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Spectral statistics in the quantized cardioid billiard

A. Backer* and F. Steiner
II In.stitut fur Theoretische Physik, Universitat Hamburg, Luruper Chaussee I/9,

22761 Hamburg, Federal Republic of Germany

P. Stiftert
Abteilung fur Quantenphysik, Universitat Ulm, 8906g Ulm, Federal Republic of Germany

(Received 6 April 1995)

The spectral statistics of the strongly chaotic cardioid billiard is studied. The analysis is based
on the 6rst 11000 quantal energy levels for both odd and even symmetry. It is found that the
level-spacing distribution is in good agreement with the Gaussian-orthogonal-ensemble distribution
of random-matrix theory. In the cases of the number variance and rigidity we observe agreement
with the random-matrix model for short-range correlations only, whereas for long-range correlations
both statistics saturate in agreement with semiclassical expectations. Furthermore the conjecture
that for classically chaotic systems the normalized mode fiuctuations have a universal Gaussian
distribution with unit variance is tested and found to be in very good agreement for both symmetry
classes. By means of the Gutzwiller trace formula the trace of the cosine-modulated heat kernel is
studied. Since the billiard boundary is focusing, there are conjugate points that give rise to zeros
instead of exclusively at Gaussian peaks at the locations of the periodic orbits.

PACS number(s): 05.45.+b, 03.65.Sq

I. INTRODUCTION

Today the important role played by chaos in nonlinear
dynamical systems is generally appreciated. The most
striking property of deterministic chaos is the sensitive
dependence on initial conditions such that neighboring
trajectories in phase space separate at an exponential
rate. As a result the long-time behavior of a strongly
chaotic system is unpredictable. There the fundamental
question arises whether this well-established phenomenon
of classical chaos has an analogue in the quantum world
that could be called "quantum chaos. " By this the follow-
ing is meant, : Given a dynamical system which is strongly
chaotic, i.e. , ergodic, mixing, and a K system, is there
any manifestation in the corresponding quantal system
which betrays its chaotic character? (For an authorita-
tive review, see Ref. [1].) If one were to identify unique
fingerprints of classical chaos in quantum mechanics, one
could use these to define quantum chaos. Ideally, classi-
cally chaotic systems should be characterized by a ran-
dom behavior of these fingerprints that qualify the sys-
tem to be called "chaotic" also in quantum mechanics.

For bound conservative systems, the quantum mechan-
ical time evolution is almost periodic, in the sense of
Harald Bohr's theory of almost periodic functions, due
to the discrete spectrum of the time-evolution operator.
One thus observes no sensitive dependence on initial con-
ditions in the long-time behavior of quantum mechanics.
This is in contrast to classical systems whose time evolu-
tion is ruled by the Liouville operator. If the classical
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dynamics is strongly chaotic, the spectrum of the Li-
ouvillian has a continuous spectrum on the unit circle
which leads to a decay of time correlations of classical
observables reflecting a complete loss of information on
the system. This fundamental difference between classi-
cal and quantum mechanics has led to the common be-
lief that there hardly exists any phenomenon in quantum
mechanics which justifies the notion of quantum chaos.

