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We study coupled maps on a Cayley tree, with local (nearest-neighbor) interactions, and with
a variety of boundary conditions. The homogeneous state (where every lattice site has the same
value) and the node-synchronized state (where sites of a given generation have the same value) are
both shown to occur for particular values of the parameters and coupling constants. We study the
stability of these states and their domains of attraction. Since the number of sites that become
synchronized is much higher compared to that on a regular lattice, control is easier to achieve. A
general procedure is given to deduce the eigenvalue spectrum for these states. Perturbations of
the synchronized state lead to diferent spatiotemporal structures. We find that a mean-Geld-like
treatment is valid on this (effectively infinite dimensional) lattice.

PACS nuinber(s): 05.45.+b, 47.20.Ky

I. INTRODUCTION

Coupled map lattices (CML's) have been explored in
a variety of contexts in recent years, particularly as pro-
totypes of spatially extended. systems. These are simple
models wherein both space and time play a role; further-
more, it is anticipated that the insight gained over the
past two decades in studying low-dimensional nonlinear
dynamical systems can be profitably exploited in provid-
ing an understanding of such complex systems [1].

The phenomenology displayed by coupled maps on reg-
ular one- and two-dimensional lattices has been exten-
sively studied by Kaneko [2]. In addition, CML's have
been used to model a wide variety of complex phenom-
ena, such as the study of the kinetics of phase ordering
processes [3], crystal growth [4], neuronal systems [5],
optical fibers [6], and pattern formation [7]. Chate and
Manneville have also used CML's to model spatiotem-
poral intermittency [8]. A route to a spatiotemporally
inhomogeneous state through wavelength doubling bifur-
cations has also been recently identified [9].

In this paper, we study coupled maps on a Cayley tree.
This lattice is embedded in infinite dimensions and thus
should give some indication of CML phenomenology in
higher dimensions [10]. Although the Cayley tree (some-
times termed the Bethe lattice) is an idealized hierarchi-
cal lattice with no immediate physical application, it is
convenient for study since there are no closed loops. Fur-
thermore, the Bethe lattice is the simplest sort of branch-
ing media model encountered in many physical processes.

Previous studies of coupled map systems (except for
a study by Cosenza and Kapral [11) of CML's on a
Sierpinski gasket) have largely been carried out with local
coupling on regular lattices in one and two dimensions or
with global coupling, in which case there is no notion of
lattice geometry. Our motivation in choosing the Bethe
lattice is twofold. Apart from the mathematical conve-

nience, it is worth considering that in many physical situ-
ations the medium supporting dynamics could be nonuni-
form; in cases like chemical reactions in porous media
or on difFusion-limited-aggregation clusters, heterogene-
ity can lead to hierarchical structures [12]. We note that
hierarchical structures have long since been studied in
spatiotemporal systems like neural nets, also because of
their exponentially higher storage capacity [13].

A related question of some current interest is the con-
trol of macroscopically cascaded dynamical systems. The
synchronization of a large set of oscillators connected in
series [14—17] in a given geometry and with particular
boundary conditions is directly related to the problem
of whether a similar CML can support a synchronized
state [18]. We address this problem and show below that
the criterion in CML's for a synchronized (but chaotic)
state to be stable is that only one Lyapunov exponent
be positive and all the rest negative. In both cases, i.e. ,
synchronization of the coupled oscillators or of coupled
maps, the essence of the problem lies in the nature of the
eigenvalues and eigenvectors of the interaction matrix. In
the present work we deal with the situation of asymmet-
ric coupling that is easily obtained in experiments [19].

The plan of this paper is as follows. We define our
model and the boundary conditions, and show that the
stability of synchronized states depends on the spectrum
of eigenvalues of the interaction matrix. This is related to
the connectivity matrix for the lattice and has a singular-
continuous structure. DifFerent patterns can arise &om
the secondary instabilities. We note that for coupled
piecewise linear maps the study of the interaction matrix
gives the whole Lyapunov spectrum, which is related to
the correlation length.

