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Power spectra from continuous-time dynamical systems exhibiting deterministic chaos decay
exponentially at high frequency. Power spectra from noisy systems decay via a power law. Since
noise is always present in real systems, one can, in practice, observe only a finite region of exponential
decay before the spectrum Qattens into the power-law decay characteristic of noise. Numerical results
are presented that show that, in the Lorenz and Rossler models [J. Atmos. Sci. 20, 130 (1963);
Phys. Lett. 57A, 397 (1976)], the preservation of a portion of the region of exponential decay
in the presence of noise is equivalent to the preservation of a portion of the scaling region of the
attractor giving the correct correlation dimension. This suggests that the observation of a finite
region of exponential decay is a suKcient condition for the dynamics of the system to be essentially
deterministic. In addition, theoretical arguments are presented that suggest that preservation of
the exponential decay is a sufhcient condition for the existence of finite-time shadowing orbits.
These results are applied to the numerical simulation of ordinary difFerential equations leading to
the conclusion that the survival of the region of exponential decay in the power spectrum should
guarantee that round-oK error and truncation error arising from the discretization of time are not
changing the dynamics of the simulation from the dynamics of the original ordinary di8'erential
equation. It is conjectured that analogous results should hold for the wave number spectrum in
spatiotemporally chaotic systems, that is, that the survival of a region of exponential decay in the
wave number spectrum should guarantee that truncation error arising from the discretization of
space is not fundamentally changing the dynamics of the system. This is shown to be true for the
special case of simulations of fully turbulent Qows.

PACS number(s): 05.45.+b, 05.40.+j, 02.50.Ey, 47.27.Eq

I. INTRODUCTION

It has been generally accepted for some time that the
power spectra of time series taken &om continuous-time
dynamical systems exhibiting deterministic chaos will
decay exponentially at high frequency [1]. On the other
hand, Sigeti and Horsthemke have proven that the spec-
trum decays as an inverse even power of the &equency for
systems subject to a very broad class of noises [2]. This
has led to the suggestion that an examination of the fall-
ofF of the power spectrum at high &equency may provide
a way of distinguishing systems exhibiting deterministic
chaos from systems subject to noise [3,2].

In practice, there are several problems with doing this.
It is impossible, of course, to measure to infinite &e-
quency. More importantly (because the amplitude is
falling off exponentially), it is impossible to measure to
infinitessimal amplitude. In experimental systems, the
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The use of high-frequency power spectra is restricted to

continuous-time dynamical systems because a discrete-time
system with a sample time of At has a power spectrum that
is defined. only within the Nyquist interval, —li2&t ( f (
1j2&t. Thus, for discrete-time systems, the notion of a high-
frequency asymptotic behavior for the spectrum is not even
defined.

size of the region of exponential decay tends to be re-
stricted in amplitude by instrumental noise which sets a
Hoor to the spectrum. This raises the question of what
it means to observe a finite region of exponential decay.

A more fundamental problem arises &om the fact that
noise is ubiquitous, at least on the scale of Brownian mo-
tion. Thus, one expects to see a power-law decay in any
system if one goes to high enough &equency. In practice,
one would expect a system with very low noise to ex-
hibit a long region of exponential decay followed, at very
high &equencies, by a Hattening to the power-law decay
characteristic of noise. This again raises the question of
the significance of a finite region of exponential decay.
It also suggests that the naive dichotomy of determinis-
tic versus stochastic systems must be replaced by more
sophisticated distinctions if one is to make meaningful
statements about real systems.

In this paper, results are presented &om numerical sim-
ulations of the Lorenz and Rossler models subject to ad-
ditive white noise that suggest that the preservation of
a part of the deterministic asymptotic (the exponential
decay) in the presence of noise is equivalent to the preser-
vation of the "correct" (that is, deterministic) dynamics
at longer time scales and larger amplitude scales. In other
words, it appears that the exponential decay electively
insulates the deterministic dynamics at larger scales &om
the noise that must dominate at smaller scales in real sys-
tems. This approach to the subject deals directly with
the question of the significance of a finite region of ex-
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ponential decay and avoids the problem of a naive di-
chotomy between deterministic and stochastic systems.

In addition to the results of numerical simulations the-
oretical arguments are presented that suggest that the
preservation of a region of exponential decay is equiva-
lent to the existence of a so-called "shadowing" orbit, an
orbit of the corresponding deterministic (zero-noise) sys-
tem that stays within a small distance of a typical orbit
of the noisy system for a long period of time. The exis-
tence of shadowing orbits would provide an explanation
for the preservation of the correct deterministic dynam-
ics at long time and large amplitude scales that has been
observed in numerical simulations. Conversely, an argu-
ment connecting the existence of shadowing orbits to the
preservation of a region of exponential decay provides ad-
ditional evidence for the thesis that the preservation of a
region of exponential decay corresponds to the preserva-
tion of the correct deterministic dynamics.

The approach taken in this paper has the advantage
of making the results relevant to the question of whether
or not simulations of ordinary di8erential equations are
valid. Because the errors introduced in simulating ordi-
nary diAerential equations on digital computers —round-
ofF and truncation error —can be considered to be white
or nearly white noise, the result of Sigeti and Horsthemke
[2] applies and we may expect these kinds of error to
produce a flattening of the spectrum at high frequen-
cies. Thus, the results presented in this paper suggest
that the resolution of a region of exponential decay in a
power spectrum from a simulation of a set of differential
equations can be taken as an i.ndication that round-o6'
and truncation error are not fundamentally changing the
dynamics from those of the "true" (continuous time, in-
finite precision) system. This may, in fact, be the area in
which the results reported here will be the most useful,
since numerical simulations can show a dynamic range in
the power spectrum of as much as 30 orders of magnitude
before the fundamental noise floor set by double preci-
sion arithmetic is reached. This provides far more room
for detection of a region of exponential decay than one
is ever likely to have in experimental systems where one
is lucky to achieve seven orders of magnitude of dynamic
range in the spectrum.

In Sec. VIII, I show that the resolution of the region of
exponential decay in the nave-number spectrum is equiv-
alent to a well-known practical criterion for the validity
of simulations of fully turbulent flows. This follows &om
certain well-known constraints on numerical simulation
of turbulent flows together with some recent results on
the wave-number spectrum of turbulent flows in the far
dissipation regime. The fact that results analogous to
those presented here for power spectra can be shown to
hold for the wave-number spectrum for a particular spa-
tiotemporaHy chaotic system suggests further support for
our results. Conversely, the fact that the results pre-
sented for power spectra are quite general suggests that
the analogous results for wave-number spectra may ap-
ply much more generally than is suggested by the energy
cascade arguments used for the case of turbulent How.
The results may, in fact, apply to any system exhibiting
spatiotemporal chaos.

