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Coarsening in the q-state Potts model and the Ising model with globally conserved magnetization
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We study the nonequilibrium dynamics of the q-state Potts model following a quench from the high-

temperature disordered phase to zero temperature. The time-dependent two-point correlation functions

of the order parameter 6eld satisfy dynamic scaling with a length scale I.(t) —t ' . In particular, the au-

tocorrelation function decays as [L(t)] '~'. We illustrate these properties by solving exactly the kinetic

Potts model in d =1. We then analyze a Langevin equation of an appropriate field theory to compute

these correlation functions for general q and d. We establish a correspondence between the two-point

correlations of the q-state Potts model and those of a kinetic Ising model evolving with a fixed magneti-

zation (2/q —1). The dynamics of this Ising model is solved exactly in the large q limit and in the limit

of a large number of components n for the order parameter. For general q and in any dimension, we in-

troduce a Gaussian closure approximation and calculate within this approximation the scaling functions

and the exponent k(q). These are in good agreement with the direct numerical simulations of the Potts

model as well as the kinetic Ising model with Axed magnetization. We also discuss the existing and pos-

sible experimental realizations of these models.

PACS number(s): 05.70.Ln, 05.40.+j, 82.20.—w

I. INTRODUCTION

Coarsening of domains of equilibrium ordered phases,
following a quench from the disordered homogeneous
phase to a regime where the system develops long-range
order, is widely observed in many physical systems such
as binary alloys, liquid crystals, magnetic bubbles, Lang-
muir films, and soap bubbles [1,2]. After the quench,
domains of the different ordered phases form and grow
with time as the system attains local equilibrium on
larger and larger length scales. A dynamic scaling hy-
pothesis suggests that at late times the system is left with
a single length scale (linear size of a typical domain) that
grows with time as L (t) —t", where n depends on the
conservation laws satisfied by the dynamics [1,2]. For
systems with only two types of ordered phases (such as a
binary alloy or the Ising model), the nonequilibrium
coarsening dynamics have been extensively studied exper-
imentally, numerically, and by approximate analytical
methods. Comparatively, much less is known when there
are more than two ordered phases. A particular example
of the latter class of models is the q-state Potts model,
which has q ordered phases [3]. For q =2, this corre-
sponds to the Ising model and there are experimental
realizations also for q =3,4, ~ [3]. As q increases, the
morphology of the coarsening patterns changes from one
of large connected interpenetrating domains to one of
more and more isotropic droplets. The limit q~~ is

known to correctly describe the evolution of a dry soap
froth and the growth of metallic grains [4]. The reason
for taking q =ao is to prevent bubbles represented by
different Potts indices from coalescing. In a way, a finite

but large q Potts model describes a froth in which wall

breakage occurs with a probability of order I/q (Fig. 1).
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FIG. 1. Late-time configuration for q =30 fields evolving ac-
cording to Eq. (5.2). Note the bubble marked by an arrow,
which is highly nonisotropic, resulting from the coalescence of
two bubbles with the same index.
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Most studies of soap bubbles have so far focused on
geometrical properties of the froth. For instance, mean-
field treatments [5,6] and numerical simulations [4], as
well as experiments [7], have addressed issues such as the
joint distribution of bubble area and coordination num-
ber. However, while in other physical problems of coars-
ening the dynamic scaling and the correlation functions
have been of central interest, no theoretical analysis ex-
ists of spatial and temporal correlations in a froth.

For the Potts model with finite q, there have been only
numerical studies of the growth law of domains,
confirming L (t) —t ' [4,8] and substantiating the scaling
of the equal-time correlation function [8]. However, to
our knowledge, the two-time correlation has never been
studied previously, not even numerically. In this paper,
following our recent Letter [9], we show that the auto-
correlation A (r) = ( P(r, O)P(r, t ) ), measuring the corre-
lation of the order parameter field P(r, t) with its initial
value P(r, O), decays as A (t) —[L(t)] '~'. Thus, while
the growth exponent remains —,

' for all q, the autocorrela-
tion exponent depends explicitly on q. In [9], we estab-
lished a correspondence between the dynamics of the q-
state model and that of a kinetic Ising model evolving
with a fixed magnetization (2/q —1). In the present
work, we explore more of this correspondence and derive
several results.

For q =2, the Potts model is by definition identical to
the Ising model. For q )2, our correspondence makes
contact between the kinetic Potts model and a kinetic Is-
ing model evolving with a fixed magnetization. This is
useful not only because Ising models are conceptually
much easier to think about, but also due to the fact that
they are much easier to access experimentally, especially
for the measurement of nonequilibrium dynamical prop-
erties. For example, in a recent experiment using video
microscopy [10], the autocorrelation exponent has been
measured for a liquid crystal sample confined between
two parallel plates. The plates were designed such that
molecules were bound to align along two perpendicular
directions at the surface of the two plates. The two direc-
tions of the "helix" described by the molecules between
the two plates (clockwise or counterclockwise) then
represent the two possible "spin" states. This system
then obeys Ising symmetry in d =2 and corresponds to
q =2 (fixed 50%%uo-50%%uo mixture of "up" and "down"
phases). The experimentally measured autocorrelation
exponent A,,„,=1.246+0.079 [10] is in good agreement
with the numerical simulation of the d =2 kinetic Ising
model A,„„=1.25+0.01 [11] (see also Sec. VI). In Ref.
[11],it was also argued heuristically that A, =—', for 1=2.
The Gaussian closure approximation (GCA) for q =2
leads to A,GO=1.286 [12] (see also Sec. V). In principle,
for other values of q, A, (q) could be measured in such a
system if one succeeds in maintaining a fixed concentra-
tion of up phase, different from 50%.

For q & 2, exploiting our correspondence to an Ising
model, another possible experimental system for measur-
ing A,(q) might be magnetic bubbles [13,14]. Magnetic
bubbles are a natural realization of the kinetic Ising mod-
el where increasing the magnetic Seld 1eads to the coars-
ening of the system. In principle, A,(q) could be measured

if a constant magnetization path in the phase diagram is
chosen [14]. Note that in order to determine A, (q), the
"rea1-time" scale, which, as already mentioned, is
mapped onto a function of the magnetic field in this sys-
tem, is not explicitly needed since the definition of A,(q)
only involves the domains length scale L (t).