In several recent studies of globally coupled maps
[2,20], a breakdown of the "law of large numbers" has
been observed. We find that for this system, even with
local coupling, the mean-field description is valid in the
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macroscopic limit. This is probably related to the in6-
nite dimensional nature of the lattice.

sites are somewhat different since the former does not
have a parent and the latter do not have daughters. For
the origin,

II. MODEL

We study CML's on a Cayley tree with coordination
number 3, which we construct in stages as follows. At the
Grst level, there are three branches, each of which splits
in two and then further bifurcates, and so on. Each site
thus has one parent and two daughters, except for the ori-
gin, which has no parent site and three daughters, and
boundary sites, which have no daughters. Each site on
the lattice is assigned a variable x, which evolves accord-
ing to a deterministic rule depending on its own value
and the value of the nearest neighbors. The evolution
rule is taken to be the following:

x(i, t+1) = hp f(x(i, t) )+h&f(x(iz, t) )+hg ) f (x(j, t)),

x(O, t+ 1) = oof(x(O, t)) + o' ) f(x(j, t)), (2)
jEpd

and for the boundary sites,

x(k, t + 1) = b,f(x(k, t) ) + b' f (x(k„,t)),
with different choices for op, bp, o', b' to ensure that the
dynamics remains in the same phase space.

Each point on the Bethe lattice can be indexed by a
string a = {aq, aq, . . . , a, ),, where i denotes generation;
aq can take the single value aq ——0, aq can be 0, 1, or 2;
and for j ) 2, the aj 's take two values, aj = 0 or 1. With
this notation, it is possible to assign a unique number
n(A) = n(aq, . . . , a, ) to each lattice point.

n(ag, ag, . , a;) =g(i —1) + a;+ 2a;
+2 a; z+ . +2* aq+1, (4)

where

where f is the function that determines how the lattice
variables evolve. A common choice for f is the logistic
map f (x) = px(1 —x). The notation above is as follows:
i„ is the parent of site i, and ig are the daughters. hp, h„,
and hg are coupling constants and are taken such that
hp + hp + 2h&: 1 Thus the evolution is contained in
the same phase space as that of a single map, e.g. [O, lj
in the case of a logistic map. We also assume that the
couplings are positive, though most of our results do not
explicitly require this.

The evolution rules for the origin and for boundary

g(i) = 1+3(2'-' —1)

is the total number of sites at the ith generation and
g(0)=0. (See Fig. 1.) We can thus formally write

X(t+ 1) = IE(X(t)),
where E(X(t)) is a column matrix, X(t) is an array of
variable values assigned to the lattice points arranged in
ascending order of n(A), and I is the interaction matrix.
For example, for the Cayley tree with three generations,
i.e., ten sites, the equation above reduces to

(op
hp
hp
hp

X(t+ 1) =
0
0
0

o' o' o' 0
hp 0 0 h„

0 hp J 0
0 0 hp 0b'ooh,

b' o o o
0 b' 0 0
ob' o o
o oh' o
o oh' o

0 0 0 0
hg 0 0 0

o h„ h& o
0 0 0 hg
0 0 0 0

bp 0 0 0
0 bp 0 0
0 0 bp 0
0 0 0 bp

0 0 0 0

0)
0
0

hg

E(X(t)),
0
0
0

&p)

where

E(X(t)) (f(x(1 t)) f(x(2 t)) f(x(3 t)) f(x(g(k) t)))

where T denotes transpose. Note that the interaction
matrix I is such that the evolution can be written as

III. COHERENT PATTERNS
AND THEIR STABILITY

x(t, t+1) =) I,,f( (x, j))t,

where the sites have been labeled by the unique number
n(A).

Inspection of the symmetries of the lattice allow-for the
determination of allowed coherent patterns. It is easy to
verify that if one starts with the pattern in which all the
points at each generation i are assigned the same value
z;(t) at time t, the nature of the pattern cannot change in
time since points at the same generation have equivalent
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000 QQ1 Greshgorin's theorem [22] this is the largest eigenvalue.
Consider a small deviation, Ao ——(8q, 6'z, . . . , he~I, l) from
the homogeneous pattern (z, z, . . .). We can reexpress
Lp on the basis of eigenvectors ez, ez, . . . , e~(~) as

Lp ——aieg + ageg + . - + ag(A. ) eg(A. ).
After t iterations the deviation &om the homogeneous
condition will be

= a/Aye/ + agAgeg + ' + ay(A, ) A (I ) eg(A ).t (12)

021

]10

Q1
7'

010

If the only eigenvalue with modulus greater than unity is
Aq

—— A and ]Av~~ ( 1 for j ) 1, i.e. , the rest are less
than unity in magnitude, then for large enough t we can
write

ayAieyt

020
[8
011

FIG. 1. Cayley tree with three generations and the label-
ing scheme.

evolution rules and remain synchronized. With parame-
ters

op+3o = bp+b = hp+h&+2hg = 1 (10)

another simple pattern is possible. This is also node-
homogeneous, with z, = z for all i; i.e., all the points on
the lattice are synchronized since the evolution is essen-
tially that of a single map f.