The remainder of this paper will proceed as follows.
Section II reviews the origins of exponential and power-
law decays in deterministic and noisy systems, respec-
tively. This section also discusses the relationship be-
tween the smoothness of the time series and the high-
&equency fall-ofF of the power spectrum. Section III
briefly reviews the theory of shadowing. Section IV gives
an example of the preservation of a region of exponential
decay in the presence of noise. Section V presents the
argument for a connection between the preservation of
a region of exponential decay and the existence of shad-
owing orbits. Section VI defines the criteria used to de-
termine if deterministic dynamics are being preserved at
larger scales and presents the results &om numerical sim-
ulations of the I orenz and Rossler models. This section
also includes a general discussion of the problem of calcu-
lating power spectra accurately in the regi. on of exponen-
tial decay. Section VII discusses the question of whether
or not the survival of a region of exponential decay can
be equivalent to the survival of deterministic dynamics
in systems that are extremely sensitive to noise. Sec-
tion VIII discusses the connection of our results to the
question of determining the validity of numerical simula-
tions of diEerential equations. This section also presents
the case of turbulent flow and discusses the possible ex-
tension of our results to the wave-number spectrum in
spatiotemporally chaotic systems. Conclusions are sum-
marized in Sec. IX.

II. ORIGINS OF EXPONENTIAL
AND POWER-LAW DECAYS

A. Exponential decay of poorer spectra
in deterxninistic systems

The original argument for the exponential decay of
power spectra &om deterministic systems was given by
Frisch and Morf [1]. This section is a review of their
argument.

We consider a dynamical system given by a set of or-
dinary difFerential equations,

where x is a vector with n components. We restrict our
attention to cases where the functions f (z) are analytic
functions of their arguments for finite x. If we further
restrict our attention to motion on a bounded attractor,
then the components of x(t), x;(t), are bounded functions
of t for all real t, —oo & t & oo, and are analytic functions
of t for all 6nite, real t. It is then possible to extend the
z;(t) to analytic functions of complex t. Although the
x;(t) have no singularities on the real t axis, they can-
and in general will —have singularities at complex times.
It is the locations of these singularities that determine
the rate of exponential decay of power spectra at high
&equencies.

To show this, we consider the Fourier integral

(2)
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Under quite general conditions, this integral may be ex-
tended to a contour integral by closing with an infinite
semicircle in the upper half-plane. It is then possible to
deform the part of the contour lying on the real t axis up-
ward until one encounters a singularity at t = t, (Fig. 1).
If the singularity is a pole or essential singularity, one is
left with a contour integral around the singularity, giv-
ing a contribution to the Fourier integral proportional
to the residue of the integrand at t, . If the singularity
is an algebraic branch point, one must also consider the
parts of the integral along the branch cut, which may be
taken along the direction of the positive imaginary axis.
In either case, the final result for the contribution of the
singularity to the Fourier integral has the form

%CTRL P T'4P

(3)

where the singularity is located at t, = o +i7. and C and
p are constants that are independent of u but dependent
on the properties of the singularity. Thus, the contri-
bution of each singularity to the Fourier integral has an
amplitude that decreases exponentially with ~ at a rate,
w, given by the distance of the singularity Rom the real
t axis. In the limit of large u, then, the contribution of
the singularity closest to the real axis will come to dom-
inate the integral, giving the Fourier integral the form of
expression (3) in the high-frequency regime where 7 is
now the minimum distance &om the real time axis to a
singularity in the complex time plane. Since the power
spectrum is essentially the absolute square of this inte-
gral, it will have the form

(4)

This does not constitute a proof, in part because we
have ignored the fact that we cannot take Fourier trans-
forms of time series from chaotic attractors because the
functions x;(t) do not go to zero at +oo. Presumably,
in such cases, the result can be converted to a result
about power spectra by multiplying the integrand of ex-
pression (2) by some analytic windowing function or by
putting finite bounds on the integral and taking the limit
as the bounds go to infinity. Such a proof would also need

to involve conditions on the statistics of the complex-time
singularities of x(t) which would probably be impossible
to verify for any real system. It is probably for this rea-
son that (to the best of the author's knowledge) no such
proof has yet appeared. In practice, exponential decays
of power spectra &om time series &om chaotic systems
are commonly observed both in model systems [3,4] and
in experiments [5—7] [8, section 3].

B. Power-law decay of power spectra
in noisy systems

Sigeti and Horsthemke [2], building on earlier partial
results [9,10], have proven that the power spectrum de-
cays as an inverse even power of the frequency for a broad
class of noisy systems. Here, we will give an intuitive ex-
planation for the power-law decay and describe the class
of systems for which the result holds.

We consider systems satisfying the stochastic diKeren-
tial equation:

x = f(x) + ~(x)& (5)

where x is an n-dimensional vector, o is a matrix (the
difFusion matrix), and ( is a vector of independent, unit
variance Gaussian white noises.

Because x is a vector, this actually covers a very wide
range of systems. It is possible, for example, to include
higher order stochastic differential equations such as

x = g(x, x) + p(x, x)(

by the well-known trick of turning x into an independent
variable as in

X=V
v = g(x, v) + p(x, v)(. (7)

Note that Eqs. (7), when regarded as a special case of
Eq. (5), have a degenerate diffusion matrix, since the
original variable x is not driven directly by white noise.
Thus, we may expect Eqs. (7) to exhibit behavior which
is nongeneric for the general system given by Eq. (5).

It is also possible to include colored noises as in the
system

I

l(i

FIG. 1. Moving the contour to surround singularities in the
upper half-plane.

x = g(x, z),
z = h(z) + p(z)(.

Once again, these equations have a degenerate diffusion
matrix and we may expect nongeneric behavior.

The full generality of the class of systems being consid-
ered may be seen &om the fact that Eq. (5) is valid for a
general n-dimensional diffusion process. Thus, the model
includes all stochastic processes that are part of some
finite-dimensional Markov process and which have, with
probability 1, sample paths that are continuous functions
of time.

We may understand, intuitively, what the high-
frequency behavior of the power spectrum of one of the
components, x~(t), of x(t) should be via the following
argument. We write the Fourier transform of x~(t) as
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XCOX& (ld) ~ C

or

Cx. (d
Md

(10)

where C is a constant.
Now, the power spectrum, S, (u), of xz is just the

average of the absolute square of the Fourier transform,
x~, so we should have, as u —+ oo,

xz(u). Then the Fourier transform of the derivative of
xz(t) is just i&ex~(u). From Eq. (5), it is clear that the
Fourier transform of the derivative is composed of two
parts, one of which is essentially the Fourier transform of
white noise —which is flat. It is clear that this term will
dominate for high enough &equency because the other
term depends only on xz(t), which is obtained from (&
via a smoothing process (that is, integration). Thus, we
should have, as u ~ oo,

nary functions of time. This is why white noise is or-
dinarily described as physically unrealizable. Thus, the
nth derivative of a process that is n times removed &om
white noise does not technically exist (as an ordinary
stochastic process) and an attempt to measure the nth
derivative of the sample paths of such a variable will not
find a sensible limit as Lt approaches 0.

Thus, we see that the power-law decays characteris-
tic of systems subject to noise are a consequence of the
fact that the sample paths of such systems are not C
functions of time. Conversely, the arguments presented
in Sec. IIA imply that the faster-than-power-law decay
of the power spectra of deterministic systems is a conse-
quence of the analytic character of the solutions which in
turn implies that the solutions are C functions of time.
In fact, one can make even more general arguments that
any variable that is a C function of time should have a
spectrum that decays faster than ~ and that, conse-
quently, any variable that is a C function of time should
have a spectrum that decays faster than any power law

[2, section II].