However, instead of concentrating on the long-time be-
havior, one can consider the extreme limit t = oo in
quantum mechanics and thus study properties of station-
ary states, that is, of eigenvalues and eigenfunctions of
the corresponding time-independent Hamiltonian. The
idea is that the statistical properties of the energy-level
fluctuations ("spectral statistics") and wave functions of
a given quantum system are already determined by its
classical limit, depending only upon whether this lixnit
is chaotic or not. (In this paper we shall consider the
spectral statistics only; for a discussion of the statisti-
cal properties of wave functions in chaotic systems, see
Refs. [1—6].) It has been conjectured that the statistical
properties of quantum energy spectra of classically inte-
grable systems can be described [7] by Poissonian ran-
dom processes, whereas the spectral statistics of strongly
chaotic systems can be described [8] by the universal laws
of random-matrix theory (RMT), originally proposed by
Wigner, and Landau and Smorodinsky, and fully devel-
oped by Dyson for a better understanding of the reso-
nances of compound nuclei. (See Ref. [9] for a collection
of the original papers, and Refs. [1,10,11] for recent re-
views. ) The random-matrix model for spectral statistics
has to be viewed as a purely phenomenological one, in
contrast to random-matrix theory which constitutes an
exact mathematical theory. So far there does not exist a
complete theory for the spectral statistics of chaotic sys-
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tems, nor even for integrable ones. Based on Gutzwiller's
trace formula [12,1], Berry carried out a semiclassical
analysis [13—15] of the level Huctuations and obtained a
saturation of the two-point statistics for long-range cor-
relations in contradiction with the predictions based on
RMT; nonuniversal long-range correlations occur due to
the nonuniversal behavior of short periodic orbits. A
recent analysis [16,17] based on the exact Selberg trace
formula has clearly confirmed the nonuniversal satura-
tion up to correlation lengths as large as L = 700 (in
units of the average level spacing). In addition, there
exists a class of strongly chaotic systems for which the
spectral fluctuations nearly behave as is expected for clas-
sically integrable systems. This phenomenon occurs for
geodesic flows on hyperbolic manifolds (for instance, Rie-
mannian surfaces with constant negative Gaussian curva-
ture), whose fundamental groups are of an arithmetical
origin; thus the notion of arithmetical chaos was intro-
duced [18,19]. The dynamical systems possessing arith-
metical chaos violate universality in energy-level statis-
tics even in the short-range regime. It thus appears that
the random-matrix model does not provide a universal
signature of classical chaos in quantum mechanics.

Recently, a novel quantity to measure quantum chaos
has been proposed and a conjecture about its statisti-
cal behavior has been put forward [5,17]. According to
this conjecture there are unique fluctuation properties in
quantum mechanics which are universal and, in a well-
defined sense, maximally random if the corresponding
classical system is strongly chaotic. Numerical as well as
theoretical evidence has been provided in favor of the con-
jecture [6,17]. A rigorous proof of the conjecture would
give us a clear-cut definition of quantum chaos in spectra.

In order to shed more light on the relationship between
classically chaotic systems and the corresponding quan-
tum systems it is important to have a large number of
systems for which it is possible to carry out extensive
numerical computations of the relevant spectral statis-
tics. The simplest nonlinear dynamical systems one can
study are billiard systems. They consist of a point par-
ticle moving &eely inside a curved boundary with elastic
reflections at the boundary. These systems are specially
suited for the study of a possible manifestation of classical
chaos in quantum mechanics, because a lot of mathemat-
ical results are available. Furthermore the integration of
the equations of motion is trivial, i.e. , the geodesics are
straight lines, which by no means implies that it is triv-
ial to determine all periodic orbits having periods below
a given value. Moreover, billiard systems belong to the
so-called scaling systems with the semiclassical limit of
Planck's constant 5 —+ 0 being equivalent to the high
energy limit E —+ oo.

In this paper we are concerned with a billiard system
bounded by the cardioid. This system is of special in-
terest because it provides one of the few examples for
which it is rigorously proven that it is strongly chaotic
[21—24]. Famous other examples are the Sinai billiard
[25,26], which is very important for the foundations of
statistical mechanics, and Bunimovich's stadium billiard
[27—30]. However, the last two systems possess some non-
generic features, because they have a family of stable

periodic orbits, the so-called bouncing-ball modes. The
cardioid billiard has no such family, and no whispering
gallery orbits exist. Furthermore the boundary is focus-
ing and the geometric properties are such that caustics
exist. Their important influence will become clear in Sec.
IV in the discussion of the cosine-modulated heat kernel.

The paper is organized as follows. After defining the
cardioid billiard and its quantum mechanical version in
Sec. II, we present in Secs. III A to III E a detailed anal-
ysis of the spectral statistics, i.e. , the spectral staircase
function, the b„statistics, the level-spacing distribution
P(s), the number variance Z (L), and the rigidity 43(L).
In Sec. IIIF the distribution of the mode-fluctuation
number is calculated and found to be in excellent agree-
ment with the recent conjecture [5,6] on quantum chaos
in spectra. In order to keep the number of figures limited,
the various spectral measures are displayed in each case
for one symmetry class only, but we show the plots for
even and odd symmetry in an alternating order. In Sec.
IV we consider the trace of the cosine-modulated heat
kernel as an additional test of the accuracy of the eigen-
values and as a first application of Gutzwiller's periodic-
orbit theory. Section V contains a summary and discus-
sion of our results.