These "allowed" patterns can be observed in practice
if and only if they are linearly and convectively stable
against small perturbations. In the present work, we
have mainly dealt with linear stability analysis of this
system in the stationary &arne, and while we have not
analyzed convective stability, numerical experiments sug-
gest that no extra instabilities other than the ones in an
equivalent one-dimensional model creep in. This directly
evolves &om the fact that there are no loops on the lat-
tice; there is only one direction in which instabilities can
be enhanced in a moving &arne of reference, and these
are the same as in the equivalent one-dimensional model.

Por the linear stability analysis the eigenvalues and
eigenvectors of the matrix J = lim ~ J(w), where
J(~) = J . Jz Jq, are (asymptotically) relevant. The
Jacobian matrix at time t, i.e. , Jq, is given by Jq(i, j) =
I(i,j)f'(z~(t)) and z~(t) = x(t) for all j. Thus the Jaco-
bian matrix is J = lim ~ [I) f'(z~) f'(z~ q) . f'( q)z.

The eigenvalues of J are lim ~ A,"-, where A,. = v;A,
where v, , i = 1, 2, . . . , g(k) are the eigenvalues of the
interaction matrix I and A = limz~

~
f'(x(t)) f'(x(t—

1)) . . f'(z(1))~ ~ . The relevant eigenvectors are those
of I, and the problem reduces to a study of the eigenval-
ues and eigenvectors of the interaction matrix.

The fact that coherent patterns are allowed [by the
condition in Eq. (10)] implies that a right eigenvector
of the interaction matrix is eq —— (1, 1, . . . , 1). This is a
characteristic of row stochastic matrices and corresponds
to the eigenvalue A for the product of the J's. Prom

(1 0 0 0 0 0
0 1 0 1 0 1
0 1 0 1 0 —1
0 1 0 —2 0 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 —2 0

(0 0 1 0 —2 0

0 0 0
0 0 0
0 0 0
0 0 0
1 1 0
1 —1 0

—1 0 1
0 —1

0 0 0
0 0 0

0)
0
0
0
0
0

0
1

—1)
(14)

(The first three vectors follow from the fact that lat-
tice points at each generation are equivalent. The fourth
and sixth vectors simply represent the two linearly in-
dependent and mutually orthogonal interchanges possi-
ble between points at the second generation [(1,0, —1) +

The perturbation grows along the direction e i
(1, 1, . . . , 1), and any random deviation will eventually
be homogenized.

Thus the necessary (though not sufficient) condition
for the synchronized pattern to exist (and evolve chaot-
ically in time) is that Aq be the only eigenvalue greater
than unity and all others be less than unity in magnitude;
a linearly stable coherent pattern —in the in6nite lattice
limit —therefore requires a finite gap in the eigenvalue
spectrum of the interaction matrix.

The interaction matrix is analogous to the tight-
binding Hamiltonian on the Bethe lattice [20], although
the eigenvectors are diferent (since the matrix is not nec-
essarily symmetrical or Hermitian). However, using sim-
ilar arguments [20], one can see that all the sites at a
given generation are equivalent in the sense that, if sites
at every generation are synchronized, this pattern will
continue to exist in the absence of small perturbations or
noise since the evolution rule is the same for all of them.
Piuthermore, one can see that if any two sites that have
the same parent are interchanged along with their sub-
trees, the system is left unchanged. Using the equivalence
of all points at a generation and the permutation symme-
tries of the lattice, the similarity transformation that will
block-diagonalize the interaction matrix can be deduced
to be
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(0, 1, —1)], while the fifth and seventh vectors are sim-
ilar interchanges within siblings with the phase derived
&om the parent site. The last three vectors arise &om
the interchange among the siblings of the same parent. )

Thus the block-diagonalizing matrix is written using
permutation symmetries of the underlying lattice; the
blocks are as follows:

3k—1
tvn(0, 1,1)

=
3k
n(0, 1,1,a4)

3k—1
» ——1),

—1, v (012 )
— 1),

[See, e.g. , the sixth and seventh columns in Eq. (14).]
The next three sets of k —2 vectors each are given as
follows. The 6rst is of the type

r op 3o' 0)
h„hp 2hg

(0 b' b )

. . ., and

v =1 v = —1j.3k—2+(k —2) 3k—2+(k —2)
n(0) 1 ) 1)))i4) )))ig ) FL(0 1)2)&4 )C1g )

(24)

The two doubly degenerate eigenvalues are the eigenval-
ues of the matrix given below. They correspond to the
fact that one can have two independent permutations in
the three branches at the 6rst node:

The second is

4k —3
n(0, 2, 1)
4k —2
n(O, 2, 1,a4)V

4k —31) vn(0, 2,2)
——1))

4k —2—1)v (022 )
— 1))

(25)

&hp 2hg)
(Sb' bp )

Finally we have the triply degenerate eigenvalue bp (re-
Hecting the fact that one can have permutations among
the daughters of any of the three branches at the second
node without afFecting the matrix). One can see that the
consecutive blocks giving eigenvalues are just like earlier
blocks except that the first row and column of the matrix
are removed. This construction can be trivially extended
to a matrix of higher order. The matrix S IS is block
diagonal.

This scheme can be generalized to higher dimensions
and the diagonalizing matrix for the kth stage can be
deduced as follows. Specifying the nonzero components
of the column vectors [in the notation of Eq. (4) to denote
the components] the first k vectors are as follows:

U { } 1)

n(ag, ag)
V = 10n(aq, ag, as)

. . .) and

k =1n{ay ag as )...)ag )

[e.g. , the first three columns of the matrix defined in Eq.
(14)]. Then we have two sets of k —1 vectors. One is

. . ., and

4k —4+{k —2) 4k —4+ (k —2)
V = 1)Vn{0,1,1,a4, ...,ag) ' n(0, 1,2,a4, ...,ag, )

The last set is

5k —5 5k —5
(0,3,1) ' (0,3,2)

(26)

and so on. [The last three columns in Eq. (14) are v "
v " 3, and v " 3. For k ) 3 newer sets will appear. ]
Now we will have sets of vectors that will give blocks of
size k —3. The next six blocks of k —3 vectors arise &om
permutations between the points on the fourth genera-
tion and their descendants and are of the same type as
the three sets of k —2 vectors mentioned above, which
result &om the three independent permutations possible
between the six points on the third generation. One can
continue this scheme until reaching the boundary. The
number of points on the boundary is g(k) —g(k —1) =
3 x 2" 2, and [g(k) —g(k —1)]/2 = 3 x 2" 3 permuta-
tion vectors are possible [see Eq. (5)], which will give a
block of size 1 with the same degeneracy as the number
of permutations possible on the boundary.

For boundary conditions in which op = hp + hp 0' =
2h~/3, bp ——hp+ 2h~, b' = h„, at stage k, the first block
of the block-diagonal form is

c
hp+ hp 2hg 0
hp hp 2hg

(27)
(v"(

)
——v

( )
——1, v

(p 3)
—2))

Jvk+2 vk+2 1 vk+2
n{o,l,as) n(0, 2 as) ' n(0 3 as)

0 0 hp 2hg
0 h~ hp+ 2hg)

. . ., and

k+(k —1) k+(k —1)
n(0, 1,as, ...,ag, ) n(0, 2,as, ...,ag )

& Vn(0, 3,as, ...,ag) (20)

[See, e.g. , the fourth and fifth columns in Eq. (14).] The
other set is

(v (0,1)
—1, v~(0, 2)

2k 2k

2k+1 1 2k+1
n(0, 1,as) ' n(0, 2,as)

and

which exploits the equivalence symmetry of all the sites
at a given generation. The second block, which exploits
the permutation symmetry of the points on the 6rst gen-
eration, is

r
hp 2hg 0
hp hp 2hg

(28)
0 ho 2hg
0 . . h„hp + 2hg)

and so on. The last two blocks are

2k —1+(k—1) 2k —1+(k—1)v =1 v = —lp.n(0, 1,as ~ ~ "&at, ) ' n(O, 2,as ) ~ ~ ~ )ak) (22)
(h,

h + 2h ~
(" +'" )0+ z) (29)
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1020