The only way that this can fail to be the case is if, for
a particular x~, the noise term on the right-hand side of
the stochastic differential equation turns out to be identi-
cally zero. This will be true, for example, in the two spe-
cial cases that we considered earlier (colored noise and a
second-order SDE). Then, one must difFerentiate at least
once more before one has a derivative with a white-noise
part. If one reaches white noise after differentiating n
times, we say that x~ is n times removed from white
noise. The same arguments that we made above lead to
the conclusion that the spectrum will go as

Q) 2A (12)

when x~ is n times removed &om white noise.
All this can be rigorously defined and proven. See

Ref. [2] for details. In fact, it is possible to obtain the
coefBcients for the full asymptotic series for S, (~) in the
limit ~ + oo. In particular, if the difFusion matrix, 0 (x),
is diagonal with elements o;(x) then the power spectrum
of x; (t) goes as (cr, ) /sr 2 (times a numerical factor that de-
pends on the conventions one uses for defining the power
spectrum) .

C. Smoothness of time series and high-frequency
fall-off of power spectra

For the class of systems discussed. in the preceding sub-
section, a stochastic process x~ (t) being n times removed
&om white noise is equivalent to the sample paths of
x~(t) being difFerentiable n —1 times and no more. This
will be obvious to anyone familiar with the solutions of
stochastic difFerential equations such as Eq. (5). It may
be seen intuitively &om the observation that any stochas-
tic process that has a spectrum that is flat to infinitely
high &equency cannot have sample paths that are ordi-

III. SHADOWINC

In this section, we will briefly review the theory of
shadowing. The development of the theory has been mo-
tivated principally by the need to determine how well a
dynamical system can be simulated with finite-precision
arithmetic. The question is particularly important for
chaotic systems since these systems show an exponential
magnification of small differences between orbits, guaran-
teeing that computations done at different levels of pre-
cision will produce orbits that are very different after a
time on the order of the inverse of the largest positive
Lyapunov exponent. The theory provides assurance that
simulations are valid by showing that, under certain con-
ditions, a typical computed orbit is "shadowed" by a true
orbit. The theory makes contact with the question of
the effects of noise because the effects of finite-precision
arithmetic are modeled by the addition of noise to the
equations of motion.

The theory generally assumes discrete time. Thus, the
dynamics are given by a map, f:R" -+ R", that maps
the state of the system at one time, x, to the state at
the next time, x +q, via the relation x +q ——f (x )
In the case of differential equations, this implies that a
time step, At, has been chosen and that f maps the
state of the system to the state at a time At later. This
is not really any restriction since the truncation error
introduced by discretizing time can be included in the
"noise" used to model finite-precision arithmetic.

We begin with a pair of definitions.
(i) One calls a sequence, (x,j, a & i & b, a b pseudo

orbit of a map f, if d(f (x;),x;+q) & h for all i, a & i & b.
a = —oo and 6 = oo are permitted.

(ii) One says that a point, x, e shadows a sequence (x,)
if d(f'(x), x, ) & e for all i, a & i & b.

The original "shadowing lemma" [11,12] applies to
maps with "uniformly hyperbolic" attractors. An attrac-
tor is uniformly hyperbolic if the angle between the stable
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and unstable subspaces at each point is bounded below
by an angle greater than zero. For such systems, the
lemma states that for any desired shadowing distance, e,
there is a noise level, b, such that any b pseudoorbit of
f is e shadowed by some point, x. This includes infinite
sequences.

Unfortunately, it appears that most dynamical systems
with which researchers actually work are not uniformly
hyperbolic. However, it has been observed that, typi-
cally, the regions of the attractor that break the uniform
hyperbolicity are very small and are visited only very oc-
casionally. On this basis, Yorke and collaborators [13—16]
have developed a theory of 6nite-time shadowing. What
happens in typical systems is that the noisy orbit is shad-
owed very closely by a true orbit for a long period of time.
Then the noisy orbit enters a region that violates uniform
hyperbolicity and the noisy orbit loses all its shadowing
orbits. It picks up new shadowing orbits, however, as
soon as it leaves the nonhyperbolic region which it typi-
cally does very quickly. The shadowing time grows, ap-
parently without bound, as the amplitude of the noise is
decreased.

IV. THE TRANSITION FROM EXPONENTIAL
TO POWER-LAW DECAY

For a system subject to sufIjLciently weak noise, we
would expect to see a substantial region of exponential
decay in the spectrum until we reach a high enough &e-
quency for the power-law decay characteristic of noise to
take over. This is, in fact what is seen in model systems.
Figure 2 shows several spectra taken &om time series of
the variable x from the Lorenz model. (See Sec. VIB for
a description of the model and the way in which noise
has been introduced. ) One series comes from a simula-
tion of the model with no noise. The other series come
&om simulations with noise amplitudes of p = 2.5 x 10
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FIG. 2. Power spectra, S, versus frequency, f, from the
time series of the variable x from the Lorenz model for four
noise values (tu = 0, 2.5 x 10, 2.5 x 10, and 2.5 x 10 ).
See Sec. VI B for details of the model and computations.

2.5 x 10 3, and 2.5 x 10 . The spectra of the noisy sys-
tems follow the spectrum of the deterministic system for
a portion of the exponential decay and then Qatten out
into a power-law decay. As the noise amplitude is in-
creased, the amplitude of the power-law decay increases
and the frequency at which the two spectra diverge de-
creases. The author has observed the same behavior in
the Rossler model. Since the amplitude of the power-law
decay can be made arbitrarily small, it should, in princi-
ple, be possible to make the &equency range over which
the noisy system shows an exponential decay arbitrarily
large. (The fiattening of the spectrum of the determin-
istic system at extremely low amplitude is an effect of
finite precision computations. See Sigeti [4, appendix]
for a discussion of this efFect. )

V. SHADOWING AND THE PRESERVATION
OF EXPONENTIAL DECAY

IN THE PRESENCE OF NOISE

This raises the question of how a noisy system can
show an exponential decay. The decay and its character-
istic parameters (the rate of decay, the coefficient, and
the power law prefactor) are all determined by the com-
plex time singularities of the solution of the deterministic
equations of motion which are, in turn, consequences of
the fact that the solution of the deterministic equations of
motion is an analytic function of time for real t. But the
introduction of the slightest amount of noise of the kind
considered here completely destroys the analytic charac-
ter of the function x(t) because x(t) is no longer a C
function of time. Thus, for a system subject to arbitrar-
ily weak noise, there is no longer an extension of x(t) to
complex time and therefore no complex-time singularities
to give the parameters of the exponential decay.

It appears that, when the noise is weak enough to re-
veal part of the region of exponential decay, the orbits of
the noisy system must somehow be associated with or-
bits of the equivalent deterministic system, which alone
have the complex-time singularities that determine the
parameters of the decay. But, we already know of an as-
sociation between orbits of the noisy system and orbits
of the corresponding deterministic system that occurs for
sufFiciently weak noise —it is the shadowing association.
Moreover, the existence of a shadowing orbit will give ex-
actly the behavior we expect and which we have just ob-
served in the Lorenz model. The fact that the deviations
of the noisy orbit &om the deterministic shadowing orbit
are small in amplitude guarantees that the power spec-
trum of the noisy orbit will be the same as that of the
deterministic orbit over the range of &equencies where
the amplitude is large. If the noise is white or approxi-
mately white, the deviations will have a short correlation
time and the difference between the noisy and determin-
istic spectra will appear at high &equencies where the
spectrum of the deterministic dynamics is very weak.

