

Noiae and localization

There are many detailed studies of the classical and.
quantum kicked rotor (QKR) model [6]. A particularly
interesting feature of quantum nonlinear chaotic systems
is the localization of wave functions in momentum space
due to quantum coherence [23]. (The word "localization"
here refers to Anderson localization [21], not to the estab-
lishment of b-functional correlation between, say, the mo-
mentum and the coordinate in the realization of the qua-
siclassical state which is sometimes used in the context
of decoherence and quantum to classical transition [22].)
This momentum-space localization of the wave function
is often compared with Anderson localization [21] of elec-
trons in a random potential. Localization in the kicked
rotor is considered to occur by a similar mechanism [24].
If one views classicality as an emergent behavior of a de-
cohered quantum system, then it is of interest to study
the efFect of an environment on localization. Graham [25]
studied the kicked rotor in a harmonic oscillator bath,
and derived a master equation for the open system. His
argument is mainly focused on the efFect of dissipation
induced by the environment. He used a low tempera-
ture approximation and in the zero temperature limit
he claims that the dynamics becomes Markovian. This
rather unusual behavior is due to the special non-Ohmic
environment he used. In general, the Markovian regime
corresponds only to an Ohmic bath at high temperature.
Cohen and Fishman [26] used the inHuence functional
method [27] to study the effect of noise associated with an
Ohmic bath on localization for QKR and a similar model.
They calculated explicitly the difFusion constant and the
relevant time scales in terms of the noise correlation and
the nonlinear parameter. On a related problem, Ott,
Antonsen, and Hanson [28] first showed numerically that
external noise breaks the localization of a wave packet
in the QKR. Cohen also studied the efFect of noise cor-
relations [26]. Naively one does not expect correlations
to play an essential role for chaotic systems because the
memory in such systems is lost quickly. However, in the
quantal case, long range correlations may alter the sit-
uation in a complicated way. In fact it is known that
the appearance of noise autocorrelation depends on the
system-environment coupling.

2. Irrev erai bi li ty

Using a simple linear continuous model, the inverted
harmonic oscillator potential, Zurek and Paz [19]recently
observed that in the presence of noise, the dynamics can
change &om a reversible Liouville-type evolution to an
irreversible one. We show that a similar behavior ex-
ists in the kicked rotor model. For a conserved Hamilto-
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D. Time scales of competing processes

One way to gauge the relative importance of the per-
tinent processes which can inQuence the dynamics of a
quantum chaotic system is to compare their characteris-
tic time scales. Let us start with cases with no interaction
with an environment. There are essentially two di8'erent
time scales involved. One is the Ehrenfest time t~ and
the other is the relaxation time tl. The Ehrenfest time
t~ is defined as the time within which the Ehrenfest the-
orem holds.

bp(0)
tE —ln

A
(1 2)

where bp(0) is the relevant initial (angular) momentum
scale. Violation of the Ehrenfest theorem in the quan-
tal case arises &om the nonlinear terms in the potential
which can be seen in the evolution (Kramer-Moyal) equa-
tion of the Wigner function:

BW(X,p)
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2 (Bp BX
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p

1

(2n + 1)!

(1.4)

where ( j is the Poisson bracket.
The appearance of localization arises &om the discrete

spectrum of the Hamiltonian. Thus the time it takes for
the wave packet to localize is determined by how long it
takes for the system to recognize the discreteness of the
spectrum. A simple argument is given in [23]: Since l
represents the e8'ective number of modes scattered in the
period [0, 2vr], the typical spacing is given by b, ur 2'/l.
Thus after tR 1/Au l, the system localizes. (See
also discussion in Sec. III C.)

Upon interaction with a bath, a system electively de-
coheres at the decoherence time scale t~„(l.l). Another
time scale t~ arising &om the coarse graining appears
which also contributes to the violation of the Ehrenfest

nian chaotic system, volume conservation causes a wave
packet in phase space to contract exponentially in one
direction. Without interaction with an environment, the
other source of irreversibility intrinsic to chaotic systems
arises &om the limitation of actual measurements. For
example, the classical kicked rotor behaves essentially ir-
reversibly due to the instability of trajectories. How-
ever, in the quantal case, the system characterized by
the quantum state becomes highly stable in spite of the
nonlinearity of the Hamiltonian [32]. When this system
interacts with an environment, there exists a sharp tran-
sition &om a quantum reversible conservative stage to a
classical irreversible stage. Irreversibility arising &om fi-
nite precision associated with physical measurements will
be replaced by irreversibility arising &om coarse graining
the environment.

theorem. As discussed in [19], it determines the transi-
tion regime &om the reversible classical Liouville dynam-
ics to the irreversible dynamics embodied in the Second
Law of Thermodynamics.