II. THE CARDIOID BILLIARD

The billiard system to be studied is given by the free
motion of a point particle inside a two-dimensional Eu-
clidean domain 0 bounded by the cardioid (see Fig. 1)
with elastic reflections at the boundary 00. The cardioid
billiard is the limit case of a family of billiards which was
introduced by Robnik [20]. The boundary 80 of the bil-
liards is defined by a quadratic conformal mapping of the
unit circle

m = u+iv = z+Az;

Starting with A = 0 one gets a continuous deformation
of the circle. The cardioid billiard is obtained for A = 2,
for this value the mapping is no longer conformal, since

= 1+ z = 0 for z = —1 (y = vr), where the cardioid
has a cusp. It was proven that the cardioid billiard is
ergodic, mixing, and a K system [21—23]. In fact it is even

FIG. 1. Full and desymmetrized cardioid billiard. D de-
notes Dirichlet and N Neumann boundary conditions.
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a Bernoulli system, which follows &om a recent result
[24]. The corresponding quantum mechanical system is
governed by the Schrodinger equation (in natural units
@=2m = I)

—AC„(q) = E„C„(q), q e 0, g 6000

7.

with Dirichlet condition 4 (q)=0 at the boundary BO.
4 is the two-dimensional I aplacian. Furthermore, we
have the orthonormality relation

0
0 30000

E

Notice that the eigenfunctions 4'„(q) can be chosen as
real. For 0 being compact the energy spectrum (E„)
is purely discrete. Since the system is invariant under
reHection at the symmetry line (v = 0) one can classify
the wave functions 4„(q) as odd and even eigenfunc-
tions satisfying Dirichlet or Neumann boundary condi-
tions respectively at the symmetry line. Therefore we
will consider the two desymmetrized. versions of the car-
dioid billiard only; see Fig. l.

For the following discussion it is important to keep in
mind that the semiclassical limit 5 —+ 0 corresponds to
the high energy limit E —+ oo.

III. SPECTRAL STATISTICS

A. Spectral staircase and Weyl's law

N(E) = A((n[E„& E)), (2)

One can easily check the asymptotic behavior of the
spectrum by calculating the spectral staircase function
(integrated level density)

FIG. 2. Spectral staircase N (E) for odd symmetry and
generalized Weyl's law, Eq. (3). The insets show a mag-
nification of the energy intervals [0, 100] and [59150,59270]
respectively.

eigenvalues were computed by Prosen and Robnik [32] by
using the conformal mapping diagonalization technique
which was introduced by Robnik [33,34]. In Ref. [34] the
energy-level statistics was investigated in detail for the
family of billiards (1) for various parameters A ( 2 for
which a rigorous proof of strong chaos is lacking.

Despite the fact that N (E) is an asymptotic law,
it gives the correct mean behavior down to the ground
state, as was observed in many other systems before. Fig-
ure 2 strongly indicates that the computed energy spec-
trum for odd symmetry is complete for the first 11000
levels. In the same way we have also checked the energy
spectrum for even symmetry being complete for the first
11000 levels. Furthermore, no degeneracies of eigenval-
ues in the spectra for even and odd symmetry were found.

In order to compare the eigenvalues of the cardioid
billiard. with those of other systems, it is necessary to
unfold the spectrum by means of the generalized Weyl's
law (3) or (4)

which counts the number of energy levels below E N(E).
can be divided into a smooth and. an oscillatory part

N(E) = N(E) + N „(E)
The mean behavior of N(E) is asymptotically for E ~ oo
described by the generalized Weyl's law including perime-
ter, corner, and curvature corrections [31]. For odd (—)
and even (+) symmetry, respectively, one obtains

E„'+ = N+(E„+)

In the following we shall analyze the unfolded spectra
(E„'+) for the two desymmetrized billiards, but the prime
and superscript + will be omitted. After the process of
unfolding the spectrum has a mean level spacing of unity,
and different systems difFer in the oscillating part N „(E)
only.