Therefore, it seems likely that the preservation of the
region of exponential decay in the presence of noise is
a sufBcient condition for the shadowing of orbits of the
noisy system by the equivalent deterministic system, at
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least for the long but finite times described by Yorke et
al.

B. Lorens model

The Lorenz model [18] is defined by the equations

VI. NUMERICAL SIMULATIONS

In this section we present results from simulations
of two well-known dynamical systems, the Lorenz and
Rossler models. We want to verify that the survival of
the region of exponential decay in the presence of noise is
equivalent to the survival of the "correct" deterministic
dynamics at larger amplitudes and longer time scales. In
order to determine whether or not the correct determin-
istic dynamics are being preserved, we will exaxnine the
scaling region for the attractor. We will demonstrate that
the survival of the region of exponential decay is equiva-
lent to the survival of a scaling region that gives the cor-
rect correlation dimension for the attractor. In addition,
we will see that the survival of the region of exponen-
tial decay is equivalent to the existence of a well-defined
separation of scales in the power spectrum and, for the
Lorenz model, in the function that is used to identify the
scaling region and the associated value of the correlation
dimension.

The following subsection describes the method used to
identify the scaling region and the value of the correlation
dimension. The next two subsections present our results
&om the Lorenz and Rossler models. A final subsection
presents a general discussion of the problem of calculat-
ing power spectra accurately in the region of exponential
decay.

A. Finding the scaling region
and the correlation dimension

The correlation dimension is defined using the correla-
tion integral, C(r). For a random sampling of the attrac-
tor, C(r) is the nuinber of pairs of points on the attractor
which lie within a distance r of each other, normalized
by the total number of pairs of points. For systems with
a well-defined correlation dimension, C(r) scales as r"
where d is the correlation dimension.

The most simple-minded method of computing the cor-
relation dimension is to plot log C(r) versus log r and
to look for a region where the plot is a straight line.
The slope of this line is then d. Where the data per-
mit, it is usually better to plot the derivative of the
log-log plot —that is, d[logC(r)]/d(logr) —versus logr.
d[log C(r)]/d(log r) is an efFective scale-dependent corre-
lation dimension and a region where the plot is Bat is a
scaling region for the attractor. It is this method that
is used in the following subsections. (See Sec. VI C 1 for
a discussion of cases where this method does not work
even with large amounts of very precise data. )

The correlation integral itself was calculated using
computer software provided by James Theiler which im-
plements his "box-assisted" algorithm for calculating the
integral [17].

y = x(R —z) —y,
z = zy —bz.

We have done our calculations at the parameter values

o = 10.0, R = 28.0, b = 8/3. (i4)

At these parameter values, the model has an attractor
with a Lyapunov dimension of approximately 2.07 [4, sec-
tion 6.1].

We have added noise to this model by adding indepen-
dent, Gaussian white noises with equal variances to the
right-hand sides of each of the equations (13). Thus, our
stochastic differential equations are

x = o'y —ox + p(q,
y = x(R —z) —y+ pg, ,

z = zy —bz + p,(q,

qq, and t,"q are independent, unit-variance
Gaussian white noises and p is the common strength of
the added noises.

In the following, we will consider three values of the
noise strength, p: 0, 0.25 (which we call the low-noise
case), and 1.25 (which we call the high-noise case). De-
tails of the simulation of these systems and of the compu-
tation of spectra and dimensions are given in Sec. VI B 1
below.

Figure 3 shows the convergence of the spectra &om
time-series of the variable x &om the zero-noise and low-
noise systems. The horizontal axis is the frequency, f
(not the angular frequency, u) in inverse model time
units. The rough, solid curve is the zero-noise spectrum.
The dashed curve is the low-noise spectrum. The smooth
solid curve is a function of the form Cf"e "~ where the
parameters C, n, and k have been fit to the zero-noise
spectrum in the region where the spectrum has clearly
become asymptotic. The important point to note is that
the low-noise spectrum joins the zero-noise spectrum be-
fore the latter has separated &om the asymptotic. Thus,
we can say that this value of the noise is low enough to
preserve a part of the region of exponential decay.

Figure 4 shows the low-noise and zero-noise spectra at
the lowest &equencies and largest amplitudes. Here, the
two spectra are virtually indistiguishable. This means
that this value of the noise is low enough for there to be
a genuine separation of scales in the power spectrum.

Figure 5 shows the convergence of the spectra from
the zero-noise and high-noise systems. As in the previ-
ous two figures, the horizontal axis is the &equency and
the vertical axis is a logarithmic plot of the power spec-
trum. Again, the rough, solid curve is the zero-noise
spectrum, the dashed curve is the high-noise spectrum,
and the smooth solid curve is the zero-noise asymptotic.
The important point to note is that the high-noise spec-
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FIG. 3. Low-noise, zero-noise, and asymptotic spectra, 8,
versus frequency, f, from time series of the variable m from
the Lorenz model. The rough, solid curve is the zero-noise
spectrum. The dashed curv- which is distinguishable from
the rough, solid curve only in the lower right corner of the
6gur= is the low-noise spectrum. The smooth solid curve
is a function of the form Cf e "~ where the parameters C,
n, and k have been 6t to the zero-noise spectrum. in the re-
gion where the spectrum has clearly become asymptotic. The
frequency is in inverse model time units. See Sec. VIB 1 for
details of the computation of the spectra including details of
the normalization.

trum only joins the zero-noise spectrum after the latter
has separated &om the asymptotic. Thus, we can say
that this value of the noise is high enough to destroy the
region of exponential decay.

Figure 6 shows the high-noise and zero-noise spectra
at the lowest &equencies and largest amplitudes. The
important point to note is that the two spectra remain

FIG. 5. High-noise, zero-noise, and asymptotic spectra, S,
versus frequency, f, from time series of the variable z from
the Lorenz model. The rough, solid curve is the zero-noise
spectrum. The dashed curve is the high-noise spectrum. The
smooth solid curve is a function of the form Cf e "~ where

the parameters C, n, and k have been fit to the zero-noise
spectrum in the region where the spectrum has clearly become
asymptotic. The frequency is in inverse model time units.

distiguishable even down to zero frequency. This means
that this value of the noise is high enough to destroy any
separation of scales in the power spectrum.

Thus, we see &om the preceding four plots that the
preservation of a portion of the region of exponential
decay is equivalent to the preservation of separation of
scales in the power spectrum.

Figure 7 shows a plot dl'log C(r)]/d(loge) versus 1 os
for the three values of the noise. In other words, the plot
shows the effective correlation dimension as a function of
scale. The lower solid curve is the plot for zero noise. The
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FIG. 4. Low-noise and zero-noise spectra, S, versus fre-
quency, f, from time series of the variable x from the Lorenz
model at low frequencies. The solid curve is the zero-noise
spectrum. The dashed curve is the low-noise spectrum. The
frequency is in inverse model time units.