From our study, this picture also holds for the kicked
rotor. In this case, we see the transition from the ini-
tial constant-entropy regime to the entropy-increasing
regime. Because of the compactness of the space, we
see entropy does not increase forever but will eventually
saturate. After t~, the evolution is no longer unitary.
(Note that even if the evolution of the Wigner function
is the same as that of the classical Liouville distribution
function before t~, one should not regard the system as
in a classical state. (As shown in the examples of [33],
the Ehrenfest theorem is neither necessary nor sufBcient
to define classicality. There are systems which evolve
strictly quantum mechanically but the expectation val-
ues of the canonical variables obey classical equations;
and there are models which do not satisfy the theorem
but their evolution is essentially classical. )

Dynamical localization is completed at the relaxation
time tR. At decoherence time td, , coherence is destroyed
up to the localization length. If tg )) t~, suppression
of momentum diffusion due to quantum effects always
exists and we will never see the classical state.

It is known that the evolution of the kicked rotor is
not time reversible, while its quantized version is time
reversible. This type of quantum stability is also consid-
ered to be one of the characteristics of quantum chaos.
In a quantum system, irreversibility arising from limited.
precision in a measurement now no longer causes serious
loss of information. Instead, interaction with a bath in-
troduces the irreversibility due to the coarse graining for
the quantal case.

In this paper, we study the quantum dynamics of two
simple models which possess classical chaotic behavior,
the Arnold cat map and the kicked rotor. By introduc-
ing linear coupling with a harmonic oscillator bath as-
sumed to be Ohmic and at high temperature, we show
how the effective dynamics of a quantum open system
reveals the well-known classical chaotic behavior. In Sec.
II, we examine the quantum cat map (QCM) of a system
coupled to a harmonic bath. The system is known to
be chaotic when the corresponding matrix for the map
is hyperbolic. We use the inBuential functional method
to study the effect of the environment on this system.
By measuring the linearized entropy we show that the
decoherence mechanism works more eKciently than the
regular case, namely, the rate of decoherence is faster in
the chaotic system. Decoherence rate in chaotic systems
was also studied by Tameshitit and Sipe [18]. Peculiar
to the quantum case is the recurrence behavior of phys-
ical quantities, resulting from the finiteness of the phase
space points in the quantum map due to the quantization
(because the phase space is periodic in both the coordi-
nate and momentum). We show that interaction with an
environment erases the recurrence in the hyperbolic map
but not in the elliptic map. Thus both cases behave close
to the corresponding classical limit.

In Sec. III, we examine the quantum kicked rotor as
a prototype of nonlinear chaotic systems. Without inter-
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action with a bath, the wave function shows localization
arising &om quantum coherence eKects. Loss of coher-
ence due to interactions with an environment shown by
the decay of the ofF-diagonal components of a reduced
density matrix is responsible for the breaking of localiza-
tion. The decay rate increases as the noise strength asso-
ciated with the environment and the nonlinear parameter
get larger. In Sec. IV, we examine the transition &om
reversible to irreversible dynamics intrinsic to an unsta-
ble system due to its interaction with an environment.
We show that the same mechanism holds for both the
cat map and kicked rotor. For both cases, the entropy
shows saturation possibly due to the bounded nature of
the phase space. Furthermore, we perform time reversal
numerically and show how the interaction with an envi-
ronment changes the nature of irreversibility. Details of
results can be found at the end of each section.

case, T is elliptic, the motion becomes periodic, and no
sensitive dependence on the initial condition is observed.
When T is hyperbolic, the motion becomes chaotic.

The quantized cat map is studied in detail by Hannay
and Berry [35]. Due to the periodicity and thus the dis-
creteness of both phase space variables, the area of the
torus is characterized by a discrete Planck's constant,

h = 2vr/JV, (2 2)

where JV is the number of sites in both the coordinate and
the momentum directions in phase space. Because of this,
quantum dynamics defined by the cat map is considered
to describe quantum resonance. This is, however, not a
generic feature for other systems which have continuous
phase space.

