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DifFusive hysteresis at high and leer driving frequencies
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The hysteresis loop area of a diffusive system in a sinusoidally driven potential is studied. Asymp-
totic expansions of the hysteresis loop area are constructed in the high and low driving frequency
limits. Kramers' approximation is used to construct a simpli6ed expansion in the limit of both low
driving frequency and low temperature. The driving force is never assumed to be small.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

Hysteresis is the nonlinear and time-delayed response
of a system to the cyclical variation of a control parame-
ter, a familiar example being changes in magnetization in
response to a magnetic field. Often, hysteresis depends
on the frequency with which the control parameter is var-
ied. This may be modeled as the overdamped dynamics
of a particle in a bistable potential. When random noise
is added to such a system we obtain a Langevin equation,
for which a difFusion description via the Smoluchowski
equation is appropriate.

Periodically driven stochastic systems have been the
subject of recent study, particularly concerning the phe-
nomenon of stochastic resonance. For an overview, the
reader is directed to a review by Jung [1]. Theoretical
efForts have been Inade towards understanding these sys-
tems via assumptions of large [2] and small [2—5] driving
frequencies, two-state approximations [6], linear response
theory [6—8], and perturbation theory 9]. Unfortunately,
most of these efForts have been limited to small driv-
ing amplitudes, the domain of interest in stochastic res-
onance. Except for numerical studies [10], hysteresis in
these systems has received little attention. Future ar-
eas to which the theory of driven stochastic systems may
be applied include atomic force microscopy [11] and the
dipole response of proteins to external electric fields [12].

In this paper we study hysteresis in a one-dimensional
difFusive system which is subjected to sinusoidal forcing
of arbitrary amplitude. In Sec. IA we describe the sys-
tem to be studied and define the hysteresis loop area. In
Sec. IB we describe briefIy the numerical methods used
to verify our results. In Secs. II and III we derive asymp-
totic expansions for the area of the hysteresis loop in the
high and low frequency limits which are applicable to any
potential of the form V(X)+sin(At) W(X). The high fre-
quency expansion is found to be simple and independent
of temperature, while the low frequency expansion re-
quires multiple quadratures. The expansions are verified
by numerical integration of the Smoluchowski equation.
In Sec. IV we employ Kramers' approximation to propose
a simplified model for the driven double-well Landau po-
tential at low temperatures in the low frequency limit and
extract an expansion for the hysteresis loop area &om

this model. The result does not depend on the driving
amplitude, aside &om an assumption that it is not small.
The Kramers expansion is verified by comparison with
the general low &equency expansion of Sec. III.

A. Statement of problem

We wish to study hysteresis in a general sense for a
sinusoidally perturbed stochastic system. We make no
assumptions about the strength of the perturbation. We
assume that the high &iction limit is applicable, i.e.,
the system is described by the one-dimensional Smolu-
chowski equation.

We consider diffusion in a potential U(X, t) = V(X) +
sin(At) W(X), where U(X, t) -+ +oo as X ~ Woo for
all times t. The evolution of a probability distribution
P(X, t) is governed by the Smoluchowski equation [13,14]

OtP(X, t) = BxD Ox+ [Vx(X)
1

+ sin(At) Wx(X)] P(X, t),

where the subscripts on V and R' denote difFerentiation
with respect to X. Note that the difFusion constant D
may be expressed in a temperature-dependent manner as
k~T/p, where p is the friction coefficient in the Langevin
equation mX = —OxU(X, t) —pX+o.((t). At long times
the distribution becomes time periodic with &equency
A. This asymptotic distribution P, (X, t) may be ex-
panded in a Fourier series as Ao(X) + Aq(X) cos(At) +
Bq(X) sin(At) + . . In this paper we are only concerned
with asymptotic distributions and, therefore, drop the
subscript "as" &om here forward.

We now make substitutions to reduce the number
of parameters in the problem. Introducing the dimen-
sionless quantities x = X/Xo, p—:XoP, u—:U/Uo,
v—:V/Uo, m = W/Uo, and 8:—At transforms (1) into
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I~. ~. +
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f 0 ) (k~T~ Uo

qX py
* k~T

+ sing vr (x)] ~ ~
p(x, g). (2)(Ao)

De6ning the parameters v = 1/P:—k~T/Uo and ~ =
MCop/Uo produces the final form

urclsp(z, g) = 0 [r0 + v (z) + singtv (x)]p(x, g). (3)

p„e dsin0

x ag(x) dx, (4b)

where aq(x) is the cos 0 Fourier component of p(x, 0).