FIG. 6. High-noise and zero-noise spectra, S, versus fre-

quency, f, from time series of the variable x from the Lorenz
model at low frequencies. The solid curve is the zero-noise
spectrum. The dashed curve is the high-noise spectrum. The
frequency is in inverse model time units.
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FIG. 7. Dimension curves from the Lorenz model. The ver-
tical axis is the efFective (scale-dependent) correlation dimen-
sion, d(r), which is just the derivative of the log-log plot of the
correlation integral versus length scale (d[log C(r)]/d(log r)).
The horizontal axis is the logarithm of length scale, r. The
lower solid curve is the dimension curve for the zero-noise case,
the dashed curve gives the low-noise case, and the upper solid
curve gives the high-noise case.

dashed curve is the low-noise case and the upper solid
curve is the high-noise case. The low-noise curve joins
the zero-noise curve while the latter is still in its scaling
region and is completely indistinguishable &om the zero-
noise curve at larger scales. Thus, we can say that the
low-noise case (which we have earlier shown preserves a
portion of the region of exponential decay in the power
spectrum) preserves a part of the scaling region of the
attractor and shows separation of scales in the dimension
curves.

The high-noise curve, on the other hand, never joins
the zero-noise curve and does not have a scaling region
of any kind. Thus, we can say that the high-noise case
(which we have earlier shown does not preserve a portion
of the region of exponential decay in the power spec-
trum) does not preserve the scaling region of the attractor
and does not show separation of scales in the dimension
curves.

The up-shot of all this is that, for the Lorenz model,
the preservation of a portion of the region of exponential
decay in the presence of noise is equivalent to the preser-
vation of a portion of the scaling region of the attractor
giving the correct correlation dimension and to separa-
tion of scales in the power spectrum and the dimension
curves.

C. Rossler model

The Rossler model [20] is defined by the equations

g=x+ag )

z=b+z(x —c) .
(16)

We have done our calculations at the parameter values

the three values of the noise strength, p) the simulation
was run for 32 000 time units and was sampled once every
0.01 time units.

Power spectra &om the resulting time series for z were
calculated by fast-Fourier transforming overlapped seg-
ments of the series of length 2 samples. All spectra
are normalized so that the integral of the spectrum over
&equency (not angular &equency) &om f = 0 to the
Nyquist &equency equals the variance in the time se-
ries. The Harm window was applied to the segments of
the time series before Fourier transforming to minimize
end eKects. Spectra were smoothed in the first place by
averaging the squared amplitude of the discrete Fourier
transform over the values &om the diferent overlapped
segments and in the second place by performing local
smoothing in the &equency domain. This was done with
a second-order Savitsky-Golay smoothing filter applied to
the logarithm of the spectrum over a window of 65 &e-
quency bins (corresponding to a smoothing range of 0.05
inverse time units). (See Sec. VID for a general discus-
sion of methods for calculating power spectra accurately
in the region of exponential decay. )

The asymptotic curve that appears in some of the
spectra was obtained by fitting a function of the form
Cf"e "~ to the zero-noise spectrum over the range f =
12 to f = 28, where the spectrum is clearly asymptotic.
The resulting parameter values for C, n, and k were
checked by fitting over narrower ranges. Although the
values of t and n varied significantly with the difFerent
fitting ranges —as is typical with fits to this functional
form —the resulting plots of the asymptotic were almost
indistiguishable in the critical region where the spectra
&om the noisy systems diverge from the zero-noise spec-
trum. Thus, the variation in the fitted parameters does
not e8'ect the conclusions drawn &om the spectra.

For calculation of the correlation integral, the three-
variable time series for x, y, and z was used but the
series was thinned by using only a &action of the points.
For p = 0, every 60th point was used for a total of 40 000
points. For the other values of p, every 50th point was
used for a total of 60000 points each.

1Vumerical Simulationa
of the Lorenz model isith noise

a = 0.15, 6 = 0.20, t" = 10.0 .

Equations (15) were simulated using a fixed time-step,
second-order integrator for stochastic differential equa-
tions due to Riimelin [19]. The model was integrated
with a time step of 0.001 model time units. For each of

At these parameter values, the model has an attractor
with a l,yapunov dimension of approximately 2.01 [4, sec-
tion 6.2].

As with the I orenz model, we have added noise to
this model by adding independent, Gaussian white noises
with equal variances to the right-hand sides of each of the
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equations (i6). Thus, our stochastic diff'erential equa-
tions are
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FIG. 8. Power spectrum, S, versus frequency, f, from time
series of the variable x from the Rossler model with no noise.

where $t, , gq, and gq are independent, unit-variance Gaus-
sian white noises and p, is the common strength of the
added noises.

As with the Lorenz model, we present results from
cases with a relatively low noise, a relatively high noise,
and no noise. For the low-noise case, the noise strength,
p, was 0.01. For the high-noise case, p was 0.05. Details
of the simulation of these systems and of the computa-
tion of spectra and dimensions are given in Sec. VIC2
below.

Figure 8 shows the full spectrum for the zero-noise
Rossler system. Note that the structure that is visible
in the asymptotic region —which amounts to a variation
of about one-quarter of a decade on either side of the
asymptotic —is not statistical. Unlike the Lorenz model,
the Rossler model shows a great deal of structure in the
exponential regime that does not appear to fade out as
one goes to higher &equencies. The author suspects that
the structure is related to the well-known "phase coher-
ence" of the Rossler model.

Figure 9 shows the convergence of the spectra &om the
zero-noise and low-noise systems. As with the Lorenz
model, the horizontal axis is the &equency, the vertical
axis gives the power spectrum on a logarithmic scale,
the rough, solid curve is the zero-noise spectrum, the
dashed curve is the low-noise spectrum, and the smooth
solid curve is the deterministic asymptotic. The low-
noise spectrum may be seen diverging &om the zero-
noise spectrum in the lower right-hand corner of the fig-
ure. Unlike the Lorenz model, the zero-noise spectrum
for the Rossler model does not completely separate &om
the asymptotic until it is clearly well out of the asymp-

1 p-02
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1 0-04

1 p-05

1 p-06

1 0-07

10 08 I I I I I I I I I i I I I I } I I I I I I I I I I I I I I I I I I I I I I

0 0.5 1 1.5 3.5 4

FIG. 9. I ow-noise, zero-noise, and asymptotic spectra, S,
versus frequency, f, from time series of the variable x from
the Rossler model. The rough, solid curve is the zero-noise
spectrum. The dashed curve —which is distinguishable from
the rough, solid curve only in the lower right corner of the
figure —is the low-noise spectrum. The smooth solid curve
is a function of the form Cf"e "f where the parameters C,
n, and k have been fit to the zero-noise spectrum in the re-
gion where the spectrum has clearly become asymptotic. The
frequency is in inverse model time units. See Sec. VI C 2 for
details of the computation of the spectra including details of
the normalization.

totic regime. Rather, the spectrum develops "dips" that
destroy the exponential character of the spectrum and
which make the average value of the spectrum much less
than the value of the asymptotic. A careful examination
of the spectrum shows that the dips begin to be visible
and the average value of the spectrum begins to diverge
&orn the asymptotic at a &equency between 1.5 and 2.0
inverse time units. Since the low-noise spectrum joins the
zero-noise spectrum at a &equency of about 3.0 inverse
time units we can say that this value of the noise is low

enough to preserve a part of the region of exponential
decay.