The paper is organized as follows. In Sec. II we solve
exactly the dynamics of the d = 1 q-state Potts model and
compute the equal-time and the two-time correlation
functions. We find A,(q, d =1)=1 for all q and show that
this problem is equivalent to the d =1 Glauber dynamics
for the Ising model with constant magnetization

ma=2/q —1. In Sec. III we present an exact theory of
the coarsening of this Ising model with globally con-
served magnetization m0=2/q —1, in the q~~ limit,
and in any dimension d ) 1. The distribution of droplet
radii and the equal-time correlation functions are com-
puted exactly and we find A,(q = oo, d) =d. Section IV is
devoted to the exact solution of an O(n) model evolving
with a globally conserved magnetization, in the n~00
limit. The correlation functions are again calculated and
A,(q, n = oo, d)=d/2. In Sec. V, we first establish a gen-
eral correspondence between the dynamics of the q-state
Potts model and that of the Ising model evolving with a
fixed magnetization 2/q —1 and then present a nontrivial
extension of the GCA [12] to this Ising model (a brief
version of which was communicated earlier [9]). This ap-
proach gives very accurate results for general q and also
reproduces the exact results obtained in the different lim-

its mentioned above. Finally, in Sec. VI, we present ex-
tensive numerical simulations for the Potts and Ising
models separately, which confirm the mentioned
correspondence and show that the GCA is indeed re-
markably accurate.

As a prelude to the fo11owing sections, we first define
the Potts model Hamiltonian as [3]

&=—g 5
&~j&

o.
, takes integer values o.;=1, . . . , q. The sum is over

nearest neighbors, but can be extended to the next shell
of neighbors, as is needed in T=O Monte Carlo simula-
tions, in order to avoid pinning to the lattice (see Sec.
VI).

II. q-STATE POTTS MODEL IN ONK DIMENSION

We now consider the zero temperature Glauber dy-
namics of the q-state Potts model in one dimension. Con-
trary to higher dimensions where the domain growth is
driven by interfacial tension, coarsening in d =1 occurs
via the diffusion and annihilation of kinks [Fig. 2(a)]. We
start with a totally random initial condition where each
of the q phases is present with equal density c = 1/q. The
zero temperature dynamics proceeds as follows: a spin is
selected at random and its value is changed to that of ei-
ther of its neighbors with equal probability. It gives rise
to three possible situations as shown in Fig. 2. We now
focus on one particular phase with an arbitrary Potts in-
dex cr =l and define an indicator function P(x, t), which is
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(a) bbbbacccc ~ bbbbbcccc or bbbbccccc
bbbbabbbb ~ bbbbbbbbb
bbbbaaaaa ~ bbbbbaaaa or bbbbaaaaa

(Q) 000010000 ~ 000000000
000010000 ~ 000000000
000011111 ~ 000001111 or 000011111

—-AA—-
—-AA —-
-—A—— ——A—-

FIG. 2. Potts model in one dimension: (a) the three elemen-

tary dynamical Aips of the central Potts spin with index a; (b)
associating 1's to the a phase and 0's to the other phases, one
obtains an effective Glauber dynamics; (c) associating a particle
A to each interface, the model is mapped on a reaction diffusion
model as described in the text.

1 if the site x is occupied by this lth phase and 0 other-
wise. In this new two-phase system, the density of the 1*s

is c =1/q and the 0's, representing the (q —1) other
phases, have a density 1 —c. For later convenience, we
prefer the /=0, 1 convention to the more usual spin rep-
resentation /=+1. The density c is related to the usual
magnetization mo by the relation mo=2c —1. Then the
dynamics of P is governed by the Glauber dynamics [15]
of the Ising model with a constant magnetization
mo =2/q —1. This is illustrated in Fig. 2(b).

Using this mapping, the equal-time correlation func-
tion G(r, t)=(P(r, t)P(O, t)), in the scaling limit, is given
by [15]

r 1+-
2v't q

' (2.1)

2 2

p(x)=—
2

1 x exp —— x
q

—1 4 q
—1

This result, in the q~+ ~ limit, was first obtained by
Derrida, Godreche, and Yekutieli by using an analogy to
a random-walk problem [16]. Interestingly, this Wigner
distribution is also identical to the eigenvalue spacing dis-
tribution for a real random Hermitian matrix [17].

We also note that this result coincides with the spacing

where erfc(x)=(2/Vm. )f "exp( —u )du. We now point
out that in the q ~~ limit this correlation function is re-
lated to the probability distribution of spacings between
domain walls (kinks in d = 1). The quantity qG(r, t) mea-
sures the probability that the spins at 0 and r have the
same value at time t. For finite q, this is different from
the probability that they belong to the same domain.
However, when q-+~, two spins that are equal are
necessarily in the same domain (bubble). Then, qG (r, t) is
the probability of having a domain of length r or more. It
is then a standard result that the normalized spacing dis-
tribution of kinks P(r, t) is given by P(r, t)
=2qL(t)[B G(r, t)IBr ] For large . times, this distribu-
tion also obeys scaling: P (r, t) = [L (t) ] 'p(r IL (t) ),
where

distribution in the reaction di6'usion model 2 + 3 —+ A

[18]. This can be understood in the following way.
Representing a kink by a particle A on a d =1 line, the
dynamics of the Potts model can be mapped to that of a
reaction diffusion model where the particles A diffuse,
annihilate, and coagulate according to the following
rules: Each particle undergoes diffusion until two of
them meet, in which case they either annihilate
( A + A ~S) with probability 1/(q —1) or coagulate
( 3 + A ~3) with probability (q —2)/(q —1) [see Fig.
2(c)]. For q =2, the particles only annihilate and hence
this is equivalent to the Glauber model [15], whereas in
the q~ ~ limit they only coagulate. Both these limits
have been studied previously [18,19]. In the Glauber
case, the two-point correlation function has been calcu-
lated analytically, but the spacing distribution is still un-
known. On the other hand, for the A+ A ~A model,
the spacing distribution is known exactly, but there was
no analogy to any spin model and hence corre1ation func-
tion. Our present result establishes that the dynamics of
these two problems are two difFerent solvable limits of
that of the q-state Potts model.

We now consider the two-time correlation function
C(r, t)=(5 ~„,& ~00~

—1/q ). In terms of the indicator
field P, C(r, t)= (P(r, t)P(0, 0)—1/q ), which is expected
to scale as C(r, t) —[L(t)] c(r/L(t)) [11]. Thus the au-
tocorrelation 2 (t)=C(O, t) decays as A (t)-L(t)
where A, is a nontrivial nonequilibrium exponent [11]. In
d = 1 and for all q, we find that C(r, t) satisfies a diffusion
equation and is given by C ( r, t ) —t ' exp( r /2t ). —
Since the length scale L (t) -t ', we establish the scaling
of C(r, t) and find A, = 1 for all q. This is consistent with
our general exact result that A. =d in the q —+ ~ limit, as
we argue in the following sections.