N (E) = E — vE+ —— —
N+(E) = E — VE— —

(3)

(4)

where the inward pointing cusp contributes like an edge
with angle m in the desymmetrized billiard. In Fig. 2
the spectral staircase N (E) is shown for the first 11000
energy levels for odd symmetry and compared with the
generalized Weyl's law N (E), Eq. (3). Due to the
large energy interval no difference between both curves
is visible in this figure on the whole range. Therefore
two insets at the lowest and highest ends are shown. The

B. B„statistics

A more refined way of testing whether the spectrum is
complete can be performed by considering the Quctuating
part N „(E ) of the spectral staircase function evaluated
[35] at the unfolded eigenvalues E
h„:=N „(E„):=N(E„) —N(E„) = n —

2
—E„. (5)

As one can see in Fig. 3, where the even case is shown, b

is oscillating around zero, showing that the levels indeed
obey the mean behavior as described by Weyl's law. If a
level was missing, b would oscillate around —1 from then
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FIG. 3. Plot of the fluctuating part b:= 1V „(E )
:= n ———E for even symmetry for the first 11000 eigen-
values.

on. This indicates that the spectrum for even symmetry
is complete for the first 11000 levels. The same holds for
the odd case.

Remarkably, the b„statistics is even sensitive to the
constant term in Weyl's law, Eqs. (3) and (4), as one
can infer &om the mean values of b for which we obtain
(h) = —0.00072 for odd and (8) = —0.00217 for even.
symmetry. This is in the odd case more than a factor
200 less than the constant C pd yg 0 1875 in Eq.
(3). In case of the constant being neglected or unknown,
the mean value of b„would provide a good approximation
to the constant term in Weyl's law.

Although the fluctuations b have mean zero, a look
at Fig. 3 suggests that their variance slowly increases
with increasing energy. A quantitative discussion of this
important observation will be postponed until Sec. III E.
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Since the cardioid billiard possesses time-reversal sym-
metry the level-spacing distribution is expected to be de-
scribed by a Wigner distribution. In Fig. 4 the level-
spacing distribution for odd symmetry is shown. The
agreement with P +oE(s) is very good. A similar result
holds in the even symmetry case.

The level-spacing distribution has the drawback that
there is a loss of information due to the binning. There-
fore it is more significant to look at the cumulative level-
spacing distribution

8

I(s) = P(s') ds'
0

FIG. 4. Histogram of the nearest-neighbor level-spacing
distribution P(s) for odd symmetry. The dashed line is the
expected Wigner distribution, the dashed-dotted line is the
GUE distribution, and the dotted line shows the Poissonian
distribution expected for integrable systems.

C. Level-spacing distribution

An important statistic measuring short-range corre-
lations of the spectrum is the nearest-neighbor level-
spacing statistic P(s) P(s) ds is .the probability of find-
ing an arbitrary pair of nearest neighbors of energy levels
with spacing s = E +i —E in the interval [s, s+ ds].
Thus P(s) measures fluctuations of the distances between
two nearest-neighbor levels.

The level-spacing distribution for typical integrable
systems is found to obey the Poissonian distribution
P P "(s) = e ', which is in clear contrast to the level
repulsion observed in generic chaotic systems. The
random-matrix model [10] predicts that for systems with
time-reversal symmetry the level-spacing distribution
P(s) is given by the distribution of the Gaussian orthogo-
nal ensemble (GOE) which is well described by a Wigner
distribution

P E(s) = —s exp (——s~)

whereas systems without such symmetry should obey the
distribution of the Gaussian unitary ensemble (GUE)
which is in good approximation given by

GUE 4
(s) = —s exp ——s

7r2 7r

Numerically this quantity is calculated by sorting the set
of nearest-neighbor spacings (s„) and determining the
fraction of level spacings below a given s.

As one can see in Fig. 5, where the even case is shown,
the agreement between the cumulative level-spacing dis-
tribution and the cumulative GOE expectation is very
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s
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FIG. 5. Cumulative level spacing for even symmetry. Full
line: calculated from the energy levels; dashed line: GOE
expectation I (s); dashed-dotted line: GUE expectation
I (s); and dotted line the Poissonian distribution I "(s).
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good. The Kolmogorov-Smirnov test gives a significance
level of 'P = 24% for the odd and 'P = 67% for the
even case assuming a GOE distribution, whereas for the
GUE distribution an extremely small significance level of
'P ( 10 52 is obtained for both symmetry classes.