Figure 10 shows the low-noise and zero-noise spectra at
the lowest &equencies and largest amplitudes. Although
the two spectra are not quite as indistiguishable as for
the Lorenz model, they are quite close. Thus, we can say
that this value of the noise is low enough for there to be
a separation of scales in the power spectrum.

Figure 11 shows in detail the convergence of the spectra
&om the zero-noise and high-noise systems. The high-
noise spectrum joins the zero-noise spectrum at a &e-
quency just below f = 2.0, right in the region where we
have identified the end of the region of exponential de-
cay. Thus, we can say that this value of the noise is high
enough to destroy the region of exponential decay.

Figure 12 shows the high-noise and zero-noise spectra
at the lowest &equencies and largest amplitudes. Here,
the two spectra are clearly distinct even at the peaks that
contain the bulk of the power. This means that this value
of the noise is high enough to destroy any separation of
scales in the power spectrum.
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other words, up to about r = 4.0. Further reasons for
locating the upper limit of the scaling region at about
r = 4.0 are discussed in Sec. VIC1.

Given our identification of the upper limit of the scal-
ing region at approximately r = 4.0, then it is clear
that —in the Rossler model as in the Lorenz model —the
low-noise curve joins the zero-noise curve while the latter
is still in its scaling region. As with Lorenz, then, we have
shown that a noise value low enough to preserve a part
of the region of exponential decay in the power spectrum
preserves a part of the scaling region for the correlation
dame nslon.

Another important difFerence between the dimension
curves for the two models is that, in the case of the
Rossler model, the dimension curve for the low-noise
case is distinguishable &om the zero-noise curve at larger
scales (although it is still quite close to the zero-noise
curve). Thus, we can say that the low-noise case (which
we have earlier shown preserves a portion of the region
of exponential decay in the power spectrum) preserves a
part of the scaling region of the attractor but that it does
not show a complete separation of scales in the dimension
curves.

The high-noise curve, on the other hand, does not have
a scaling region of any kind, never joins the zero-noise
curve, and remains much further &om the deterministic
curve at large scales. Thus, we can say that the high-
noise case (which we have earlier shown does not preserve
a portion of the region of exponential decay in the power
spectrum) does not preserve the scaling region of the at-
tractor and clearly does not show separation of scales in
the dimension curves.

For the Rossler model, then, the preservation of a por-
tion of the region of exponential decay in the presence of
noise is equivalent to the preservation of a portion of the
scaling region of the attractor giving the correct correla-
tion dimension and to separation of scales in the power
spectrum. Preservation of the region of exponential de-
cay does not guarantee complete separation of scales in
the dimension curves but it clearly results in a dimension
curve that fits the zero-noise curve at large scales Inuch
better than does a curve &om a noise value that is high
enough to destroy the region of exponential decay.

One peculiarity of the Rossler model is that it has
basin boundaries quite close to the attractor. In fact,
in simulating the high-noise case for purposes of calcu-
lating the correlation integral, the simulation passed over
a basin boundary at about 150000 model time units and
soon was producing NaN's. The low-noise case showed
no signs of escaping &om the basin of attraction of the
attractor when run for 1050000 model time units. It is
interesting that the value of the noise strength that pro-
duces a breakdown of the region of exponential decay is
the same value that produces escape &om the basin of
attraction with a substantial probability in a reasonable
amount of model time.

mension of the reconstructed Rossler attractor at approx-
imately r = 4.0, where r is the scale for the variable x
used to reconstruct the attractor. The first point to be
made is that the actual requirement for scaling is that
the correlation integral, C(r), scale as r where d is the
correlation dimension —in other words that

(19)
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lt is possible to satisfy Eq. (19) without having a flat re-
gion for d(r) = d[l ogC(r)j/d(l ogr) if, for example, C(r)
grows discontinuously in the manner of a set of stairs.
This is normally the case with, for example, determinis-
tic fractals. Thus, the sort of slow variation of d(r) with
r that we see in the Rossler model is not inconsistent
with a scaling region. This suggests that we should take
as the scaling region the entire range of r over which d(r)
remains close to its average value at the smallest scales.
This region ends at approximately r = 4.0, where d(r)
begins to drop oK precipitously due to the finite size of
the attractor.

We can see that this is a sensible choice for the scal-
ing region by examining the reconstructed attractor that
was used to compute the dimension curves. Figure 14
shows one view of the attractor a plot of z(t) versus
x(t + 1.5), where 1.5 is approximately one-quarter of the
fundamental period of the system. (See Sec. VIC2 for
more information on the reconstruction. ) The attrac-
tor consists of an almost two-dimensional band which
folds back on itself, as one would expect for an almost
two-dimensional attractor. The band has a well defined
width of approximately 10.0 units. If we think of scal-
ing behavior around a "typical" point, then it is clear
that no points will show the proper number of neighbors
for distances greater than about 5.0 but that, below that
distance, scaling behavior should appear fairly quickly,
especially since the proper number of neighbors will be
present for distances considerably greater than 5.0 in the
two directions that lie along the band, in the one direc-
tion that points toward the interior of the band, and in
the two directions orthogonal to the band. This suggests

The upper limit of the scaling region
for the Rossler attr actor

-20
-20 -10 10

I i & i I I & i i & I

20

In this subsection, we discuss our identification of an
upper limit of the scaling region for the correlation di-

FIG. 14. The Rossler attractor reconstructed from a time
series of the variable x as described in Sec. VI C 2.
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that an upper limit of about 4.0 for the scaling region is
quite reasonable.

Examination of Fig. 14 also provides clues to the ori-
gin of the slow variation of d(r) with r (along with the
surprisingly low value of approximately 1.9 for the cor-
relation dimension). These are probably effects of the
extreme "banding" of the Rossler attractor in this pa-
rameter regime. (See Sec. VI C 2 for a discussion of the
fact that the curves give a value less than 2.0 for the
correlation dimension. ) This banding is clearly visible in
the reconstructed attractor shown in Fig. 14.

2. Numen ical simulations
of the Rossler model with noise

As with the Lorenz model, Eqs. (18) were simulated us-
ing a fixed time-step, second-order integrator for stochas-
tic differential equations due to Riimelin [19].

For calculation of power spectra, the simulation for
each of the three values of the noise was run for 80000
model time units with a time step of 0.001 model time
units and was sampled once every 0.025 time units.
Power spectra &om the resulting time series for x were
calculated by fast-Fourier transforming overlapped seg-
ments of the series of length 2 samples. As with Lorenz,
all spectra are normalized so that the integral of the spec-
trum over frequency from f = 0 to the Nyquist frequency
equals the variance in the time series and the Harm win-
dow was applied to the segments of the time series be-
fore Fourier transforming to minimize end effects. Spec-
tra were smoothed in the first place by averaging the
squared amplitude of the discrete Fourier transform over
the values &om the different overlapped segments and in
the second place by performing local smoothing in the
&equency domain. This was done with a second-order
Savitsky-Golay smoothing filter applied to the logarithm
of the spectrum over a window of 65 frequency bins (cor-
responding to a smoothing range of 0.02 inverse time
units). (See Sec. VI D for a general discussion of methods
for calculating power spectra accurately in the region of
exponential decay. )

The curve that gives the zero-noise asymptotic was ob-
tained by fitting a function of the forin Cf"e "~ to the
zero-noise spectrum over the range f = 4 to f = 10,
where the spectrum is clearly asymptotic. As with
Lorenz, the curve was checked by fitting over smaller
ranges and the different curves are indistinguishable in
the region in which the zero-noise asymptotic breaks
down.