In one dimension, we have shown that the evolution of
the two-point correlation functions in the kinetic Potts
model can be exactly mapped to that of the Ising model
with fixed magnetization (2/q —1). In Sec. V, we will

show that this correspondence essentially holds even in
higher dimensions. This fact motivates us to study the
dynamics of the Ising model evolving with fixed magneti-
zation. In the following section, we show that this prob-
lem can be exactly solved in the q —+ ~ limit.

III. SMALL VOLUME FRACTION LIMIT

In this section, we study the coarsening of a magnetic
system with globally conserved magnetization

mo =(2/q —1), or equivalently with a density c =1/q of
the minority phase (up), in the c ~0 limit. This becomes
a modified version (suited for globally fixed magnetiza-
tion) of the celebrated Lifshitz-Slyozov (LS) theory
[20,21], which describes the coarsening of a two-phase
system with local conservation (model 8 [22]). On a
discrete lattice, both models are described by spin-
exchange Kawasaki dynamics. However, in one case the
exchange occurs between spins on any two arbitrary sites
(global conservation) whereas in the other case, the ex-
change occurs only between two sites that are nearest
neighbors to each other (local conservation). For c =

—,',
the globally conserved model [hereafter called model
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dR;
dt

1 +k] e (3.1)

The first term on the right-hand side, in which the
surface-tension-dependent coefficient has been normal-
ized to 1, contributes to making the bubble shrink, in or-
der to minimize locally the interface length between the
two phases. The second term A, i(t) is an effective time-
dependent magnetic field, playing-the role of a Lagrange
multiplier (see Sec. V) fixing the constraint that g;R,
must be a constant proportional to cV, where V is the
volume. Note that this equation of motion Eq. (3.1) can
also be directly derived from the model-A equation of
motion with this additional Lagrange multiplier needed
to keep the magnetization fixed. The density N(R, t)
satisfies a continuity equation of the form

aX a dZ
at+a~ (3.2)

At late times we look for a scaling solution of the form
N(R, t)=[L(t)] ' +"F(R/L(t)), where L(t) is propor-
tional to the average radius of a growing bubble. The
conservation law demands that the prefactor decays as
[L (t)] ' +". Inserting Eq. (3.1) and the scaling form in
Eq. (2.2), one easily sees that all terms are of the same or-
der provided L(dL/dt) is a constant, so that L (t) —t'~ .
Thus, in contrast to model-B dynamics where L (t) —t '

model 3 (c) has the same growth law as model A. We
now set L (dL/dt)=1 and A, ,(t)=v/L(t), where v is to
be determined by imposing that the solution of the scal-
ing equation has physical limits. This form for A,

&
is

justified by the fact that, in Eq. (3.1), A, , scales as R
This fact will be physically justified in Sec. V in terms of
balance between the interface and magnetic energies of a
droplet. From now on, we present explicit results for

A (c)] has been shown to be in the same universality class
as the standard model- A dynamics as far as the dynami-
cal exponent and the domain growth exponent are con-
cerned [23,24]. In Sec. VI, we will show that the auto-
correlation exponent A, is also the same for a strict global
c =

—,
' conservation and for model A, namely, A, =1.25.

However, for c & —,', we find (see Sec. VI) that A, is explicit-
ly a function of c. At the end of this section, we show
(within the framework of the LS theory, which is exact in
the zero volume fraction limit) that lim, oA, (c)=d. We
recover this exact result also from our approximate treat-
ment of the appropriate field theory (see Sec. V). This
result is further verified from the direct numerical simula-
tions (Sec. VI) of the q-state Potts model (large q limit) as
well as the model A (c).

In the c~0 limit, the coarsening pattern consists of
circular bubbles that are growing or shrinking, but are al-
ways far apart from each other so that they never
coalesce. A mean-field treatment assuming no correlation
between these bubbles should then be exact in the limit
c —+0. In the following, we determine N(R, t), the density
of bubbles with radius r at time t.

The equation of motion for the radius R;(t) of bubble i
is

d =2, but the generalization to d &2 is straightforward.
The scaling function F then satisfies the differential equa-
tion

1 3xF'(x)= F(x) .
x(x —vx+1)

(3.3)

The condition that F (x) goes to zero for large x demands
that v=2, so that the function multiplying F(x) in Eq.
(3.3) has a double pole (at x =1). Then, solving this
differential equation we get

2
expF(x)= (1—x)4 1 —x

0 for x~1,

for x &1
(3.4)

where the constant A is determined from the conserva-
tion condition. This scaling function is plotted in Fig. 3
and appears to be wider than the LS form for model B
(local conservation) [25].

We now compute, in the limit c —+0, the equal-time
correlation function G ( r, t ) = ( P( r, t )P(0, t ) ) /c, where P
is the density field as defined in Sec. II. The function
G(r, t) can be computed from the normalized radius dis-
tribution function No(R, t)=N(R, t)/ f rru N(u, t)du
=N(R, t)/cVin the following way. By definition,

fP(x+r)P(x)d x
G(r, t)=

f P(x)d x

g fy, ( x+r)y (x)d x,
I&J

(3.5)

where the indices i and j run over all the bubbles and
y,.(x) is the characteristic function of the ith bubble. In
the c~0 limit, bubbles are strictly circular and
y;(x) =0(R; —

~x~ ), where 8 is the usual step function and
8, is the radius of the ith bubble. In this low area frac-
tion limit, the bubbles are far apart from each other and
for finite r, only the terms corresponding to i =j contrib-

3.0

2.0

1.0

Model A
Model B

/
/

/
/

/
/ I

/
'[

/

0.0—
0.0 0.5 1.0 1.5 2.0

FIG. 3. Distribution of bubble radii for d =2 and model 3,
in the mean-field approximation [Eq. (3.4)], compared to the
Lifshitz-Slyozov result for the locally conserved order parame-
ter case (model B) [16,24]. Both distributions have been normal-
ized and the r axis is scaled such that (r ) =1.
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ute to the sum in Eq. (3.5). Then, we obtain the exact re-
sult in the c —+0 limit

suit is confirmed by numerical simulations presented
in Sec. VI.