D. Number variance

0.8-
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In contrast to the level-spacing statistic, the number
variance allows one to investigate also medium- and long-
range correlations of the spectrum. It is de6ned by
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Z'(L, E):= ([n(L, E) —L]2)~ ~, L ) 0,

ZGoE(L) = —ln(2vrL) + p+ 1+ —Si (7rL) ——Si(vrL)
1 .2 'Tr

7r2 2 2

—cos(2vrL) —Ci(2m. L)

+~ L 1 ——Si(2vrL)2 2 ~

(7)

and for the GUE

ZGUE(L) = —ln(2vrL) + p + 1 —cos(2aL)2 =1

—Ci(2n. L) + vr L 1 ——Si(2vrL), (8)2 2

where Si(x) and Ci(x) are the sine and cosine integral,
respectively, and p = 0.5772. . . is Euler's constant. For
a random Poissonian process one has

which is the local variance of the number n(L, E)
N(E+ 2) —N(E —2) of unfolded energy levels E„ in
the interval [E —~~, E + ~ ]. The angular brackets ()& &)

denote a local average with center E and effective width
b. Different averaging procedures are possible; here we
have chosen a rectangular averaging

P+b/2
(&(E))-, =- f(E) «

E—b/2

In random-matrix theory one obtains in the GOE case

FIG. 6. Number variance Z (L, E) for odd symmetry at
difFerent energies E: E = 1000 (full line), 4000 (long dashed
line), 7000 (short dashed line), 10000 (dots); h = 1800. Up-
per dashed-dotted line: GOB expectation ZooE(1); lower
dashed-dotted line: GUE expectation Z&Uz(L).

In Fig. 6 we show the number variance in the odd
symmetry case for L & 50 and different values of E:
E = 1000, 4000, 7000, 10000 (b = 1800). In Table I the
saturation values Z2 (E), calculated as the average of
Z2(L, E) over L C [15, 100], are listed. It is seen that
the agreement with the GOB expectation (dashed-dotted
line) is restricted to L & 2, . . . , 7, depending on E. Anal-
ogous results hold in the even symmetry case.

It is now well established that the medium- and
long-range statistics measured by the number variance
strongly depend on the (nonuniversal) short periodic or-
bits [13—15,36,16,17]. Therefore the universality regime,
which is expected to be governed by the random-matrix
model, is restricted to very small correlation lengths L,
which is confirmed by our numerical results. In order to
enlarge the range of agreement with the random-matrix
model, the center of the averaging window has to be in
the deep semiclassical regime corresponding to extremely
high lying energy levels. According to Berry s semiclassi-
cal analysis [14,15] Z (E) should increase with increas-
ing energy E in the limit of large E. A look at Fig. 6
and Table I shows that such an overall increase is indeed
observed within the relatively large Huctuations of the
number variance.

Zp;, (L) = L

which is in agreement with the general small-L behavior
Z2(L) = L + O(L2), following &om the fact that N(E)
is a staircase function.

E. Spectral rigidity

Another statistic measuring two-point correlations is
the spectral rigidity [10]

TABLE I. Saturation values Z (E) of the number variance and A (E) of the rigidity at difFerent
energies E'. Notice that the last digit is uncertain.

1000
4000
7000

10 000

Z' (R) (odd)
0.59
0.75
0.79
0.85

Z (E) (even)
0.60
0.75
0.83
0.83

(E) (odd)
0.29
0.38
0.40
0.43

(E) (even)
0.29
0.37
0.41
0.38
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1 L/2
A3(L, E):= min — de [N(E + e) —a —bE]

(~,b) L

(9)

which is the average mean square deviation of the spec-
tral staircase function &om the best Gtting straight line
over an energy range of L mean level spacings. The an-
gular brackets ()& &

again represent a local average.
For short correlation lengths I (& 1 the rigidity is inde-

pendent of the underlying spectrum, and obeys As(Ii)
is L, which is a consequence of N(E) being a staircase
function.

In the theory of random matrices (RMT) Z (L) and
As(L) are related through

limit E ~ oo for systems with time-reversal symmetry

(E) = lnE+ C

The constant C has been estimated by Berry as C =
C(lp) = —,1n[4vred(E)/lp] —

s where d(E) = " is the
mean level density, l0 denotes the length of the shortest
periodic orbit, and e is the base of the natural logarithm.
In the case of the cardioid billiard we have l0 ——2.598. . .
and thus obtain C(lp) —0.034 for both symmetry
classes. Due to the finite number of available energy
levels we cannot perform the limit L ~ oo. Therefore
we have determined A (E) &om a fit of &s(L; E) in the
range L g [15,400] for fixed E to the function

L
(L): (L —2L r + r ) ZRMT(r) dT

0

b,",'(L) = E
~

1+ —+a bl
(12)

(10)

By this equation it is possible to obtain As OE(L) or
AsGUE(L) by numerical integration of Eqs. (7) or (8).