The action S(q&+z, Qz) for this linear map is easily
constructed &om conditions

II. DECOHERENCE IN A LINEAR MAP ~~(4+~ 4) ~ ~~(q'+~ Q~) p

A. Quantum cat map Combining (2.1) and (2.3) gives

The cat map is a linear area-preserving map T on a
two-torus in phase space formed identifying the bound-
aries of the interval [0, 2vr] in both the coordinate Q and
the momentum P directions [34]. From time step j to
j+ 1, it is given by

(2.1)

where det T = l guarantees area preservation. The de-
gree of chaos depends on the choice of T. The eigenvalues
of T are either both real or both imaginary. In the latter

~(qz+~ Q~') = —(oq& —2Q~Q~+~ + dq&+i) . (2.4)

Before imposing the periodic boundary conditions, the
propagator is

1 fiNI ~

U(q&+i, Q. ) = —
~ I

xp (aq,' —2Q, Q, +i
2vr ( 6 ) 4~6

+ Q+1) (2 5)

With periodic boundary conditions, one needs to sum
over all equivalent initial points, yielding

exp [a(q~ + 2vrm) —2(q~ + 2vrm)q~+z + dQ +z]47t.h

1

&(Q,+,Q)= —
( l )

m= —oo

= C(T, A) exp [aq, —2Q, Q~+q + dQ +, ]4~6 (2 6)

where C(T, A') is a constant depending on the form of T
and A'.

In fact, C(T, JV) vanishes in many choices of T and
this sum gives a nontrivial value for the propagator only
if the matrix has a special form. We choose

T2, the propagators take on the simple form

Z

U~(j + 1,j) = —exp ——Q~q~+g (2.9)

for the elliptic case, and

(2.7) U, (j+ 1,j) = 2 2~exp &(Q, —Q&q&+i+Q, +i)

(2.10)

(2 8)

for the hyperbolic case.
For these special choices of the matrix elements T~ and

Since each iteration describes a permutation among sites,
each site belongs to a periodic orbit. Thus quantum evo-
lution follows the classical dynamics, resulting in a recur-
rence of the wave function (or equivalently, of the Wigner
function) [35].
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B. Decoherence in the quantum cat map

We now couple the system to a bath of N harmonic os-
cillators linearly. (Nonlinearity in the coupling could en-
hance the interaction between the systems and the bath,
as one mode in the system is coupled to many different
modes in the bath. One thus expects that this increased
degrees of &eedom would help to decohere the system
more eKciently than in the linear coupling case. Nonlin-
earity in the bath seems to have a similar effect [36].) The
Hamiltonian of the bath of oscillators with coordinates
q and momentum p (n = 1, ..., N) is

(2.ii)

The interaction Hamiltonian between the system Q and
the bath variables q is assumed to be bilinear,

N

IIc=) & Qq, (2.12)

where C is the coupling constant of the nth oscillator.
Integrating out the bath variables, we get the reduced

density matrix,

N

p„(Qt, Q,', t) = f a=1
+S~(q-) —S(Q') —Sc(Q' q.')
—S~(q.')I

dq dq' exp —[S(Q) + Sc(Qt q~)

(2.i3)

where 8 is the classical action of the system de6ned in

(2.4) and S~ and Sc are the actions for the bath and the
coupling, respectively. The evolutionary operator J for
the reduced density matrix Rom time step j to j + 1 is

J (Qg+~ Q,'+i
I Q~ Q,

' t)

DQDQ' exp —[S(Q) —S(Q') + A(Q, Q')] (2.14)

in a path-integral representation [27,37—39], where

t 8

—A(Q, Q') = — ds ds'r(s) [ i p, (s——s') R(s')
h2 0 0
—V S —S P 8 (2.i5)

is the influence action. Here r—:—(Q —Q'), R = —(Q +
Q'), and p(s), v(s) are the dissipation and noise kernels,
respectively [39].

If we consider the simplest case of an Ohmic bath
at high temperature kT & AA )) ~, where A is
the cutoff frequency for the bath [37], and consider
times shorter than the dissipation time, then we ob-
tain a Gaussian form for the infj.uence functional, with

&A(Q, Q') = —
&, P. r where the noise kernel be-

comes local, v(s) = 2Mpl(;Th(s), p is the damping coef-
ficient. Because the chaotic trajectory washes out infor-
mation about the past rapidly, we expect that memory
effect would be less important in classically chaotic sys-
tems than classically regular systems. Nevertheless, in
the quantal case in which the classical stretching and
folding behavior is suppressed, it would still be interest-
ing to study how the non-Markovian behavior competes
with nonlinearity [26]. We will discuss this issue in the
next section. The unit-time propagator becomes

J(Q+e, Q'+,
I Q, , Q') = (~ (Q+i, Q'+, I Qt, Q', , 6)) = (ex0 0(+(Qei, Q )

—+(Q'+i, Q') + tt'e+i)) (0 t0)

Here $ is a Gaussian white noise given by

2i
(() = 0, (exp ge) = exp—2MpkT 2

h2

where () denotes a statistical average over noise realization $.
For the elliptic map, we get

(2.i7)

(i )'J (Q.+ Q,'+ I Q Q,' () =
I y I

2i
exp —( r~R~+g —r~+—gR~ + (r~+q) (2.18)

and for the hyperbolic map,

) 1/2

~-(Q~+i Q,'+i
I Qg Q,

' () =
I ~

2i
exp —(2r~R~ + 2r~+gR~+g —r~R~+g —r~+gR~ + (r~+g) (2.19)