G(r, t)= f dR Np(R, t) f d xyz(x+r)yz(x) . (3.6) IV. LARGE-n, CALCULATION

G(r, t)=2f dR R Np(R, t)
r/2

X are cos
1/2

T r
l ——

2R 4g '

The second integral is just the overlap area between two
disks with radius R, with their centers separated by a dis-
tance r. The final expression is

Another example where the correlation functions (both
equal-time and two-time) and the exponent A, can be cal-
culated in the presence of a time-dependent magnetic
field A, ,(t) (to keep the average magnetization mp fixed) is
the large n (n ~ Do ) limit of the classical 0(n) vector
model. The 0 (n) model is described by an n component
order parameter field P(r, t)=(P, (r, t), . . . , P„(r,t)) and
a coarse-grained Landau-Ginzburg free-energy functional

In the scaling limit,

(3.7) &(P)= ,' f—d"r (VP) +rpP + ($ ) —2ki(t)gg
a

(4.1)

1.0 &

0.8

0.4

s Model
d Theory
n-field Theory

A Theory

Np(R, t) = 1
3 F(R /L(t)),

cV [L(t)]
where F(x) is given by Eq. (3.4), and therefore, from the
above equation, we find explicitly that G ( r, t )
=g (R /L ( t ) ). Thus dynamic scaling is established.
The function g (x) with x normalized such that g (1)= —,

'

is shown in Fig. 4 and is seen to be in good agreement
with large-q Potts model simulations and the field theory
results presented below. Notice, however, that the
mean-field equal-time correlation function has a finite
support.

In the c —+0 limit, it is also simple to calculate the au-
tocorrelation exponent A, . Since bubbles do not coalesce
in this limit and their centers do not diffuse, the auto-
correlation A (t)=((t(x, t)P(x, O)) is essentially the sur-
vival probability of a bubble up to time t. After time t,
the number of bubbles left is N(t)= f dR N(R, t)
—[L (t) ]

"and therefore A, =d, in d dimensions. This re-

where self-consistency for the structure factor
demands that Sp(t) =( I /V)gkS(k, t ), where S(k, t )

=(P(k, t)P( k, t)). No—te that rp(0, since we are in
the ordered phase. We have dropped the subscript a
from P since in the large n limit, the different com-
ponents of P are completely uncorrelated with each oth-
er. The Lagrange multiplier A, ,(t) is determined from Eq.
(4.2) by demanding that P(k=0, t ) =mp& V and is given
by 1 i ( t ) =m p [rp +uSp ( t ) ]~ We use random initial condi-
tions, for which S(k,O)=b, —mp or kXO, where 5 is
of order unity and S(k=0,0)=mpV. Writing,
Q(t)= f [rp +uSp(t )]dt', we get from Eq. (4.2), for
k&0,

S(k, t)=(h —mp)exp[ 2[k t +Q(t—)] ]. (4.3)

The self-consistency condition now reads

where A, , (t) is a Lagrange multiplier to keep
(1/V)g, P (r, t) fixed at mp=2/q —1, where Vis the sys-
tem size. The model-2 equation describing the over-
damped relaxation is in general nonlinear and hard to
solve. However, in the large n hmit, this equation can be
linearized in a self-consistent way [26] and therefore is ex-
actly solvable in that limit. In Fourier space, this linear-
ized equation (at T =0) reads

Bt
= —[k +rp+uSp(t)]P(k, t)+A, ,(t)&V5q p,

(4.2)

0.2 =rp+ump+ —QS(k, t) .
k

(4.4)

0.0
0.0 1.0 2.0 3.0 4,0 5.0 6.0

Plugging in the expression for S(k, t) from Eq. (4.3) into
Eq. (4.4) and taking the thermodynamic limit V~ ~, we
get

FIG. 4. Comparison of the scaled equal-time correlation
functions generated by (a) numerical simulation of the Potts
model with q = ao (in fact, q equals the initial number of bub-
bles X&-32000), (b) numerical integration of Eq. (5.2) with
q =50 (symbols have the size of the typical error bars), (c) the
mean-field theory of Sec. III [Eq. (3.7)), and (d) the large-q CxCA
analytical result of Sec. V.

d =rp+ump+u(b. —mp)I t exp[ —2Q(t)],

(4.5)

where I is a constant that depends on the dimension d
and the upper cutoff A of the theory. This equation is
solved by making the ansatz Q (t) = A +8 lnt. The left-
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hand side of Eq. (4.5) then decays as t ', whereas the
leading-order term on the right-hand side is a constant.
So, for consistency, one needs 8 = —d/4, so that the
leading-order term on the right-hand side is identically
zero. As a consequence, the structure factor for kXO
(Fourier transform of the equal-time correlation function)
can be written in the form

S(k, t)=[L(t)] s(kJ (t)),
with L(t)=t', s(x)=Cexp( —2x ), (4.6)

where C is a constant. We thus obtain the scaling of the
correlation function with the expected domains length
scale L (t) —t '~ .

Similarly, the two-time correlation function
C(k, t ) = (P(k, O)P( —k, t ) ) for kAO evolves as
C (k, t ) =(b, —m o )exp j

—[k t+ Q(t) ]J. The autocorrela-
tion function, defined as 2 (t) = ($(r,O)P(r, t ) ) —mo,
then decays as t " -L(t) "~ . Thus the autocorrela-
tion exponent is A, =d/2, as in the mo =0 case [26]. This,
however, is not unexpected because the limit n~~
decouples the different k modes and the time-dependent
magnetic field just couples to the k=0 mode, which has
no effect on the evolution of the k&0 modes apart from
modifying the prefactor. Therefore, in order to see the
dependence of A, on mo, one has to include the O(1/n)
corrections, which is a very difficult task [2].