Except for the forms of the potentials v and m, there are
only two parameters of consequence: u, which character-
izes the driving &equency relative to the relaxation time
of the system excluding barrier-hopping processes; and 7,
which characterizes the temperature of the system rela-
tive to the scale of the potential U, and therefore does
describe barrier-hopping processes. We assume that e,
zu, and p are of order unity, allowing us to consider inde-
pendently the magnitudes of the parameters u and w.

The hysteresis loop area Q of such a system can be
defined as the area enclosed by a plot of the mean p~(0)
of the distribution p(x, 0) versus sing. Assuming that
[sing, pz(0)) forms a loop in the positive sense we have

B. Numerical examples

To verify the asymptotic expansions developed in
Secs. II and III we numerically integrate (3) for a pro-
totypical bistable potential v(z) = x /4 —x /2. This
symmetric potential has wells at x = +1 and a barrier
of height 1/4 at z = 0. I'or the sinusoidally driven per-
turbing potential we select tv(x) = —nx, a choice which
ensures that 'R is positive. For our numerical integra-
tions we take a = 1/2, which is sufBcient to overcome
the central barrier and "dump" the distribution between
the wells.

The calculations employ standard fully implicit meth-
ods for the time propagation of diffusion equations, as
outlined in [15]. The asymptotic distribution is found
by integrating forward in time Born an initial Boltzman
distribution at 0 = 0 until p(0) and p(0 + 2vr) do not dif-
fer significantly. This distribution is then renormalized
and integration continues for one additional cycle to col-
lect data. The final distribution then serves as the initial
distribution for a system with slightly altered parame-
ters. The method is simple and effective, but suffers at
extremely small ~.

II. HICH FKEQIIENCY' LIMIT

In this section we construct an asymptotic expansion
[16] for the hysteresis loop area in the high frequency
limit: we derive an expression for '8 which is correct to
erst order in u . The result is simple and, in the case
of a constant perturbing force, independent of tempera-
ture. Comparison with values of the hysteresis loop area
calculated via numerical integration of the Smoluchowski
equation veri6es the formula.

Assuming tu )) 1, we expand p(z, g) as a power series
p(x, 0) = po(x, 0) + ~ pq(x, 0) + O(u) ). This is then
substituted into (3) to yield

cls (ups(x, g) + p, (x, g) + O((u ') = 8 [~B + v (x) + singtv (z)] po(x, g) + cu 'pg(x, g) + O(~ )

Beginning with the highest order terms, we now match
powers of u to produce a series of simpler equations for
they .

There is only one term of order u, therefore
Bspo(x, 8) = 0. At large driving frequencies the response
time of the system is much slower than the oscillations in
sing. This allows us to ignore tv(x) in the limit ur —+ oo.
Thus po(x, g) = Ne ~"( ), where N ~ = j e ~"( ) dx.
Matching terms of order u produces the equation
O,p, (z, g) = O. [~cl. + v. (x) +sing~. (x)]p, (x, g). By
substituting the above expression for po(x, 8) we re-
duce this to clspq(x, g) = NOsingtU (x)e ~ & ). 'In-
tegration with respect to 0 then yields pq(x, 0)—Ncl tv (x)e ~"( ) cosg+ f(x) where f(x) isanarbitrary
function, conditioned only by f f(x) dx = 0. There-
fore, our asymptotic expansion for the distribution is
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FIG. 1. Hysteresis loop area in the high frequency limit:
comparison of asymptotic expansion (7) (continuous line)
with results of numerical integration of the Smoluchowski
equation (3) for v(z) = x /4 —x /2 and m(z) = nx with-
n = 1/2 (broken lines). Plots represent w = 1/16 (thin line),
1/4 (medium line), and 1 (thick line).
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p(x, g) = Ne

'[—Nc) (*) ~"( ) 0+ f( )]
+O(~ '). (6)

To calculate the hysteresis loop area, we use
(4b). By inspection of (6) we obtain ai (x)

iNB ip (z)e ~"( ) + O(m 2). Integration by parts
yields 'R = m(u —N f ip (x)e ~"( ) dx + O(~ ),
which can be simpli6ed as

'R = —vru) (ip (x))„+O(~ 2).