The Wigner function is defined as

W(R, p) = '„I @(R+r)Q'(—R —r) exp[ P"]dr,

(2.2O)

where p is the momentum conjugate to r. The propagator
Kz for the Wigner function is

It 7 (R,+i, p, +. I R~, p~, 6)

(2.21)

g+1) j+1 g & j&
~j ~i+1

2i
x exp —

(p~ r~. —p~+j r~+y) .
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This is reduced to the form of the classical cat map. For
the elliptic case,

pj+1 + (& pg Rj+1 (2.22)

For the hyperbolic case,

R, = 2R,+, —p, +&+(& p, = —3R,+&+2@,+, —

(2.23)

Thus, without the environment, quantum evolu-
tion follows classical permutation [35]. We can
also say that the transformation &om the classical
map to the corresponding quantum propagator T
K~(R~+q, pz+qiR~, p~ , ( = 0. ) preserves the group struc-
ture. When coupled to the bath, the cat map is exposed

4to a Gaussian noise &om the environment in each time
fstep. The phase space is divided by a finite number o

difFerent periodic orbits and the period is known to in-
crease roughly proportional to JV. The discretized noise
induces transition between di6'erent periodic orbits in an
irregular way. As a consequence, the recurrence of the
physical quantity will disappear in the quantum map and
the classical type of mixing is regained.

Figure 1 shows Trp„, the linearized entropy (with the
reversed sign) for various cases. If there is no interac-
tion with the environment, the entropy is constant for
both the regular and chaotic cases. When interaction sets
in, Trp„decays exponentially, showing that the system
rapidly decoheres. There is no recurrence of this quantity
observed. In spite of the discreteness of the points on the
torus, we expect that the system behaves classically due

to the inhuence of the environment.
Note that a regular system also decoheres in a similar

manner, albeit with a slower rate [18]. These results indi-
cate that if the underlying classical system shows chaotic
behavior, even after quantization, the system still pos-
sesses the mixing behavior. This mixing property en-
hances the random perturbations &om the environment,
thus accelerating the suppression of quantum interfer-
ence. However, in this particular example, the dynamics
is essentially classical as is seen in (2.22, 23) (in this case,
the value of h comes in through the number of sites JV).
More general cases should be examined.

In Fig. 2, we show the mean displacement of points
in the phase space &om the initial con6guration as a
function of time. This is defined by I = g(Ax2+ Ep2),
where Lx and Lp are the displacement Rom the initial
phase space points, () is the average over the phase space
points and noise realizations. In the chaotic case, we see
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FIG. 1. The linearized entropy (with opposite sign) is plot-
ted against time. If there is no environment, the entropy is
constant for both the hyperbolic and elliptic cases, indicat-
ing the purity of the state (dotted line). For the hyperbolic
map, even though classically this system is strongly chaotic,
the corresponding quantum system does not show chaotic be-
havior. This situation changes drastically when the system
interacts with a thermal bath. In this case, the entropy due
to coarse graining keeps increasing. Note that in the hyper-
bolic case (solid line), the rate of entropy increase is larger
than in the elliptic case (dashed line). JV = 50 is used here
(also in Fig. 2).
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FIG. 2. The mean phase space point displacement is
shown. When there is no environment (dotted line), the sys-
tem shows recurrence in both the hyperbolic (a) and elliptic
(b) cases. In the presence of an environment (solid line), the
hyperbolic map loses the recurrence behavior under the Gaus-
sian noise with o = 0.08 and maintains a near-constant value,
indicating ergodicity of the classical hyperbolic map. On the
other hand, the elliptic map still shows recurrence with the
same amount of noise, corresponding to the classica period-
icity.
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the recurrence disappears with just a small amount of
noise [Fig. 2(a)], whereas in the regular case, the same
amount of noise does not alter the qualitative picture of
recurrence [Fig. 2(b)]. In both cases, the decohered quan-
tum system behaves similarly to the classical picture in
which the regular and chaotic dynamics are clearly dis-
tinguished. For the elliptic map, the classical dynamics
is completely periodic. For the choice of Tz in (2.7), the
period is 4. On the other hand, for the hyperbolic map T~
in (2.8), the classical dynamics is nonperiodic. In spite
of the discreteness of the points on the torus, the sys-
tem behaves effectively classically due to the effect of the
environment.