In Fig. 7 the rigidity calculated &om Eq. (9) is shown

for diIII'erent energies E and b = 1800. One clearly ob-
serves a saturation effect of the rigidity for large L as is
suggested by Berry's analysis [13] of the spectral rigidity
using the semiclassical trace formula. This is in contrast
to the logarithmic increase predicted by random-matrix
theory; see Eq. (7). The rigidity is smoother than the
number variance, but reaches the saturation later in com-
parison with Z2(L, E). The prediction of the random-
matrix model for the rigidity suÃers &om the same draw-
back as in the case of the number variance, i.e. , that it is
valid for small correlation lengths L only.

For the following section it is of great importance to
know the dependence of the saturation value 4 (E)
of the rigidity on the energy. 4 (E) is defined as

(E) = liml, ~ As(L, E). According to Berry's semi-
classical analysis [13] one expects in the semiclassical

where 4, a, and 6 are fit parameters. We have chosen
nine difFerent energies E &om the interval [1000, 10000]
and determined the corresponding saturation values

(E) using the fit (12). Fitting in turn the asymp-
totic behavior (11) to these values we obtained for the
constant t = —0.048 in the odd and C = —0.052 in the
even case. The results of the saturation values together
with the asymptotic curve (11) are represented for the
odd case in Fig. 8. Notice that the values obtained for
the constant C deviate kom the simple estimate using
only the shortest periodic orbit. Another interesting as-
pect which can be deduced &om Eq. (10) is that there
exists a simple relation between the two saturation values
[36]

Z =2L

This relation is con6rmed by our numerical data within
the expected errors, see Table I, except at E = 10000 in
the even case.
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FIG. 7. Rigidity Kz(I, E) for even symmetry at different

energies E: E' = 1000 (full line), 4000 (long dashed), 7000
(short dashed), 10 000 (dots); 8 = 1800. The dashed-dotted
line shows the expectation of random-matrix theory in the
GOE case A~ (L).

FIG. 8. Saturation values A (E) (stars) for odd symme-
try at difFerent energies, and the asymptotic curve (11) with
C = —0.048 (full line).
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FIG. 9. Histogram of the mode-Buctuation distribution
P(W) (odd case). Dashed line: Gaussian limit distribution. FIG. 10. Cumulative mode-Huctuation distribution for the

even case in comparison with the cumulative version of (15).

F. The mode-fluctuation distribution P(W)

N(E) —N(E)
g~ (E)

N „(E)
g~ (E)

(14)

As we have seen in the preceding sections, the agree-
ment of the computed number variance and rigidity with
the predictions of random-matrix theory holds only at
small- and medium-range correlations. A novel quantity
which can be used as an indicator of quantum chaos in
spectra is the distribution P(W) of the mode fluctuation
W(E) [5,6]. The function W(E) is defined as the nor-
malized fluctuations of the mode number N(E) around
the mean mode nuinber N(E)

histogram of W(E). As one can see in Fig. 9 the agree-
ment between the histogram and the Gaussian normal
distribution is very good. In Table II the mean value,
variance, skewness, and kurtosis for the odd and even
cases are shown. In order to quantify the visual impres-
sion, we applied the Kolmogorov-Smirnov test to the cu-
mulative mode-fluctuation distribution C(W) (see Fig.
10). We have chosen equidistantly 11000 points of the
unfolded energy interval [0, 11000] and determined the
maximum value D of the absolute difference between the
cumulative distribution and the cumulative normal dis-
tribution. The significance level P of the distance D is in
both symmetry cases above 60%, which strongly confirms
the conjecture.

PG „„(W)= ——We

whereas classically integrable systems should display
non-Gaussian distributions P(W). Numerically the dis-
tribution function was calculated by randomly choosing
10~ energy values E E [0, 11000] and determining the

By definition N „(E)fluctuates around zero, see Fig. 3,
and furthermore it can be shown [19] that the second mo-
ment of N „(E) tends asymptotically to the saturation
value 4 (E) of the rigidity.