When iv(x) = —nx, this simplifies further to
vr o. u + O(~ ) which is independent of temperature.
This result has been verified by numerical integration of
(3) via the method of Sec. I B, as shown in Fig. 1. A sim-
ilar result has been found for magnetic systems [17,18].

III. LOW FREQUENCY LIMIT

In this section we construct an asymptotic expansion
[16] for the hysteresis loop area in the low frequency limit:
we derive an expression for '8 which is correct to 6rst or-
der in ~. The result is complicated, requiring multiple
quadratures for its evaluation. Fortunately, the calcu-
lation can be performed numerically and in Sec. IV we
obtain a simple expression for the low temperature limit
of our prototypical system. Comparison with values of
the hysteresis loop area calculated via numerical integra-
tion of the Smoluchowski equation veri6es the formula.

Assuming u « 1, we expand p(x, g) as a power se-
ries p(x, 0) = pp(x, 8) + urpi(x, 0) + O(ur ). This is then
substituted into (3) to yield

Os (happ(x, g) +~ pi(x, g) + O(~ ) = c) [r8 + v (x) +singu) (x)] pp(x, g) + a&pi(x, g) + O((u ) (8)

Beginning with the lowest order terms, we now match
powers of ~ to produce a series of simpler equations for
the p„.

Since there is only one term of order
we have for the first equation 0 [rB + v (x)
+ sin 0 ip (x)]pp(x, 0) = 0. This has the obvious
solution pp (x, 0) = N (0)e

—&("(*)+""s (*)~, where
~ ~C ~*~+""'"~*~idx. Note that here inJ—oo

contrast to Sec. II, N is 6I dependent. Matching
terms of order ~ yields the equation c)spp(x, 0)
c) [rc) + v (x) + sing ip (x)]pi(x, 0). An inhomoge-
neous equation, this has the solution pi(x, 0)
M(g)pp(x, g) + f(z, 0), where f(x, g) is a specific solu-
tion yet to be determined. The normalization condi-
tion f pi(x, g) dx = 0 allows us to express M(0)
—f f (x, 0) dx. Therefore, we need only determine

f(x, 0).
By rewriting the order-u equation as Bspp(x, g)

f ( g) p pu(x, &) —p~(x', s)
0

x OsN(0)e ~"(* ) dx" dx'(
(9)

and our expansion of the distribution is

I

rg e ~ (* s)0 e~"( 's) f(x, 8) we can find f through
integration. First we write P f Bspp(x', 0) dx'

e ~"( s)8 e~ ( s) f(x, g). We select the lower bound of
integration a = —oo because this choice ensures that the
expression is zero at 2; = +oo. Repeating the integra-

I

tion, we obtain p f&
e~"( ' ) f Os pp (x",0) dz" dx'

e~"( s) f(x, g). Since the value of the integration limit
b can be absorbed into M(0), we pick b = 0 for conve-
nience. Thus, our 6nal expression for the speci6c solution
is

OO

p(x, g) = N(8)e ~"(*' ) +(u f(z, g) —
~

f(x', 0) dx'
~
N(0)e ~" *' + O((u ).

)
(10)

'8 may then be calculated by the straightforward ap-
plication of (4) to (10). The calculations themselves are a
series of quadratures and may be performed numerically.
This has been done and in Fig. 2 the results are compared
to those obtained by numerical integration of (3) via the
method of Sec. IB. Note that the expansion grows quite
steep with increasing P, as is further commented on in
Sec. IV.

Iy'. LOW TEMPERATURE, LOW FREQUENCY
LIMIT

In this section we employ Kramers' approximation [19]
for the barrier-hopping rate to construct an approxima-
tion for the hysteresis loop area of our prototypical sys-
tem in the low temperature, low &equency limit. Similar
methods have been used to address stochastic resonance
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but the errors are mainly in phase with the driving force
and, therefore, do not contribute to the hyteresis. We
use our definition of pz and the normalization condition
K~ + N~ = 1 to rewrite (11), after some manipulation,
as

(ue~/ Bspp(8) = [sinh(aP sin 8)

pp(—8) cosh(aP sin 8)]. (12)

0.1 0.2 0.3 0.4

[4,5]. Kramers approximation is only valid with large
barrier heights, but we can employ it successfully with
large perturbing forces because we are in the adiabatic
limit. We make the additional approximations that the
positions and curvatures of the extrema do not change
as the system is perturbed and that the mean of the
distribution in each well remains at the corresponding
minimum of the unperturbed system. The result is sim-
ple and matches the more coxnplicated result of Sec. III
surprisingly well.