XII. NONLINEAR, ITY AND DECQHEHENGE

A. Quantum kicked rotor

The kicked rotor and its map version, known as the
standard map, are one of the most intensively studied
models &om both the quantum and classical points of
view [6]. The Hamiltonian of the kicked rotor is given by

formation to the tight binding model was constructed in
[24]. In spite of the nonrandom, deterministic nature of
the kicked rotor Hamiltonian, numerical results there as-
suming sufBcient quasirandomness seem to support this
analogy. Dynamical localization in this context arises
&om the suppression of classical diffusive behavior in the
quantum dynamics. As shown by Ott et al. [28], a small
external noise can break the localization. Numerically
they observed three difFerent regimes in the behavior of
the diffusion constant D depending on the magnitude
of noise. When the noise becomes suKciently large, the
system recovers the classical difFusive behavior.

It is of interest to interpret the above results due to
noise &om the microscopic open system point of view.
When the system interacts with an environment, we
know that coarse graining of the environmental variables
is also a source of noise and dissipation. We shall now
derive the inQuence functional for the quantum kicked
rotor and study its behavior.

B. Quantum kicked rotor in a bath

2 OO

II = + icos x ) b(t —j), '

(3.1)

0 .Kcosx
g~+q(x) = exp i —exp i —@~(x) .

27K |9X

(3.3)

The quantum kicked rotor is known to exhibit dynam-
ical localization. After some relaxation time scale, the
wave function becomes exponentially localized in the mo-
mentum space [23]. This may be interpreted as a particle
moving in a lattice with a quasirandom potential. This
heuristic picture seems to justify the analogy between the
quantum kicked rotor to the tight binding model with
an exponentially decaying hopping parameter which is
known to show Anderson localization. The explicit trans-

which describes a one-dimensional rotor subjected to a
b-functional periodic kick at t = j. Here x is the angle of
the rotor with period 2m, m is the moment of inertia, p
is the angular momentum, and K is the strength of the
kick and, in this case, the nonlinear parameter. When
K & K = 0.9716, the system becomes chaotic over the
entire phase space. The average energy (p /2) is known
to show diffusive behavior like that of a Brownian particle
under a stochastic force. This suggests the emergence of
randomness in a deterministic chaotic system.

The quantum dynamics of the kicked rotor is depicted
by the corresponding Schrodinger equation

h2 0
ih —g(x, t) =—,0(x, &)

+~.o.* ). &(t- j)4(,&)

j=—oo
where @ is the wave function for the rotor. Denoting gi
as the wave function g(x, t) at each discrete time t = j,
and integrating (3.2) from j to j + 1, we obtain

Cohen and Fishman studied the case for the Ohmic
bath in detail [26]. They calculated explicitly the diffu-
sion constant and the relevant time scales in terms of the
noise correlation and the nonlinear parameter.

We introduce a linear coupling of the system momen-
tum p with each oscillator coordinate q (a = 1, ..., K)
in the bath in the form Hc = P ~ C q p (here q, p
without the subscript o. denote the system coordinate
and momentum variables). For an Ohmic environment,
the action functional has the same form as (2.15), except
that the coordinate variable Q there is now replaced by
a momentum variable p.

t 8
—A(p, p') = — ds ds'p (a) [—i@(a —a')p+ (s')

A2 0
—v(a —a')p (s')], (3.4)

where p+(a) = p(a) + p'(s).
In a similar way, we introduce the noise ((w) such that

exp —z 7 p 7

t 8

= exp —— ds ds'p (s)v(s —s')p (s') . (3.5)
0 0

Ut(j+ 1, j) = exp

x exp

iK cos x

i(p

gp'
exp

2m

(3.6)

As before, we will examine processes in the time span
where dissipation is small, thus ignoring the effect of the
dissipation kernel p(s).

Under these assumptions, the action of the noise kernel
can be formally absorbed in the propagator for the wave
function. The unit-time propagator for the wave function
Ug(j + 1, j) is given by



2504 K. SHIOKAWA AND B. L. HU 52

where

&'(» p') = (@',~(p) &,*,t(p')) (3.7)

(p) = U((i + 1, g) @~ ~(p) (3.8)

and gi &(p) is the wave function under the influence of a
particular noise history represented by (.

In the same way, Trp„can be expressed as

).):&~(p) &g(p') &~ (p') @t* (p) (3.9)
p p'

where ()t. t denote the statistical average of all possi-

where, as before, the noise term ( arises from using a
Gaussian identity in the integral transform of the term
involving the noise kernel in the influence functional [27].
Summing over all noise realizations () gives the desired
reduced density matrix

ble noise histories of two independent noises ((7),('(v)
defined at each interval &om j to j+ 1. At high temper-
atures, $(7), ('(w) are reduced to two time-uncorrelated
independent Gaussian white noises de6ned at each time
step.