V. FIELD THEORY
AND GAUSSIAN CLQSURE APPRQXIMATIQN

In our earlier Letter [9], we constructed a field theory
of the q-state Potts model in terms of the coarse-grained
"occupation density" fields [P&(r, t ); l = 1,2, . . . , q ] such
that P& assumes that value 1 in the interior of the lth or-
dered phase and decays continuously to 0 outside. Con-
sequently, inside any "bubble" of one phase, only one of
the P&'s is close to 1 and the others are all close to 0. We
thus require a potential with q degenerate minima at
[1,0,0, . . . , 0], [0, 1,0, . . . , [0,0,0, . . . , 1], which prevents
two different bubbles from sharing the same position in
space. A suitable free-energy functional is [9],

r

+A, z2 1

2

=V Pt
—V'(Pi )+k, —4Az

X
q

2

(5.2)

(5.1)

where A, ,(r, t) is a Lagrange multiplier enforcing the con-
straint +&/& = 1 and A, z is a constant —1 such that the
state [1/q, . . . , 1/q] is unstable and V(P)-P (1—P) is
the usual double-well potential with minima at 0 and 1.
Then, the equation of motion is

and k&=(1/q)+&V'(P, ) by demanding gtg, = 1 in Eq.
(5.2). Note that for q =2 (the Ising model), A, , =0 by vir-
tue of the condition P, +Pz = 1 and A, z can be chosen to be
0 since this term only renormalizes V. Then one recovers
the usual time-dependent Landau equation for the Ising
model. For q &2, we also note that this evolution equa-
tion has a form similar to that of Eq. (2.10) of Lau, Das-
gupta, and Valls [8]. In Fig. 1, we show a late-time
configuration of domains generated by Eq. (5.2) for
q =30.

The two-point correlation function for the q-state Potts

model is defined as 6 (12)=g&, (P&(ri, t, )P&(rz, tz ) )
and therefore equals q(P, (r„t, )P, (rz, tz)) due to the
symmetry between the q phases. Here, "12" is a short-
hand notation for the pair of space-time points (ri, t, )

and (rz, tz). Due to the isotropy and translation invari-
ance in space, the only spatial dependence of these corre-
lation functions is through r=~r, —rz). Denoting the
equal-time correlation function ( t

&

= tz = t ) by G ( r, t ), we

get from Eq. (5.2)

=7 6 —q(P, (O, t)[V'(P&(r, t))—A, ,(r, t)])

—4A2q 10t 1rt ——1
P, .(r, t) —1 ).I'=1

=V' G —q(P, (O, t)[V'(P, (r, t))—(k, )]) .1 BG (5.4)

Interestingly, Eq. (5.4) is also the evolution equation for
the two-point correlation in an Ising model evolving with
fixed average magnetization (mo ) =2/q —1 (equivalent-

ly, with a density of minority up spins fixed at 1/q). The
droplet domains of the minority phase in this Ising model
would correspond to the bubbles of a particular phase in
the Potts model, with the majority phase corresponding

(5.3)

Note that the two-time correlation function satisfies a
similar equation.

Our first approximation is to replace g& P, by its aver-

age q(P&) =G(O, t) in the third term on the right-hand
side of Eq. (5.3), which becomes exact in the q ~~ limit.
Furthermore, the scaling solution 6 ( r, t) =g ( r /L ( t ) )
must satisfy g (0)= 1, so that we can drop the term
4Az[G(r, t) —1/q][G(0, t) —1] so produced. Thus the
third term, although important in the evolution of P&

since it provides stability to the bubbles, is not crucial in
the evolution of the correlation functions, at least in the
scaling limit of the large q model, but also for q =2 for
which this term is simply absent. The two boundary con-
ditions for G(r, t) are (i) as r~O, 6(r, t)~1 and (ii) as
r~ oo, G(r, t)~q(P&(O, t))(P&(r, t) ) =1/q.

Next, using gg, (r, t)=1, we get (gg, (r, t)A, ,(r, t))= (A. , )(t), and then, given the symmetry between the q
phases, we can write (/&A, &) =(I/q)(A, , ) =(P&)(A,i).
Thus, without approximation, we replace in Eq. (5.3)
A, ,(r, t ) by its average ( A, ,(r, t ) ), which is simply a func-
tion of time. As a result, Eq. (5.3) reduces to an equation
involving only a single field P&(r, t ),
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CT =&'(o )
dm

(5.5)

with the boundary conditions o.(m )~ 1 as m ~+ ~ and
o(m)~0 as m~ —~. The solution is o(m)=[1
+tanh(pm)]/2, which at late times can be replaced
by a step function, since domains grow [with L (t)—t'~ ] whereas the interface width ( -p ' related to the
coupling constant in front of V) remains bounded. The
auxiliary field m(r, t) can be interpreted as the distance
from the nearest interface. The next part of the approxi-
mation is to assume that m(r, t), being smooth across the
interface, has a Gaussian distribution. The virtue of this
"minimal" approximation is that it facilitates analytical
calculation yielding nontrivial results for the correlation
functions and the exponents, which are in good agree-
ment with simulations, at least in the nonconserved case.

In order to extend this approximation to our problem
with globally conserved magnetization, we start o6' with
the assumption that there exists, as in the noncon-
served Ising case, a nonlinear transformation P(r, t )=o (m (r, t ), t ) with a Gaussian auxiliary field. However,
several important modifications need to be done in carry-
ing out this extension from the simple Ising case. First,
(P(r, t ) ) must be strictly fixed at 1/q at all times [by vir-
tue of the time-dependent field (A, , )(t)], as opposed to
the Ising case where, for a critical quench, (P) = —,

' au-
tomatically. This also necessarily implies that the mean
of the distribution of m is nonzero. The first and second
moments of the Gaussian distribution, (m(r, t)) =m(t)
and ( jm(r, t) —m(t)] ) =Co(t) are space independent
due to translational invariance. The complete correla-
tion function ( [ m (r„t, ) —m (t, ) j [ m (rz, tz ) —m (tz ) ] )

to the remaining (q —1) phases. (A, &) acts as a time-
dependent magnetic field, which prevents the minority
phase from disappearing at T =0 and keeps the magneti-
zation constant.

Thus, from now on, instead of the original Potts model,
we consider the coarsening in the Ising model with glo-
baBy conserved magnetization through a time-dependent
magnetic field (Lagrange multiplier). The magnetization
m0 is related to the value of q of the Potts model via
m0 =2/q —1.

The calculation of the two-point correlation function
of this problem can be performed approximately by ex-
tending the Gaussian closure scheme as developed by
Mazenko [12] for the usual Ising model where the magne-
tization remains fixed at mo=0. The essence of this ap-
proximation scheme is to invoke an auxiliary field
m(r, t), which is related to the order parameter field
P(r, t) via a nonlinear transformation P(r, t)=cr(m(r, t)).
The idea is to find a field m(r, t ), which varies smoothly
across the interfaces, as opposed to the original field
P(r, t), which changes abruptly from nearly 0 to nearly 1

across an interface. So, the nontrivial part of the scheme
is to choose the appropriate mapping function o. In the
case of the Ising model with zero magnetization, Mazen-
ko argued that the function o. should be chosen as the
equilibrium profile of P near an interface, which is deter-
rnined by the solution of

Replacing cr(m, t) at late times by the step function 8(m)
(which is 1 for m )0 and 0 for m &0), and thereby
neglecting terms that are of lower order in t, we get
m(t)= —+2Co(t)erfc '(2/q). Note that for q =2,
m =0 as expected. For later convenience, let us also
define the correlation function f (12)=C(12)/
+CO(1)CO(2) and denote it by f(r, t) when t,
=tz =t No. te that f (O, t)=1, and f +0 as—r ~~.
Even for t, =t~, we will keep on writing Co(1) and Co(2)
explicitly, although these two numbers are equal, since
we will use formal derivatives with respect to Co(1).