1010

I1 V'gV VV O'V V'ZV V'UV'
-0,6 -0.4 -0.2 0 0.2 0.4 0.6 0.8, 1

Eigenvalue
1.2 1.4

FIG. 2. Eigenvalues and their degeneracies for the syn-
chronized state for k = 50 generations. The parameters are
h~ = 0.7, ho ——0.2, 6, = 0.05, and A = 1.26. One can clearly
see the gap that separates a nondegenerate eigenvalue greater
than unity and all the others below unity. Degeneracies are
on a logarithmic scale for clarity.

The first block of order k appears once in the block-
diagonal form, the second of order k —1 appears twice,
and next blocks of order k —n (A: —1 ) n & 2) appears
3 x 2 times. The first k eigenvalues are therefore
nondegenerate; then A: —1 eigenvalues are doubly degen-
erate, A: —n eigenvalues have degeneracy 3 x 2" for
k —1&n&2, etc.

From the structure of the matrices and their degenera-
cies, one sees that for the Cayley tree with one more
generation, the A: —1 degenerate blocks are retained
(with, however, the doubly degenerate block becoming
triply degenerate and other blocks doubling their degen-
eracy) with an additional block that has degeneracy 2.
The block corresponding to nondegenerate eigenvalues is,
however, completely changed. The density of states has
to be singular continuous since the new eigenvalues that
are created have a lower degeneracy; the eigenvalue spec-
trum is a sum of b peaks and is nowhere difFerentiable,
as is common in hierarchical systems [11,21].

In the situation where the synchronized state is lin-
early stable in the stationary kame, the typical degener-
acy structure of eigenvalues is as shown in Fig. 2 for the
parameters and boundary conditions as discussed below.
The structure is generic if the system is linearly stable,
but the width of the gap varies with the parameters. For
piecewise linear maps; e.g. , f(x) = rx mod y, the Jaco-
bian is constant in time and the spectrum of eigenvalues
of the interaction matrix determines the Lyapunov spec-
trum of the CML's, and thus (via the Lyapunov dimen-
sion) the &actal dimension.

We can see from the degeneracy structure that about
a quarter of the eigenstates have their support fully &om
the boundary. The next layer is approximately half of
this number, and so on, with the number of states that
have their support up to a length l from the boundary
reducing exponentially. Thi.s is in keeping with the ex-

pectation that the rate must be faster than that in finite
dimensional spaces where the number of modes with wave
number ~K~ ( r is proportional to r

Note that in the block-diagonal matrix, the blocks are
tridiagonal and (for positive couplings) all elements are
positive. Such a matrix can be transformed to symmet-
ric form [22] and thus all its eigenvalues are real; there
can be no Hopf bifurcation leading to the instability of a
synchronized state.

Since the consecutive blocks are the principal (tridiag-
onal) submatrices of the earlier block, the eigenvalues are
interlaced [23]. In other words, the bounds for the eigen-
values of the lower block are contained in the bounds for
the eigenvalues for the higher block, and it is enough to
consider the first two blocks in order to study the stabil-
ity of a spatially synchronized state.

For the first block, the nondegenerate eigenvalues are
given by ho + h„+ 2hp, which is set to 1 by definition,
and the other k —1 eigenvalues are hp + 2/2hghzcos(0),
where 0 = 27ri/k, i = 1, 2, . . . , k —1. The eigenvalues will
have a gap if 2hg g 6„.

Consider the second block of order m = k —1, which is
tridiagonal and can be symmetrized by using a similarity
transformation involving a diagonal matrix with elements
D, ; = [/26&/h„]' . This yields a tridiagonal matrix 0
such that the diagonal elements remain unchanged and
all the elements on upper and lower diagonal are /2hgh~.
Using Greshgorin's theorem [22] again, one can see that
the largest eigenvalue cannot exceed hp + 2/2h„h~ if
hz & 2hp. As explained above, the analysis of the first
two blocks sufFices to explore the stability of the syn-
chronized state and thus the other blocks do not modify
the gap in the eigenvalue spectrum of the first block if
hp & 2hg.

