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Analysis of sensor signals shows turning on a lathe exhibits low-dimensional chaos
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The dynamics of the turning operation on a lathe is commonly assumed to be linear, stochastic,
or chaotic without experimental verification. Here we report three independent approaches —two
statistical tests and a Lyapunov exponents-based test —to establish the presence of low-dimensional
chaos in the sensor signals from actual experiments on a lathe.

PACS number(s): 05.45.+b

I. INTRODUCTION

On-line, real-time quality control schemes are deemed
essential for the production of high quality products.
Given the trend for globalization of markets, it is imper-
ative that such schemes be robust and help in producing
good and consistent quality products. In order to de-
velop these on-line, real-time quality control schemes for
a manufacturing process, the process needs to be moni-
tored, faults have to be diagnosed, and a real-time control
action needs to be enforced in situ.

In this paper, we address the domains of Inonitoring
and control. We focus on the turning operation —a ma-
terial removal process performed on a lathe —because
that operation is industrially ubiquitous, and is perhaps
the most basic material removal operation [1]. Because of
the simplicity of the turning operation, fundamental un-
derstanding of the machining process is acquired usually
through experiments on a lathe, and is later extended to
other machining operations such as milling, etc.

A schematic of the turning operation is shown in Fig. 1.
A cylindrical workpiece is held in the chuck of a lathe
and rotated about an axis. A rigidly held cutting tool
is made to traverse along the axis of rotation. Mate-
rial is removed from the surface of the workpiece to re-
duce its diameter. The main parameters of the turning
operation are (i) cutting speed: the tangential velocity
of the surface of the workpiece; (ii) feed: the axial dis-
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tance moved by the tool for every complete rotation of
the workpiece; and (iii) depth-of-cut: the thickness of the
metal removed &om the workpiece. Precise relationships
connecting these parameters and the states of the turn-
ing operation have to be established in order to develop
control systems.

However, turning dynamics is poorly understood.
Early models for turning operation were developed on
the assumption that its dynamics is linear [2]. Later
models assumed linear dynamics contaminated with ad-
ditive noise [3]. However, these models are inadequate
especially for global characterization of the turning dy-
namics; one should therefore resort to nonlinear models.
The observation of complex response &om a nonlinear
model of Grabec [4] has prompted speculation that the
dynamics of the turning operation may be chaotic.

Nonlinear model-based control schemes have not been
developed due to the lack of knowledge about the exact
nature of nonlinearity. In addition, the mere identifica-
tion and characterization of chaos in a process does not
lead to a model and hence a control scheme. Even when
the exact nature of nonlinearity and chaos is known, the
chaos model may not be of much use in process control if
the dimension of the attractor of the underlying process
dynamics is not low [5]. Furthermore, control paradigms
and schemes for chaotic processes are still in their in-
fancy [6].

About two years ago, we began a systematic approach
to apply the tools of chaos theory to turning operation
characterization and control. We used Grabec's model
and understood that numerical integration must be care-
fully done [7]. This is because the use of finite differ-
ences induces spurious dynamics which may not actually
belong to the physical operation, this understanding be-
ing in agreement with Pachner's widely applicable nu-
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merical work [8]. We went on to develop a paradigm
to control chatter associated with the turning operation
based on chaos theory [9, 10]. The success of our con-
trol paradigm has motivated us to obtain experimental
evidence for chaos in the turning operation, to develop
a model capturing the "global" behavior of the turning
dynamics, and to apply that model to control the turning
operation.

We noted the lack of systematic experimental evidence
for the presence of chaos during the turning operation.
Therefore, as a first step in this direction, we performed
preliminary experiments and collected on-line sensor sig-
nals. Then we computed various types of &actal dimen-
sions of these time-series data [11]. The characteristic
trend of the capacity dimension indicated that the turn-
ing dynamics is chaotic. Parenthetically, we note that
the finiteness of &actal dimensions does not necessarily
imply the presence of a low-dimensional chaotic attrac-
tor. This is more true in the case of fractal dimensions
computed &om sparse data sets.

The presence of chaos needs to be confirmed by means
of rigorous testing procedures on the experimental data
from the on-line sensors, and we selected three: (i) a sta-
tistical hypothesis test called the surrogate data test [12]-,
(ii) a statistical test called the quasiperiodicity test to es
tablish the presence or absence of quasiperiodicity, and
(iii) the familiar Lyapunov exponents test [13]. The ra-
tionale behind performing these tests in that order will
be clear &om the implementation details and the results
&om each stage of implementation presented in Sec. III.
Because sensor signal dynamics is reasonably synony-
mous with the dynamics of turning operation, our con-
clusions regarding the sensor signals may be extended to
actual machining. In this communication, we report the
methodology, implementation details, and the results of
the three testing procedures.