The second important di6'erence from the simple Ising
case is the choice of the mapping function o(m(r, t), t).
The explicit time dependence introduced via ( A, , )
rnodifies the local equilibrium profile, thereby precluding
the choice of the stationary profile [1+tanh(pm )]/2. In
fact, since the mean of the field m (r, t ) is time dependent
[through Co(t), which scales linearly with t as we argue
below], one can expect to get a "sigmoid" shaped solu-
tion only in a moving frame, with a velocity suitably
determined to neutralize the time dependence introduced
via (A, , ). Thus, making the transformation, r'=r
+a(t)n, where n is an arbitrary unit vector and a(t) is to
be determined, and demanding an equilibrium solution,
i.e., Bp/dt =0 to leading order in time, we find the ap-
propriate equation for cr(m, t),

2o' +da do ~( ) (~ )
dm dt dm

(5.6)

We now fix a (t) from the condition that the average
value on both sides of Eq. (5.6) should be identical. The
average on the right-hand side is zero by definition of
(A, i ). Then, from Eq. (5.6), we get

da (o."(m) )
dt ( '(om) )

(u —m)
cr "(u)

0

+ QO (u —m)f du exp — o'(u)
oo 2C0

j+ du exp—

(5.7)

Now (d o. /dm )/(do. /dm ) is calculated by replacing
o(m, t) by 0(m) at late times, so that o'(m)=5(m) and
o "(m) =5'(m). This yields

da d m
ln exp-

dt dm 2C0
m

C0
(5.8)

Anticipating a scaling solution, we find that
(at)-Q C(to)- (Lt), which is expected, since L(t) is

physically the only remaining length scale at late times.
From Eq. (5.8) and the expression of m as a function of
Co(t), we see that (A, , ) —[L(t)] ', which can be under-
stood on physical grounds: local equilibrium of a bubble
and its interface requires that the surface tension energy

=C ( 12) must be determined self-consistently as is
C(12) in the Ising case [12]. Now, from the condition
(P(r, t)) =1/q, we get

o(m)exp[ —(m —m ) /2C0]dm =1/q .
+2~C,
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Es —[L(t)] ' should balance the magnetic energy EM —(Ai) [L(t)] (see also Sec I.II).
Using the fact that m (r, t ) has a Gaussian distribution, the correlation function G(r, t) is given by

G(r, t)= q'Y (x, —m, ) (x2 —m2)2
dx, dxzo (x i )o (xz)exp — +

2m Co(1)co(2)

—2(x, —mi )(xz —m2)
+co(1)co(2)

(5.9)

where y = 1/+1 f a—nd we recall that f (12)
=C(12)/+co(1)co(2) and that the arguments 1 and
2 denote (r, t ) and (0, t) The.derivative with respect to m
involved when inserting Eq. (5.6) in Eq. (5.4) are more
easily expressed in the Fourier space associated with the
variable x. G(r, t ) then takes the form

G(r, t)= fdkidk2o(k, )o(k~)
4~

k) k
X exp — Co(1)— Co(2)

Mazenko theory with the mapping function determined
by the equilibrium profile Eq. (5.5) leads to inconsistent
and unphysical results. For q =2 (c=—,', Ising critical),
the velocity of the moving frame da /dt =m /Co is zero
identically and our expression then reduces to the Mazen-
ko result.

Replacing o by the 8 function in Eq. (5.9), we get the
leading term for G (f ) for large time:

1/2 2

G(f)= —f dy exp —y+pv'~ o 1+

—k, k2C(12)+ik, m, +ik2m2 Xerf
1/2

(5.14)

(5.10)

where & is the Fourier transform of o.. From this expres-
sion one finds that

(5.1 1)

Using this result and noting that for large time
m, /Co(1)=2[8m, /Bco(1)], the second term on the
right-hand side of Eq. (5.4) can be written as

o2 1 + o2 1

=2 BG + c)m, gG
Bco(1) — Bco(1) gm, c (i)

where p =erfc '(2/q). In principle, the function G(f)
can be inverted, so that Q is implicitly a function of G.
Note that this function has the correct short [as f~1,
G(f )~1] and long distance [as f~0, G(f)~ 1/q ]
behaviors. In addition, for q =2, it reduces to the Ising
case [12], G(f)=(2/m)tan '[&(1+f)/(1 —f)]. We
now substitute the scaling form G(r, t)=g(r/L(t)) in Eq.
(5.13). A scaling solution is obtained provided
Co(t) —[L(t)] -t, which leads to the expected form for
L(t). The fact that Co(t) is proportional to L (t) is con-
sistent with the definition of Co(t) as a two-point correla-
tion function of the field m, which has the physical mean-
ing of a distance. The condition L (t)-t is obtained by
demanding that all terms in Eq. (5.13) obtained by plug-
ging in a scaling form for the correlation function are of
the same orders as a function of time. More precisely,
setting Co(t)=4t/p, and x =r/L(t), we get from Eq.
(5.13),

aG f aG
aC, (i) C, (1) af (5.12)

g 8 1 dig+ +x +pQ(g) =0,
dx GfX

(5.15)

Therefore, the evolution equation for the correlation
function can be expressed as

2 Bt C, (t)
=V G+ Q(f), (5.13)

where Q(f)=f(BG/Bf). Interestingly, we notice that
Eq. (5.13) is identical in form to the Mazenko equation
[12,9] for the critical Ising case with the exception that
G(f) has difFerent expressions in the two cases. Howev-
er, this seems accidental because in our problem we need
to invoke a moving frame and therefore a di8'erent profile
function satisfying Eq. (5.6). A naive application of the

which defines a closed eigenvalue equation for the scaling
function g. The eigenvalue p has to be determined by
matching the short and long distance behaviors of g(x).
The autocorrelation exponent A, is then related to p via
the relation A, =d —)M/2, following an argument due to
Mazenko [12] that we adapt to our problem below.