For calculation of the correlation integral, the simu-
lations were run with a time step of 0.005 time units.
The resulting time series for x was sampled once every
1.5 time units, which is approximately one-quarter of the
fundamental period of the system. A three-dimensional
phase space reconstruction was produced from this series
using a time delay equal to the sample time (that is, 1.5
time units). For the zero-noise and low-noise cases, the
simulation was run for 1050000 time units. Only every
15th reconstructed point was used for computation of the
correlation integral, for a total of 45000 points for each
case.

For the high-noise case, the simulation passed over a
basin boundary at approximately 150 000 time units so
only the first part of the series for this case could be used.
In this case, every third reconstructed point was used for
a total of 20000 points.

Some readers may be disturbed by the fact that Fig. 13
gives a value of 1.9 for the correlation dimension of the
Rossler attractor. This may arise &om the mistaken im-
pression that attractors &om continuous-time dynamical
systems must have dimensions that are greater than or
equal to 2.0. Actually, the only d.imension of such at-
tractors that must always be greater than or equal to
2.0 is the Lyapunov dimension. Since this is generally
believed to be equal to the information dimension, Dz,
and since the Hausdorf dimension, Do, is constrained to
be greater than or equal to the information dimension,
it makes sense to be very suspicious if an algorithm is
giving values less than 2.0 for any of these three dimen-
sions. The correlation dimension, on the other hand, is
always less than or equal to the information dimension
and there does not appear to be any reason that it can-
not be less than 2.0. Smith has obtained the same value
for the correlation dimension of the Rossler model using
a different algorithm [21].

D. Computation of power spectra in the region
of exponential decay

Computation of power spectra in the region of expo-
nential decay presents difBcult numerical problems be-
cause the amplitude is declining very rapidly with &e-
quency. The most serious result of the rapid decline
in amplitude is that the exponential decay can be com-
pletely obscured. by end effects. The end effects take the
form of a plateau in the spectrum at high &equency that
looks qualitatively the same as the kind of plateau that is
produced by noise. End effects may be minimized by us-

ing long time segments in the Fourier transform and by
"windowing" with smooth windows like the Harm win-
dow. Thus, whether a given plateau at high &equency is
produced by end effects or by noise may be determined
by recomputing the spectrum using longer time segments
or a smoother window. If the plateau is due to end ef-

fects, longer time segments or a smoother window will
lower the plateau while a plateau due to noise will be
unaffected. The author has found that the use of seg-
ments that are 2~ samples long together with the Harm
window is suKcient to push the plateau that is due to
end efFects down to approximately the level of the fun-
damental plateau due to double precision arithmetic (at
about 25 to 30 decades below the largest values in the
spectrum) in a variety of chaotic systems [4, appendix].

Because spectra are usually smoothed by averaging
over many segments, the use of long segments can, for a
fixed amount of data, result in very rough spectra. Fortu-
nately, long segments also provide a very fine resolution
in &equency so spectra may be smoothed locally in the
&equency domain. This approach —long time segments,
smooth windows, and local sxnoothing in the &equency
domain —has been used for the computation and plot-
ting of spectra in this paper. See Sigeti [4, appendix]
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for a more extensive discussion of methods for calculat-
ing power spectra accurately in the region of exponential
decay.

VII. STRUCTURALLY SENSITIVE SYSTEMS

There exist fIows which are extremely sensitive to noise
in the sense that an arbitrarily small amount of noise will
produce a qualitative change in the dynamics of the sys-
tem. In this section, we will discuss the possibility that,
in such systems, the presence of a region of exponential
decay in the power spectrum may not correlate with the
preservation of essentially deterministic dynamics.

We shall call systems in which an arbitrarily small
amount of noise produces a qualitative change in the
dynamics structurally sensitive systems. The term has
been chosen to emphasize the similarity between struc-
tural sensitivity and structural instability. A structurally
unstable system will exhibit a qualitative change in its dy-
namics when one makes an arbitrarily small static change
in the system parameters —a structurally sensitive sys-
tem will show a qualitative change in its dynamics when
one places an arbitrarily small noise on the system pa-
rameters. Although the two concepts are closely related
they are not necessarily identical. In particular, it is pos-
sible for a system to be structurally stable to a limited
class of changes in the system parameters —those that
perserve certain symmetries, for example —while being
structurally sensitive to noises that preserve the same
symmetries see the article by Stone discussed below.

One example of a structurally sensitive system is dis-
cussed qualitatively by Eckmann and Ruelle [22, pp.
640—641]. (The example is originally due to Bowen [23]
and to Katok [24].) This is a two-dimensional How in
which the behavior is dominated by a saddle point. Both
branches of the unstable manifold of the saddle point
wrap around to join branches of the stable manifold. The
manifolds thus form a "figure 8" meeting at the saddle
point. This figure is globally attracting. (See Eckmann
and Ruelle for an explanatory figure. ) In the absence
of noise, time series &om the system take the form of
finite-amplitude bursts of activity that occur less and less
&equently as time goes on but which never cease. The
system never settles down to a stationary behavior. In
the presence of any amount of noise, the bursts will oc-
cur with some average &equency and the behavior will
become stationary.

Sigeti [25] has shown that the well-known case of a
saddle-node bifurcation leading to relaxation oscillations
is also a structurally sensitive system in the sense that
we are discussing. In this system, the center manifold
of the saddle-node point forms a closed curve, insuring
that the behavior of the system is bounded. When such
a system is exactly at the saddle-node bifurcation, the
system with zero noise settles down to a fixed point (the
saddle node) while an arbitrarily small noise will induce
finite-amplitude oscillations by inducing passage through
the saddle node.

Stone, in working on a specific model that has the qual-
itative dynamics described by Eckmann and Ruelle, has

suggested that it should be possible for such a system
subject to weak noise to show behavior that is qualita-
tively different &om what would be seen with no noise
while showing a substantial region of exponential decay
in the power spectrum [26]. This seems plausible be-
cause even an arbitrarily small noise (presumably weak
enough to allow a substantial region of exponential decay
in the power spectrum) will result in profound changes
in the dynamics. She has presented results &om numer-
ical simulations that show an exponential decay in the
power spectrum with noise values that are qualitatively
afFecting the dynamics.

It should be pointed out that, in both the systems dis-
cussed above, even the presence of finite-time shadowing
orbits is not a sufFicient criterion for the dynamics to be
essentially deterministic. Both these systems have dy-
namics that is dominated by an unstable fixed point —a
simple saddle in the case discussed by Eckmann and Ru-
elle and Stone and a saddle node in the case discussed by
Sigeti. Finite-time shadowing is not a sufhcient condition
for essentially deterministic dynamics for either system
because the system will have a shadowing orbit except
for the relatively brief period of noise-induced passage
through the region around the fixed point. Since the pe-
riod of quiescence goes to infinity as the noise goes to
zero, the shadowing time will also go to infinity, just as
is typical of finite-time shadowing. Thus, the considera-
tions discussed in this section do not afFect the conjecture
presented in Sec. V of this paper connecting the preser-
vation of the region of exponential decay to the presence
of shadowing orbits.