Aranson, Golomb, and Sompolinsky [14] consider
asymmetrically coupled one-dimensional (1D) chains
with open boundary conditions where there is a convec-
tive instability of synchronized patterns; perturbations
grow in the moving frame of reference, destroying macro-
scopic coherence. As we have shown above, under these
conditions macroscopic chaos is linearly stable in a sta-
tionary kame also on the Cayley tree. However, the dif-
ficulty in synchronizing large systems is less pronounced
in this case. Because of the ultrametric topology, much
larger systems can be synchronized under the conditions
above. With open boundary conditions and asymmetri-
cal coupling, coherence is more easily established in the
present case. For example, for hq ——0.7 in one direction
and h2 ——0.1 in the other direction, Aranson, Golumb,
and Sompolinsky [14] have a coherence length of around
55 for the choice of map f (x) = a —x, with a value
of a such that the eigenvalue for a single map is 1.26.
With h& ——0.7, 2hg ——0.1, Fig. 2 shows a plot of eigen-
values as a function of degeneracies at these parameter
values for 50 generations. One can clearly see the gap
between a single nondegenerate eigenvalue above unity
and the others below unity. For the above parameters
we can easily obtain a coherent pattern for k = 20 with
random initial conditions; a CML with —10 sites is eas-
ily synchronized [24] to within 10, even under single
precision (16 binary digits) evolution. This is in stark
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contrast to one-dimensional 1D coupled CML, which has
a coherence length of about 55 sites. This example is
a good illustration of the dramatic increase in stability
with hierarchical connectivity.

To check that no other instabilities than the ones ex-
pected &om an equivalent one-dimensional model come
into the picture, we looked at the function f (z)
1.39 x mod 1 with the same choice of coupling constants
as above. Here the coherence is within 10 for the first
six sites on a one-dimensional lattice, and even on the
Cayley tree it is maintained for six generations. This
is expected since there are no closed loops and the only
direction in which the instabilities call Pour and grow is
the one &om the center to the boundary. However, we
can see that since the number of sites synchronized is ex-
ponentially higher on a tree with equivalent generations
than on a one-dimensional lattice, an exponentially larger
number of sites are synchronized on trees at equivalent
parameters. The base of the exponent is related to the
number of branches.

Auerbach [15] has shown that one can circumvent the
diKculty arising &om convective instabilities on a 1D lat-
tice by using system-size dependent feedback control. In
essence, we achieve the same ends through a change in
geometry, without extra controls. The boundary condi-
tions op = bp = hp o& = 3bg = h& + 2h, also give the
same result, which indicates that some more variants are
possible for open boundary conditions and asymmetric
coupling.

Now consider the node-homogeneous pattern. The sta-
bility matrix is given by

~ L

t=1
(30)

Thus analysis of the eigenvalues of the product of ma-
trices is reduced to the analysis of the eigenvalues of the
product of blocks. This is a great simplification since in-
stead of considering matrices of order 2, where k is the
number of generations, we only need to consider k ma-
trices of order k and below. The analysis of the Jacobian
matrix reduces to analysis of the matrices

(o 3o
hp hp

0 0

0 . 0 0
~ ( f'[z, (t)]

~2hg 0 0 f'[zz(t)]

0 hp 2hg f'[zg l(t)]
0 . b' bp J ( f'[zg(t)]

~ I

t=1

hp 2hd,

h„ hp 2hg 0 0 f'[z, (t)]

0 hp 2hg f'[zg l(t)]
0 . . b' bp ( f'[zx(t)]

and so on.
Again the degeneracy structure is the same as for the

interaction matrix; the Lyapunov spectrum is the sum
of b peaks and is an everywhere discontinuous func-
tion, as for the fully synchronized state (which is a spe-
cial case of the node-homogeneous structure). We can

similarly argue that the condition for stability of the
node-homogeneous state (evolving chaotically in time) is
that the first block corresponding to the nondegenerate
eigenvectors is the only one with eigenvalues of modulus
greater than unity, all other blocks having eigenvalues
with modulus less than unity. (This is because the first
block corresponds to eigenvectors that have a contribu-
tion from all the generations, and the contribution from
all the points of the same generation is the same. )

A simple example of such stable patterns can be con-
structed for f (x) = rz mod 1, with boundary condi-
tions op = 0 6p = 0, o' = hg, b' = h„and parameters
r = g(3)/2, hp ——0, hd, = h„= s. For the Cayley tree
with five generations, i.e. , 46 sites, it can be shown that
the eigenvalues are higher than unity for the first block
alone. Numerically, one can easily get node-homogeneous
patterns, starting from random initial conditions. Thus
the possible coherent patterns are characteristically dif-
ferent &om those on regular lattices, and the stability
analysis is also distinct [26].