In [5,6] the conjecture has been put forward that classi-
cally chaotic systems should display a universal Gaussian
behavior in the semiclassical limit E —+ oo

IV. THE TRACE OF THE COSINE-MODULATED
HEAT KERNEL

It is well known that the Gutzwiller trace formula for
bound quantum systems [12,1] obtained from a semiclas-
sical approximation for the density of states is at best
conditionally convergent. Based on Gutzwiller's semi-
classical approximation for the level density a generalized
trace formula has been derived by considering the trace
Tr h(Hii2) of a suitable test function h(p) of the square

root of the Hamiltonian H [37]. The result obtained in
the semiclassical limit of Planck's constant 5 ~ 0 is a
periodic-orbit sum rule, which involves (in case of even
Maslov indices) absolutely convergent sums and integrals

TABLE II. First moments of the mode-Quctuation distribution P(W) for the odd and even case.

Moment

Average
Variance
Skewness
Kurtosis

Odd symmetry

—0.001
0.992

—0.021
0.112

Even symmetry

—0.003
0.996
0.008

—0.089

Conjecture (15)
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only (h = 2m = 1)

) h(p„) - dph(p)d(p) + t."h(0)
n=1 p

+) ) ' X,(h(~l, )) . (16)

Here the sum on the left-hand side runs over all quan-
tal eigenvalues (not unfolded) parametrized by the dis-
crete momenta (p„= gE ). The integral on the right-
hand side is the so-called "zero-length contribution" and
is completely determined by the generalized Weyl's law

aA(J')
d(p) = &~

) . The p summation runs over all primitive
periodic orbits p of length l~, whereas PA, counts multi-
ple traversals corresponding to periodic orbits of length
kl~; M~ is the monodromy matrix, t." is the constant term
in Weyl's law, and %~{h(x)) denotes the Fourier trans-
form of the test function h(p) (incorporating the phase
shift due to the Maslov index)

OO

y (h(x)) = — dph(p) cos(px —kv~ —,)
7t p

h{p) = cos(pL) e " '; p=vE, t&0 .

where v~ denotes the Maslov index which is twice
the number of reBections at Dirichlet boundaries plus
the maximal number of conjugate points p~ (see, e.g. ,
[38,S9]).

Starting from the generalized trace formula (16) we
can study the inverse problem of quantum chaos: to ob-
tain the lengths of the periodic orbits from the quantal
energy levels. This problem can be solved by consider-
ing the trace of the cosine-modulated heat kernel [40,41]
Trfcos ( 6) ~2L e~ —), which is obtained from Eq. (16)
by choosing the following test function:

W~ fh(x) ) = exp ~—(—1) 1 ( (x —L)2)
4t

(x+ L)')
+exp (—

4t )
whereas for odd kv~ = 2m + 1 the result of the sine-
Fourier transform of (18) is given by

(x —L)')
4t

&,(h(x)) = —(*—L) i+i
~

1, —,—(—1)- 1 3
4 art

+(x+L) ~+~
~

1 — —
l (2o)

3 (x+ L)')
i '2 4t )

where qEq(a, b, z) is Kummer's function. The Fourier
transforms (19) and (20) clearly display the different kind
of shapes of the periodic-orbit contributions to the trace
formula as a function of I for Gxed t. If kv~ is even,
one obtains a Gaussian peak at I = kl~, whereas for odd
kv~ one has a zero at the lengths of the periodic orbits
because qFq(1, 2, 0) = 1. This is similar to the observa-
tion made by Sieber et al. [42] in the case of the Fourier
analysis of the spectrum.

The trace of the cosine-modulated heat kernel al-
lows one to extract the length and stability of the
first orbits and even the value of kv~ modulo 4. The
last property cannot be read oK in the case of the
often considered so-called power spectrum D(x)
j.' " dpe'"*[d(p) —d(p)l .