There are many possible ways of introducing an inter-
action between the system and the bath, though many
of them are related to each other as shown in [26]. One
interesting case is to introduce a coupling through the
coordinate x. Then to preserve periodicity of the Hamil-
tonian under the coordinate transformation x ~ x + 2m,
we need to restrict the range of noise to ( = nh, (n =
0, +1,+2, ...), or choose the interaction Hamiltonian to
be H~ = C q cos(x). In the latter case, we may further
assume the form Hc = C q cos(z+P ), where P is the
random phase [28], to remove the coordinate dependence
of the interaction. However, they all give the same result,
but with diferent noise correlations. For example, &om
(3.6) we can calculate the propagator Ut (j, 1) from t = 1
to t = j as

Ug(j, 1) = Ug(j, j —1) U~(j —1, j —2) . Ut. (2, 1)
iK cos x ip i((j)p= exp

2m
exp — exp

i'(j )p iKcos[x+ q(j)]= exp exp exp

exp

xp'

2m

iK cos x

~ ~ e exp

ip2 i((1)p
exp — exp

2m h

iK cos[z + g(1)] ip2
expj 2m.

(3.io)

where ii(j) = ((j) + . . + ((1). Thus this describes the same dynamics as couplings through z via Hc = C q sinz,
as long as the noise ii(j) remains small. The correlations of the two different noises g(j) and ((j) are related by

T T 1

(n(~)~(~ )) = ).).h(t)&(t ))
t.=1 t~=1

(3.ii)

Note that even if ( is a white noise, q is not necessarily white.

C. Localization and decoherence in the quantum kicked rotor

The eigenvalue equation for the quasienergy state in the QKR is given by [24]

i ) ( ip'l ( i
exp

I

——K cos x
I

exp
I

——
I
u„(x) = exp

I

— ~
I

u (x).
52mp

This can be transformed to

(3.12)

i (p'
exp

5 q2m

If we define u (x) as

(Kcoszl . (Kcosz) (
1 —i tan

I) ( 2h ) q 2h ) g h y 2
1+itan

I
1+ exp

I

——Kcosx
I

—u (z) = 0.

(3.i3)

(3.14)

then (3.13) can be written as

~

~

2

(1 —exp[ —
q ( ~2

—(u)])fl 27ll —
( )(1+exp[—q(2" —(u)]) —tan( 's' )

(3.i5)
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Tt, up+ ) W ul, + ——Eur, ,

v QO

(3.16)

where

( Cd

Tj, = tan~ ——
q25

gn —1k' q
(3.17)

Expanding u (x) as u (2:) = g"= u e'" we et

/' a4

sdB )
(3.19)

length. Since l - K2, this gives td..- ~K1 . Therefore
nonlinearity increases the rate of decoherence.

The relation between the dift'usion constant D and the
noise strength is given in [26,28]. For our case, K/5 ))
1 and for weak noises, we can consider the particle as
undergoing a random walk with hopping parameter I/t .
Then D = , where 4 g1ves the localization length.
From this, we get

gs, (K cos zh- e tan
~

27K O
2h )

(3.18)

and E = —Wo. As pointed out in [24], (3.16) gives the
eigenvalue equation for the tight binding model which
describes electron motion in a quasirandom potential T~
with the hopping parameter R'y. The property of this
model depends on the rationality of the coeKcient of k
in the potential. When the coefBcient is irrational, the
model is known to show Anderson localization.

We can now analyze the relation between the break-
ing of dynamical localization and quantum decoherence.
Loss of quantum coherence is measured by the density
matrix becoming approximately diagonal. Decoherence
in the quantum Brownian model has been studied ex-
tensively for this problem [17]. In Fig. 3(a) we plot the
linearized entropy Trp, versus the energy (p /2) in each
diagram (we set the mass m = 1 for all the numerical
calculations). Note that the two effects are correlated
to each other as expected. This shows that delocaliza-
tion occurs as the quantum coherence breaks down, sug-
gest1ng that delocalization and decoherence occur by the
same mechanism. As the noise strength increases, we
see that decoherence works more efhciently. Also as the
nonlinearity parameter K, the strength of the kick in
this model, increases, the system decoheres more rapidl

[ ig. ( )]. At the same time, the amount of delocaliza-
i y

tion measured by the diffusion constant also increases.
For all the numerical results presented in this paper, we
use the Gaussian wave packet as the initial condition.
However, we also checked that the qualitative results
given in this paper are insensitive to the initial condi-
tion. This may be viewed as another characteristic of a
chaotic system. For QKR, as the nonlinear parameter K
decreases, the results become more sensitive to the initial
condition [29]. In nonchaotic systems, the sensitivity in
thihis sense can be used to choose a preferred initial state
in accordance with some speci6c criterion, such as least
entropy production [30], etc. (For chaotic cases, see [31]
for a related argument but from a different point of view. )