Following the same line of arguments as used to derive
the evolution equation for G, we find that the two-time
correlation function C(r, t ) =q (P(r, t)P(0, 0) ) —

q
satisfies the equation

—=V C+ Q(f),
Bt C, (r, t)
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2

Q(u)=p R(u)= — exp —u
2v'7ru

(5.17)

Because of the overall factor p in the expression of Q (u)
and since p grows with q [p = ln(q) ], we expect
v=lim~ p(q)p to be finite. Then, using the parame-
terization of Eq. (5.17), u (x) satisfies the eigenequation

d —1 v
Q 2QQ +Q +x — =0.

C 4u
(5.18)

Porod's law gives u = [v/2(d —1)]' x for x ~0 and the
large x limit is easily found to be u = /x /v 2. By match-
ing the two regimes, one can check that u (x)=x /v'2 is a
solution of Eq. (5.15), provided the eigenvalue v satisfies
v=2(d —1). The eigenfunction is then g(x)=erfc(x/
v'2). Moreover, for large q, p, -2(d —1)/p, where
p =ln(q) and therefore A, =d —(d —1)/lnq.

We note that, for d =1, the eigenvalue problem can be
solved directly for any q. The small x behavior of g(x)
obtained from Eq. (5.15) implies p=O. The scaling func-
tion then satisfies the di6'erential equation g"+xg'=0.
As a consequence, g (x) coincides with the exact solution
[Eq. (2.1)] of the d = 1 q-state kinetic Potts model
presented in Sec. II.p=0 leads to A, =1, which was also a

where Q(f) =f(BC/r}f ) and C(f) has the same f depen-
dence as G(f). Since the two-time correlation function
decays with time, its value is very small at late times and
then Q-C. With Co(t)=4t/p, this linear equation can
be solved and C(r, t)-t '" " ' exp( r —/2t). There-
fore, the autocorrelation A (t)=C(O, t) —t
—[L (t)] '" " ' and A, =d —p/2.

In the q~~ limit, it is possible to solve Eq. (5.15)
analytically. Neglecting terms —1/p " and using
erfc(p) -exp( —p ) /p v'm for large p, we find

1 /21+ 1—
g(f)= erfc p2 1+f

Note that as f~0, g(f)=l/q+f(1+2p )/q+O(f ),
and as f~1,g(f)~1 —pv 2(1 f)/rr. —Then, expressing
the function Q in terms of g itself, we find essentially
three regimes. As g ~ 1/q (large distance),
Q(g) =g —1/q, and as g ~1 (short distance),
Q(g) =p /rr(1 —g). In the intermediate regime,
g*«g «1, where g*-ln(q)/q, Q(g)=p g/2. Note
that, as q becomes larger and larger, the window over
which Q(g) behaves as g —1/q becomes smaller and
smaller and for a large range of distance one has f= l.
First consider the small x behavior of Eq. (5.15). Using
Q (g)-p /m(1 —g), we find that g (x)—&1 —p [p/
vr(d —1)]x, refiecting the presence of sharp inter-
faces. This reproduces Porod's law [27], namely,
that the structure factor scaling function F (y ), the
Fourier transforin of g (x), decays as y ' +" for large ar-
gument y.

For very large q, since in the interesting range of dis-
tance one has f (r, t) =1, one can find a very simple pa-
rameterization for g and Q(g). Using the new variable
u =p(1 f) l2, we obtain—

g(u) =erfc(u),

result of the exact d =1 calculation. Thus the Gaussian
closure approximation is exact in d = 1 ~

VI. NUMERICAL SIMULATIONS

We now compare our results with the direct T=0
simulation of the q-state Potts model. We have also
simulated directly our field theory [Eq. (5.2)] and found
that it evolves in a way similar to the Potts model (see
Fig. 1) with domains growing as L (t)-t Ho. wever, in
the field theory, one needs as many fields (four bits real)
as Potts indices, which limits the maximum lattice size
( —120X 120), q (q,„—50), and the number of time
steps. The determination of A, requires large lattice (espe-
cially for large q) and large numbers of Monte Carlo
(MC) steps (typically 10 or more), which is easier to
achieve in the Potts model simulation. The calculations
have been carried out at T =0 on a 800X 800 square lat-
tice with equal coupling to nearest and next nearest
neighbors. Next-nearest-neighbor interactions are need-
ed at T =0 to avoid pinning to the lattice for q )2. It
also ensures a better isotropy of surface tension and thus
of bubbles. We optimize the MC procedure by only
selecting surface Potts spins for updating, since only
these can be Aipped at T =0. For q ~20, the results for
30—40 samples were averaged (more than in [9]), whereas
10—20 samples were bound to be sufficient for q & 20, due
to smaller fiuctuations for L (t) and A (t) with increasing
q, yielding, to our knowledge, the most extensive simula-
tions to date.

We found L ( t ) —t for all q, confirming a result already
obtained in previous studies [4,8]. We also observed good
scaling of the correlation functions. In Fig. 4 we com-
pare the equal-time correlation function for q~~ as
given by the Potts model simulation, the direct sirnula-
tion of the field theory for q =50 fields on a 120X 120 lat-
tice, the mean-field theory of Sec. III, and our approxi-
mate theory, and find good agreement between the nu-
merical results and the two theoretical ones. For soap
bubbles, g(x) measures the probability that the point x
belongs to the same bubble as the origin. Since bubbles
are essentially isotropic, we expect g to be closely related
to the distribution of radii. Since we find that g (x) has a
Gaussian tail, the distribution of areas (A -x ) has a
Poissonian tail. This result is consistent with a maximum
entropy [28] and a mean-field [5,6] calculation. More
precisely, the second derivative to g (x) is proportional to
the interface spacing distribution on a linear cut through
the froth, which has a Wigner form [17] in our case.

A more interesting test of our theory concerns the
computation of the autocorrelation exponent k. The
mean-field result of Sec. III predicts A, =d, whereas the
large n calculation (Sec. IV) leads to A, =d/2. The more
sophisticated Gaussian closure approximation of Sec. V
gives less trivial and more accurate results: In Table I we
present the values of A. generated in Potts simulations and
compare them to those obtained from the (numerical)
solution of the one-dimensional eigenvalue problem of
Eq. (5.15). We find reasonably good agreeinent. Notice
that for large q (q ) 100) the exponent A, obtained from
Monte Carlo simulations is probably slightly overestirnat-
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TABLE I. A, for different q as computed from the Potts model simulation, for the globally conserved Ising model (see text), and by
solving the eigenvalue equation (5.15) numerically.