Kramers' approximation for the transition rate over a
high barrier lS A escape ~welles barrier (2'XP)
where ubarrier is the barrier height and wwell and —cc)barrier
are the curvatures of u at the bottoms of the wells and at
the top of the barrier, respectively. In our prototypical
bistable potential u(x, 8) = x /4 —x /2 —ax sing we
approximate the full diffusion problem by the &actions
of particles in the left and right wells, NA and NB, and
the Kramers escape rates &om them, kA and kB. These
are related by

FIG. 2. Hysteresis loop area in the low frequency limit:
comparison of 'R calculated from asymptotic expansion (10)
(continuous lines) with results of numerical integration of
the Smoluchowski equation (3) for v(x) = z /4 —x /2 and
ro(z) = —a2: with a = 1/2 (broken lines). Plots represent
v = 1/16 (thin line), 1/4 (medium line), and 1 (thick line).

Since we are in the adiabatic limit, we assume w &( e
and construct an asymptotic expansion in the small pa-
rameter e = we~/

ExPanding Pp(8) = Po(8) + Gal (8) + O(e ) and
substituting into (12) yields the order so equa-
tion 0 = (~2/vr) [sinh(aPsin8) —po(8) cosh(aP sing)].
Thus, po(8) = tanh(aP sin 8). Resubstituting
and matching terms of order e produces
aPcos8sech (aPsing) = —(~2/vr) pl(8) cosh(aPsing),
so pl (8) = —(aPm. /~2) cos 8 sech (aP sin 8). Our full
expansion for p„(8) is then

pp(8) = tanh(aPsing)
—e(apm/~2) cosgsech (apsing) + O(s ). (13)

Applying (4) to (13) gives

'R e~ (apw7r/v 2) cos 8 sech (ap sin 8)dg,
0

which cannot be expressed in closed form. However, since
we have assumed P » 1, we can make the additional
assumption that aP » 1 and expand around the (very

lim o &/~

10
NA = kANA + kBNB y

NB ———kBNB + kANA.

(1la)
(11b)

102
Kramers' approximation is only valid for ub „;„))7.

However, if our system is in the adiabatic limit and the
temperature of the system is low then almost all of the
Aux occurs within a short time of when the side with
the lower well changes. Therefore, Kramers' approxima-
tion need only be valid near this time of high Aux for
the model as a whole to be correct. Hence, we are al-
lowed to make the rough approximation that the wells
remain at +1 and the barrier at 0 for all 0, providing ap-
proximate escape rates of k~ = (~2vrp) e

and k~ = (~2vrp) e l &~/4+ ""s). We also approxi-
mate the means of the distributions in the wells by +1,
resulting in an overall mean p„= NB —NA. This ap-
proximation is inaccurate at large driving amplitudes,

10

20

FIG. 3. Hysteresis loop area in the low temperature, low
frequency limit: comparison of formula for 'R derived from
Kramers' approximation in Sec. IV (14) (continuous line) with
'R calculated from asymptotic expansion (10) (broken lines).
Plots represent driving amplitudes of a = 1/4 (short dashes)
and 1/2 (long dashes).
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sharp) peaks of sech (aP sine) at 8 = 0, rr. This leads to
'R ~ e~~ rr~2 f sech (x)dx, which can be expressed
in closed form. Hence, our approximation assumes the
Anal form

the problem may be addressed via linear response theory.
The large growth rate of the expansion with increasing
P, when combined with the fact that the hysteresis loop
area is bounded, can provide an estimate for the range
of applicability of the low &equency expansion.

To verify (14), we compare it to the result of Sec. III.
As shown in Fig. 3, the two methods agree in the large P
regime. This agreement is particularly surprising when
one considers the number of approximations which en-
tered into our calculation. Another pleasant surprise is
that our approximation is o. independent aside &om the
conservative assumption that nP )) 1. This restriction
is not too disappointing, however, because if o, is small
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