Thxs may be explained in the following way. Be-
cause we use a coupling through the momentum, the
time scale for the system to lose coherence is given by
g« ———("& ), where A&g~ = h/+2vrmkT is the ther-

mal de Broglie wavelength, and bp is the relevant momen-
tum scale. After this time, noise will destroy the quan-
tum coherence between these momentum separations. In
the kicked rotor case, localization will occur due to the co-
herence around bp L, where L lh is the localization
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FIG. 3. Trp (solid line, left scale) and (p /2) (dashed line,
right scale) are plotted in (a) versus time for K = 10 and
5 = 1. Three noise strength values o = 0, o = 1.0, o = 2.0
are plotted here, corresponding to the family of lines from top
to bottom for Tr p„and bottom to top for (p /2) (note that
Trp„= 1 for o = 0). As the noise strength increases, the
decoherence time shortens, and Trp„decays rapidly. This ac-
companies the increase of difFusive behavior in (p /2). In (b),
the same observables are plotted but with different K values.
The upper, middle, and lower solid lines (lower, middle, and
upper dashed lines) correspond to lt = 0.5, It = 5, Jt = 10,
respectively. Here u = 1.0, A = 1 are 6xed. We see that
j.ncreasing nonlinearity shortens the decoherence time. Note
that when K = 0.5, the system merely diffuses.
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IV. DECOHERENCE AND IRREVERSIBILITY

The Wigner function representation is often used to
examine the quantum to classical transition. For a linear
system the Wigner function is known to show a smooth
convergence to the classical Liouville distribution. But
if the system Hamiltonian has a nonlinear term, quan-
tum corrections associated with the higher derivatives of
the potential pick up the rapid oscillations in the Wigner
function and it no longer has a smooth classical limit
[40]. However, upon interaction with an environment, a
coarse-grained Wigner function can have a smooth clas-
sical limit [41] for nonlinear systems.

The Wigner function at time t = j is defined as

1
W;(X', p) =—

4

+2' ( 1 1
dy er""

p~ ~

X' ——y, X+ —y
2 2

K sin X
p

x exp ——Bx W~. (X,p),p
m

W~+i(X, p) = exp

(4.2)

where Az —exp[2B&] —exp[ ——"Bz] measures the efFect of
the kick. We can see the effect of quantum corrections
more clearly if we expand Lp in orders of h:

= exp —8 —exp ——8P 2 P 2 P

n'
g3 g5

24 " 1920
(4.3)

(4.1)

where X—:2 (x + x'), y = x —2.". From (3.3), the unit-
time propagator for the Wigner function of QKR is

With this, the first exponential in (4.2) contains the clas-
sical propagator times quantum corrections of even or-
ders of h.

exp
K sin X = exp[ —K sin XB„]

x exp ——K sin xO
24 p

n4
K sin AO„1920

x exp

(4 4)

If the initial system wave function is described by a
Gaussian wave packet with width 8p(» ti), we would
expect to see a classical-like evolution of the packet at
short times. When the width of the contracting wave
packet gets small and becomes comparable to h, the
effect of quantum corrections, namely, the corrections
&om the exponents which are of higher order in 5 in
(4.4) appears. By comparing the classical and the quan-
tum terms, we can easily evaluate the length scale at
which quantum corrections become important, i.e. , when
hp(t) h. Here hp(t) = hp(0)e ",where A is the Lya-
punov exponent given by A ln(K/2). As shown in
(1.2), from this expression, we can define the time scale

t@ as t~ ln "&~ 1/A. Because the Wigner function or
the expectation value of any observable follows classical
trajectories when t & t~, this has been called the Ehren-
fest time. Note that in the continuum case, this defini-
tion gives us a different time scale for each term in the
expansion [19]. Hereafter, we set m = 1 for brevity.

If the interaction with the environment takes the form
(3.6), the major efFect of the bath is the appearance of a
diffusion term in (4.2), such that

W~+ i (X,p) = exp [Dx.Bx] exp
K sin X

p exp[ —pBx]W, (X,p)

3
—exp[De. Bx] exp ——K sin XB W~ (X —p + K sin X,p —K sin X), (4.5)

where D~ ——2MpkTh is related to a constant of the
noise kernel v(s) defined before (2.16).