IV. INFINITE DIMENSIONAL CHARACTER

We now study the properties of this model, which
should reflect the fact that it is embedded in infinite di-
mensions, where a mean-field-like treatment can be ex-
pected to be valid. A collective variable [2, 20] h(t) is
defined as

1
g(k)

h(t) = ) z(i, t).
g k i=1

(32)

where g(k) is the total number of sites on the Cayley tree
with k generations, as noted above; f (z) = pz(1 —z) with
hp=1 —EIh&=hg=e/3Ibp=op —bpIb =eIo =e/3;
while the parameter values are e = 0.1 and p = 4. The
return map of this variable, i.e. , h(t+ 1) vs h(t), is a filled
ellipse, whose size decreases rapidly with the number of
generations. We conjecture that in the macroscopic limit
it tends to a fixed point; i.e. , though the evolution is
chaotic for the system, the collective variable is iovari-
ant in time. The mean square deviation of h(t) decays
like 1/K, where N is the number of sites (see Fig. 3),
quite unlike the case of globally coupled maps [27], where
some reorganization occurs in such a way that the total
number of independent degrees of &eedom is not linearly
proportional to the number of sites. This is not totally
unexpected [28] since the values being summed are not
independent random variables. This also means that the
mean field is not valid in these systems. However, this
expectation is fulGlled for the Bethe lattice, although the
variables that are being summed are not only not in-
dependent but are also not identically distributed; the
boundary evolves differently from the bulk, and bound-
ary effects are not negligible in any limit since half the
points reside at the boundary. Figure 4 shows the prob-
ability distribution of the central sites and the boundary
for the above case, and they are clearly different. How-
ever, the sum behaves in a way that is expected &om the
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FIG. 3. Standard deviation of the mean field as a function
of total number of sites for the CML with function f(x) =
px(l —x), with p, = 4.0 and e = 0.1. Similar behavior is also
obtained for other values of p, e.

FIG. 4. Probability distributions of the CML's at a cen-
tral point and at the boundary for the same set of parameters
as in Fig. 3. The lattice has k = 6, and the first 10 iter-
ates are treated as transients. The distribution is clearly very
difFerent for these two sites.

sum of iid variables. (We have verified that this behavior
holds at some other values of the parameters. )

The recovery of the mean Geld in inGnite dimensions is
interesting. Chate and Manneville [29] have found that
the mean-Geld-like approach works better in higher di-
mensions in spatially extended systems and that connec-
tivity plays a relatively marginal role. Further studies
will be necessary to determine the upper critical dimen-
sion for this problem. We are exploring this question.

V. CONCLUSIONS

In summary, in this paper we consider a coupled map
lattice in an ultrametric space. We show that syn-
chronized but temporally chaotic systems can be sta-
bilized more easily in this space. We present a sim-
ple method of obtaining the eigenvalue spectrum for the
node-homogeneous and spatially synchronized structures
using symmetries. We emphasize difFerent properties
that owe their existence to the hierarchical connections
and to the inGnite embedding dimension.

In an ecological model, Hogg, Hub erman, and
McGlade [25] have-suggested that a hierarchically or-
dered random system should be more stable compared
to unstructured systems, and they argue that the stabil-

ity should scale like log (system size) instead of (system
size): thus exponentially larger systems should be sta-
bilized in hierarchical organization. Our results are in
conformity with this expectation, although the system
studied in [25] has a random branching. They have also
found that asymmetric interactions give a higher stabil-
ity. This is also expected from our analysis. It is difFicult
to Gnd such a naturally occurring system with a clearly
demarcated tree structure. However, the properties we
are trying to emphasize are qualitatively unchanged as
long as the connectivity remains free of loops (and the
resulting feedback) .

Our results have immediate relevance to the problem
of synchronization in chaotic systems, which is currently
evoking considerable interest [30). In one dimension, this
problem has been extensively discussed [16, 17]. Our re-
sults demonstrate a method of stabilizing large systems
and are of practical utility in this context.
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