Despite the probable violation of the thesis presented
in this paper in structurally sensitive systems, the exam-
ination of high-&equency power spectra can still provide
a useful test for deterministic chaos if structurally sensi-
tive systems can be reliably identified. In practice, this
should not prove very dificult. If an actual experimental
apparatus is accessible, the extreme sensitivity to noise
should be obvious. Even if the only information available
is a time series, time series &om structurally sensitive
systems have characteristic features that should be fairly
easy to detect. In particular, these series show relatively
long periods of quiescence punctuated by relatively brief
periods of very rapid activity. Sigeti [25] shows a time
series that exhibits this behavior. This behavior and the
accompanying wide separation of time scales should not
be dificult to observe in the time series and should serve
as a warning that the system may be structurally sensi-
tive.

One may wonder whether the presence of a region of
exponential decay will serve as a reliable indicator of es-
sentially deterministic dynamics in systems that may not
be structurally sensitive to noise in the manner of the
examples discussed above but which are nonetheless, in
some rough sense, quite sensitive to noise. The Rossler
model is actually such a system. It is quite sensitive to
noise in at least two ways. The activation of z that oc-
curs when x exceeds c involves an exponential growth
that is quite sensitive to noise. Moreover, as pointed out
in Sec. VI C above, there are basin boundaries quite close
to the attractor so that even a fairly small noise has a rea-
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sonable probability of inducing escape &om the attractor
in a finite amount of time. In light of this sensitivity to
noise it is very encouraging for the thesis presented here
that the preservation of a region of exponential decay in
the Rossler model corresponds to the preservation of the
scaling region in the attractor.

VIII. NUMERICAL SIMULATIONS
AND THE CASE OF TURBULENT FLOW

As discussed in the Introduction, the results presented
so far are relevant to the question of whether or not
simulations of ordinary differential equations are valid.
The connection between our results and numerical sim-
ulations arises because the errors introduced in simulat-
ing ordinary differential equations on digital computers—
round-off and truncation error —can be considered to be
white or nearly white noise. Round-off error is certainly
white on the scale of a single time step while truncation
error, especially for chaotic systems, should not be corre-
lated over more than a few time steps. Since these errors
behave essentially like white noise, our results indicate
that the preservation of a region of exponential decay in
the power spectrum should guarantee that these errors
are not fundamentally effecting the dynamics at longer
time and larger amplitude scales. In other words, the
preservation of the region of exponential decay should
correspond to a simulation with essentially the same dy-
namics as the original differential equation.

In simulations of partial differential equations, trunca-
tion error arises not only &om the discretization of time
but also &om the discretization of space. Truncation
error produced by a finite spatial grid is essentially a
spatially white noise. Thus, in determining the effect of
this kind of truncation error, one would expect the wave-
number spectrum to play the role played by the power
spectrum in determining the effect of truncation error
associated with a finite time step. In other words, one
would expect a spatiotemporally chaotic system to show
an exponential decay in the wave-number spectrum for
suKciently high wave number and one would expect the
preservation of a part of the region of exponential de-
cay to indicate that the discretization of space was not
fundamentally altering the dynamics of the system. We
will now show that this is in fact the case for a partic-
ular spatiotemporally chaotic system —a flow exhibiting
homogeneous, isotropic turbulence.

For homogeneous, isotropic turbulence, there exists
a length scale, Ao (the "dissipation" or "Kolmogorov"
scale), above which viscous dissipation is negligible and
below which viscosity dominates the dynamics [27]. It is
well known that direct numerical simulations of turbu-
lent flow which do not employ some kind of phenomeno-
logical modeling of subgrid turbulence must resolve the
dissipation scale in order to correctly simulate the flow
dynamics. The reason is obvious if one does not resolve
the dissipation scale, one cannot dispose of the energy be-
ing pumped into the system at larger scales and energy
builds up without limit. Conversely, if one does resolve
the region of exponential decay, one may be reasonably

assured that one's simulation is producing correct results.
It has recently been shown by Chen et al. [28] that the

wave-number spectrum of turbulent flow decays exponen-
tially in the dissipation regime, k ) 1/Ap. Thus, in the
case of turbulence, it is necessary to resolve the region
of exponential decay in the wave-number spectrum (cor-
responding to the dissipation range) in order to obtain
correct simulations.

The fact that results analogous to those presented
earlier for power spectra can be shown to hold for the
wave-number spectrum for a particular spatiotemporally
chaotic system suggests further support for the results for
power spectra. Conversely, the fact that the arguments
presented for power spectra are quite general suggests
that the analogous results for wave-number spectra may
apply much more generally than is suggested by the en-

ergy cascade arguments used for the case of turbulent
flow. The results may, in fact, apply to any system ex-
hibiting spatiotemporal chaos.

IX. CONCLUSIONS

We conclude with the following points
(1) For the Lorenz and Rossler models, the preserva-

tion of a portion of the region of exponential decay in
the presence of noise is equivalent to the preservation
of a scaling region that gives the correct correlation di-
mension for the attractor. In addition, preservation of
the region of exponential decay is equivalent to separa-
tion of scales in the power spectrum and, for the I orenz
model, in the dimension curve. This suggests that the
detection of a region of exponential decay in power spec-
tra from time series from a continuous-time (apparently
chaotic) dynamical system can serve as a good test for
determining when the dynamics of the system are essen-
tially deterministic.

(2) There is good theoretical reason to believe that
the preservation of a portion of the region of exponential
decay in the power spectrum is equivalent to the existence
of finite-time shadowing orbits.

(3) In systems that are structurally sensitive to noise,
it seems likely that the preservation of a part of the re-
gion of exponential decay in the power spectrum will not
be equivalent to the preservation of the correct deter-
ministic dynamics at larger amplitude and longer time
scales. However, it should not be difBcult to identify
structurally sensitive systems even if the only informa-
tion available is a time series. The fact that the criterion
of preservation of the region of exponential decay works
fairly well for the Rossler model —which is quite sensitive
to noise —suggests that the existence of structurally sen-
sitive systems will not present insurmountable difhculties
in applying the criterion.

(4) The results and arguments presented in this paper
suggest that, in simulations of ordinary differential equa-
tions, the preservation of a region of exponential decay
in the power spectrum should guarantee that round-off
error and truncation error associated with the discretiza-
tion of time are not fundamentally effecting the dynam-
ics at longer time and larger amplitude scales. In other
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words, the preservation of the region of exponential de-
cay should correspond to a simulation with essentially
the same dynamics as the original difFerential equation.

(5) The necessity to resolve the region of exponential
decay in the power spectrum in order to obtain valid sim-
ulations of ordinary difFerential equations is analogous to
the necessity to resolve the dissipation scale in the wave-
number spectrum in simulations of turbulent Rows. This
suggests that the detection of a region of exponential
decay in the wave-number spectrum may be a good cri-
terion for determining when truncation error due to the
discretization of space is not fundamentally altering the
dynamics of spatiotemporally chaotic systems.
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