~Potts

~Ising

~theory

1.25+0.01'
1.25+0.01

1.289

10

1.40+0.01
1.40+0.01

1.476

20

1.49+0,01
1.48+0.02

1.566

30

1.57+0.01
1.55+0.02

1.611

50

1.64+0.01
1.61+0.02

1.660

1.72+0.01
1.70+0.02

1.713

1.82+0.02
1.84+0.02

1.755

1.99+0.01

2.000

'See also Ref. [9].
See also Ref. [15].

ed. This is due to the fact that for a finite lattice q = Do is
actually realized for a finite value of q, so that one can ex-
pect that the effective number of different phase is q,ff )q.
Finite size scaling indeed confirms this fact, although
A, (X) does not seem to have a simple form. In fact, for
the values of q presented here, the finite size correction is
comparable to the statistical error bars. For instance, for
q =200 and a 300X300 lattice, we find X=1.84+0.02 in-
stead of A, =1.82+0.02 for a 800X800 lattice. We also
note that A, from the simulation saturates very slowly to
its q~ ~ value, as predicted by our asymptotic results.
For soap bubbles, q = oo and A, =2 (A, =d in dimension d).
Indeed, the choice q = ~ eliminates the coalescence of
bubbles with identical index, so that A (t) —[N(t)]—[L(t)] ", where X(t) is the number of remaining bub-
bles at time t (see also Sec. III).

We also tested the correspondence between the two-
point correlation functions of the q-state Potts model and
that of the Ising model with a fixed average magnetiza-
tion (mo ) =2/q —1, as suggested by our analysis of Sec.
V. The dynamics is described by an infinite range
Kawasaki dynamics where two randomly selected spins
are exchanged with probability 1 if the energy is lowered
and with probability —, if the energy is not changed [23].
Again, the algorithm is optimized by keeping track of the
movable (surface) spins and by rescaling properly the unit
of time. This last aspect is not important for the deter-
mination of A, , which does not involve the real time ex-
plicitly, but only L (t). For q )2, this simulation appears
to be much more delicate than for the q-state Potts model
or for the Ising model with q =2. Indeed, the choice of
the initial conditions is crucial as it is already known [25]
in simulations of the dynamics following an off-critical
quench in the conserved order parameter (model 8) case.
For instance, one can start from an assembly of per-
forrned circular bubbles with a distribution of radii given
by the mean-field expression of Eq. (3.4). The bubbles are
then randomly placed on the lattice. Although attrac-
tive, this procedure leads to very long transient times
since the correct correlations between bubbles are long to
establish through merging of bubbles. In other words,
the correlations introduced in the initial state take a very
long time to destroy, a phenomenon that is amplified for
large q. We thus decided to start from a more intrinsic,
completely random initial condition where N /q up spins
are randomly distributed on the lattice and considered
800X800 square lattices, with equal nearest- and next-
nearest-neighbor couplings. For each value of q, the re-
sults have been averaged over 80 samples. These large

sizes are necessary in order to allow large coarsening
times. In fact, notice that the larger q is, the shorter the
accessible coarsening times. Indeed, for a small concen-
tration of minority phase (as for q = 100,200), a too small
number of droplets is obtained after a rather short time.

We found that the scaling function g, once normalized
such that g (0)= 1, is only very weakly q dependent and is
almost indistinguishable from the curves already present-
ed in Fig. 4. More interestingly, we computed the auto-
correlation A (t) = (s;(t)s;(0) ) —mo —[L (t)] . In or-
der to determine A, properly, and despite the long accessi-
ble coarsening times, we also had to use an interpolation
scheme introduced in [11]for the usual Ising model. The
authors argued that the effective exponent A,(t) measured
at time t should behave as

3 (bt)
A(t)

L (bt)
L, (t)

where b is a time scaling factor chosen in the range
10—40 depending on q and the speed of the simulation.

is the exponent to be found. This relation was fairly
well obtained for all q and typically modified the naive
value of A, (measured at large time) by 0.03—0.06 depend-
ing on q. We insist again on the fact that, due to the ob-
served sensitivity to initial conditions (totally random,
performed bubbles, etc.), it is possible that systematic er-
rors are actually comparable to or even larger than the
error bars [25]. The results of these simulations are
presented in Table I. Although for certain values of q the
difference between the obtained values of A, for the Potts
model and the globally conserved Ising model is larger
than the error bars (in fact, only for q =50), the two ex-
ponents remain very close for all q. Actually, except for
q =200, we systematically have kp«ts ~ A,„;„~by a typical
amount of 0.02. We cannot conclude whether this ten-
dency is real or simply results from systematic errors in
the simulation and the various extrapolation schemes
used. However, considering the already mentioned prob-
lerns affecting the Ising simulation, but also the Potts
simulation for large q, we cannot exclude that these ex-
ponents are strictly identical, as suggested by our theoret-
ical analysis. Also notice that for q =2, the exact global
conservation of the magnetization does not affect the
value of A, , which is consistent with the results in [23,24].
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VII. CONCLUSION

In this paper, we have studied in detail the phase or-
dering process following a temperature quench in systems
possessing, in general, q (q ~ 2) degenerate ordered
phases at low temperature. We studied the dynamics of
the q-state Potts model, which accurately describes these
systems. We have derived several exact results in
diFerent limits and obtained an important and interesting
correspondence between the two-point correlation func-
tions of the q-state Potts model and that of an Ising mod-
el evolving with fixed magnetization mo=2/q —1. This
analogy has been particularly useful in extending the
gaussian closure approximation developed for q =2 to
the case where q & 2 and the results obtained from this
approximation agree very well with our direct numerical
simulations. A note about the GCA is worth mentioning
at this point. It is well known [2] that up to now, the
GCA has failed to capture the essential dynamics in
many situations such as the model B dynamics where the

order parameter is locally conserved or even model A
with long-range interactions [2]. However, for short-
range model-A systems, such as the nonconserved Ising
model, the GCA has given a reasonably good answer
especially for the autocorrelation exponent A, . So, it is
not surprising that for our system, which is also a short-
range model-A system, it produces reasonably accurate
values for the exponents A,(q).

As mentioned in the Introduction, the correspondence
to the Ising model also has an interesting experimental
significance. We hope that this study will motivate future
experimental work to measure quantities such as A,(q), as
it has already been done for q =2
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