With the Brst 11000 levels and a smoothing parame-
ter t = 0.0001 we obtained the graph (full line) shown in
Fig. 11 for the odd symmetry case. For a proper compar-
ison with the trace formula, we have to subtract &om the
right-hand side of (16) the contribution of the unknown
part of the energy spectrum, (E; n ) N = 11000).
This contribution is estimated by first replacing the sum
over the discrete spectrum by a Riemann-Stieltjes inte-
gral, and then approximating the integral by means of
Weyl's law, Eqs. (3) or (4):

Due to the geometry of the cardioid billiard with its fo-
cusing boundary, the orbits listed in Table III have a non-
vanishing maximal number of conjugate points p~. Thus
v~ can be odd or even which results in a sine- or cosine-
Fourier transform respectively. For even kv~ = 2m one
has a cosine-Fourier transform which yields for (18)

) h(p„) = dN(E) h(V E) = dp h(p) d(p)
4+N

Subtracting this term f'rom the right-hand side of (16)
implies that the integration in the integral in (16) has to
be restricted to the interval [0, gE~]. With this approx-

TABLE III. Dynamical data of the first primitive periodic orbits. l~ is the length of the orbit p,
TrM~ denotes the trace of the monodromy matrix, p~ is the maximal number of conjugate points,
and v~ is the Maslov index [for odd (D) and even (N) symmetry].

Orbit no.
1
2
3
4
5
6
7

l,~
2.598
4.618
5.918
6.585
6.673
7.103
9.552

Tr M~
—2.50
—4.40
—9.74

7.62
—28.36

12.45
—16.31

Py
1
2
3
3
4
4

~. (D)
5

11
13
14
16
18

v (N)

6
9

12
12
12
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FIG. 11. Trace of the cosine-modulated heat kernel for odd
symmetry with t = 0.0001. Full line: sum over the 6rst 11000
energy levels; dashed line: periodic-orbit sum. The squares
indicate the lengths l~ of the first periodic orbits, see Table
III and Fig. 12, and of their repetitions.

imation we also show in Fig. 11 the right-hand side of
(16) (dashed line) by using the geometrical data of the
primitive periodic orbits known so far (see Table III and
Fig. 12). We observe a striking agreement between both
graphs which indicates the accuracy of the computed en-
ergy levels. Notice the excellent resolution of the two
peaks near L —6.6 which correspond to orbits no. 4 and
no. 5.

In the interval L E [7.1, 7.6] there are some differences
between the trace of the cosine-modulated heat kernel
calculated &om the eigenvalues and the periodic-orbit
sum, respectively, which are probably caused by orbits
which run into the cusp of the cardioid billiard. Their
contribution is expected to be of higher order in h and
thus is not included in the trace formula (16). Similar
differences exist in the even symmetry case. A detailed
analysis of the periodic-orbit theory for the cardioid bil-
liard is in progress and will be presented separately.

V. SUMMARY AND DISCUSSION

In this paper we have presented a detailed analysis of
the spectral statistics of the cardioid billiard. This dy-
namical system is strongly chaotic and thus constitutes
an ideal testing ground for quantum chaology. It is found
that the level-spacing distribution is in very good agree-
ment with the Wigner distribution. However, the num-
ber variance and rigidity clearly violate the universal laws
of random-matrix theory for medium and large correla-
tion lengths. The observed nonuniversal behavior agrees
with semiclassical expectations. Our results thus further
strengthen the evidence accumulated so far showing that
the applicability of the random-matrix model is limited
to short-range correlations only.

A promising candidate for a universal measure of quan-
tum chaos in spectra is the mode-fluctuation distribution
P(W). We have shown in Sec. IIIF that this novel spec-
tral statistic indeed displays at a high significance level a

FIG. 12. Primitive periodic orbits with l~ & 10. Notice
that orbit no. 5 does not run into the cusp.

universal Gaussian behavior in agreement with a recent
conjecture. In view of this result it appears even more ur-
gent to inquire for a rigorous derivation of the conjecture
&om first principles.

Finally, in Sec. IV, we have studied the trace of the
cosine-modulated heat kernel and have compared it with
the theoretical result derived &om Gutzwiller's semiclas-
sical trace formula. The overall agreement between "ex-
periment" and theory is striking. It is amazing to see
in Fig. 11, for instance, the pronounced zero at the lo-
cation of the length of the shortest periodic orbit. The
observed structure follows precisely the theoretical curve
as described by Eq. (20). This is a nice illustration of
"inverse quantum chaology:" Knowing the quantal eigen-
values we are able to determine not only the lengths of
classical periodic orbits, but also whether they possess
conjugate points or not. This agreement with periodic-
orbit theory calls for a more elaborate investigation of
the trace formula in the case of the quantized cardioid
billiard. Work along this line is in progress and will be
presented later.
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