Competition among the three terms with different
physical origins is apparent: The first term in (4.5) is
the quantum diffusion term, the second is the quantum
correction term, and the third is purely classical evolu-
tion. As discussed by Zurek and Paz [19], if Dx is suffi-
ciently large, the effect of quantum corrections becomes
inconspicuous. In this case, the difFusion term traces out
a small scale oscillating behavior before quantum cor-
rections have a chance to change the classical evolution.
Then one may expect the time evolution of the Wigner
function to be like that of classical evolution with noise.
In this case, we can ignore the quantum correction in
(4.5) and write the evolution equation as

W,.+i(X,p)= exp[De. Bx.]
x W, (X —p + K sin X,p —K sin X). (4.6)

The role of quantum diffusion is to add some Gaussian
averaging so that the contracting direction in phase space
will be suppressed while it does not affect the stretching
direction. As long as the width of the wave packet is
large such that the first term is negligible, the evolution
should be Liouvillian (time reversible if we assume in-
finite measurement precision). Furthermore, we expect
that after the width of the packet along the contract-
ing direction becomes comparable to the diffusion gener-
ated width (in the Gaussian wave packet), the dynam-
ics will start showing irreversible behavior arising from
coarse graining (as distinct from irreversibility from in-
stability). Consequently, entropy should increase in this
regime. In Fig. 4, we plot the von Neumann entropy for
the dynamics of (4.6). We can see three qualitatively
different regimes: (I) the Liouville regime: the entropy
is constant and the dynamics is time reversible; (II) the
decohering regime: the entropy keeps increasing due to
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FIG. 4. The von Neumann entropy is plotted versus time
for the kicked rotor. For the 6rst 25 steps, the system does not
produce any entropy. The evolution is reversible. Transition
sets in the next few steps: the dynamics changes its character
from reversible to irreversible. Because the nonlinear term
is from the sinusoidal function, the onset of this regime is
difFerent at every phase space point. Consequently we can
only see the averaged behavior through the entropy function.
Around t = 40, saturation occurs due to the finiteness and
the periodic nature of the phase space (o = 0.1 for this case).

coarse graining; (III) the fiiute size regime: due to the
bounded nature of the phase space, the entropy shows
saturation. Our result &om quantitative analysis seems
to confirm the qualitative description of Zurek and Paz
[19],who used the inverted harmonic oscillator potential
as a generic source of instability. Since the phase space
in their model is not bounded they do not see regime III.
Similar features appear in the quantum cap map (Fig. 5).
In this case, the full quantum dynamics can be calculated
in a simple way. Resemblance with the result of a classi-
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0.0
0 50 100 150 200 250

FIG. 5. The von Neumann entropy is plotted versus time
for the quantum cat map. Due to the simplicity of the system,
we see the same qualitative features as in Fig. 4. The entropy
starts increasing around t = 55 and maintains a near-constant
rate of production while showing large oscillations. After 200
steps, entropy production seems to saturate and starts de-
creasing into some stable value. JV = 64, o = 0.04 are used
here.

FIG. 6. The time reversal is performed at t=200. For
QKR without a bath (lower curve), the system possesses
time-reversal invariance [32]. When the interaction with
the environment increases, the system gradually regains ir-
reversibility as observed in classical systems. Here the noise
strength o = 0.5 (middle curve) and o = 1.0 (upper curve).
Also A=1, K=10.

cal rotor with noise is obvious. However, in this case, the
stable entropy is smaller than the maximum value which
may be explained as a finite (phase space) size effect.

Quantum diffusion defined by the spreading of the
wave function is known to be dynamically stable. The
authors of [32] performed the time reversal at some time
and saw the diffusion constant and even the wave func-
tion itself coming back to the same state within the ac-
curacy of computation. As we know, these time-reversal
behaviors cannot be seen in the classical case due to the
instability of the trajectories. This is also true in real
physical systems for which one can access information
with only finite precision [2].

In Fig. 6, we perform the time reversal at t = 200.
In the quantum case without bath, the system com-
pletely returns to the original state after exactly the same
amount of time. Thus the system is highly stable in spite
of its random appearance. On the other hand, in the
classical case, instability prevents the reversibility even
without interaction with the bath. When the interaction
is turned on, we see that the reversibility in the quan-
tum system is gradually lost, and irreversibility appears
as the noise strength increases.

In a realistic physical system which has a finite pre-
cision due to numerical or instrumental limitation, we
expect this type of irreversibility is inevitable for the
chaotic system even without noise. If the minimum pre-
cision in length is denoted as e, the time scale up to
which the deterministic picture is valid is determined as
tz & ln —.At t & t„, the system starts losing in-
formation about the past. This may be the source of
irreversibility for the classical chaotic system. For the
system we are studying, t„&& t~ & 1 holds. Then the
quantum eKect smears the contracting evolution of the
region in the phase space before information about the
past is lost. Therefore the wave packet traces back the
same trajectory as it has traversed. If t ( tz, we see the
irreversibility &om coarse graining before the limitation
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of the measurement becomes evident. This type of irre-
versibility is another characteristic of classicality peculiar
to chaotic systems.
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