II. METHODOLOGY

The testing methodology consisted of conducting ex-
periments and obtaining sensor signals there&om, and
establishing evidence for chaos in the time-series data by
performing (a) the surrogate-data test, (b) the quasiperi-
odicity test, and (c) the Lyapunov exponents test.

Experiments were conducted on a 20 HP LeBlond
heavy duty lathe. Three diferent on-line sensors were
used: (i) a 3-axis Kistler Z3392/b piezoelectric dy-
namometer for measuring cutting, feed, and thrust

forces; (ii) two PCB accelerometers to measure vibration
signals along main and feed directions; and (iii) a SE-
900 M%'8 wide bandwidth AE sensor to measure RMS
AE signals. The force sensor signals were sampled at
3 kHz &equency, vibration signals at 26 kHz, and acous-
tic emission signals at 1 MHz. The workpieces were made
of 36 in. xP 7 in. SAE 6150 Cr-V steel, and the tool in-
serts were K420 uncoated carbide grade with geometric
specification SPG-422.

A 5 x 5 full factorial experimental design consisting of
speed (100, 130, 160, 190, and 220 feet/min), and feed
(0.0064, 0.0088, 0.0112, 0.0136, and 0.0154 in. /rev) was
used. The depth of cut was kept constant at 0.05 in.
At every design point, a &esh cutting edge was used to
perform the turning operation. During every machining
operation, time-series data of length 4096 were collected
&om sensor signals at regular intervals until the tool wore
down. This experiment resulted in 650 scalar data sets.
The two tests mentioned earlier were conducted on these
data sets. Incidentally, time-series data of length ) 4096
are beyond our experimental capabilities, but those of
length 4096 should suKce [12, 14], especially since we are
dealing with multidimensional time series.

A. Surrogate-data test

A deterministic chaotic process can produce signals
with broadband noise spectra similar to a stochastic pro-
cess (provided the spectra exist [15]). But a chaotic pro-
cess is finite dimensional, whereas a random process is
infinite dimensional.

The finite dimensionality of chaotic processes is ex-
ploited in the surrogate-data test to distinguish between
deterministic chaotic and Gaussian stochastic processes.
The testing procedure involves three steps.

(i) Generation of surrogate time series. Many stochas-
tic time series with the same average power spectral den-
sity (PSD) as the original time-series data are generated.
We perform a histogram transformation [12] of the time
series before generating each stochastic time series, thus
ensuring that the original time series and the generated
stochastic time series have the same Gaussian distribu-
tion, thereby preventing any false-positive results. Ev-
ery stochastic time series generated is subjected to a
two-sample Kolmogorov-Smironov test to ensure that the
probability distributions of the original time series and
the surrogate time-series sets (i.e., the stochastic time
series) are similar.
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(ii) Construction of prediction model. From the given
original and surrogate time-series sets, a state vector is
constructed using different independent time-series (sen-
sor signals) and/or lag coordinates. Three kinds of pre-
diction models are commonly used: (a) piecewise linear
autoregression (AR) model-based predictor; (b) nearest-
neighbor-based predictor; and (c) neural network predic
tor [16, 17, 12]. The model predictions are coxnputed for
the original time-series data and every surrogate time-
series generated therefrom.

(iii) Hypothesis testing. The original time-series data
set is hypothesized to be nonlinear and very likely
chaotic. The Mann-Whitney rank-sum statistic

frequency spectrum of the quasiperiodic response (8) has
only two peaks, corresponding to mx and w2 [19]. Fur-
thermore, the Poincare section plot of the state vector
x(t) shows —-periodic orbits when the strobe &equency
is set at u~.

But discrete responses cannot be represented by the
right side of (3) which is based on incommensurate &e-
quencies; hence, alternate representations have to be
adopted by us. A comxnon representation is

(4)

where the time evolution operator

N@ NE

T=) ) O(X„—E )

U (t q) g i(nuq+mu2 }(t (}— (5)

is computed, where E denotes the set of decimated [18]
prediction errors computed from the original time-series
data, E is the set of decimated prediction errors on the
surrogate data sets, N& is the number of samples in E,
N& ——MN is the number of samples in E, M is the
number of surrogate-data sets generated, and 0() is the
Heaviside function. For a large sample set E, the statistic

(2)

follows the standard normal distribution. The magnitude
of this z statistic may be used to reject the null hypothesis
that there is no significant difference between the magni-
tudes of the prediction errors of original time series and
the surrogate time-series sets. If the prediction errors of
the surrogate time-series sets are significantly larger than
those of the original time series, then the original time
series is nonlinear and possibly chaotic.

B. Quasiperiodicity test

If a given time series (i) passes the surrogate-data
test and therefore is established as being nonlinear, and
(ii) has one or more dominant periods superposed on
a seemingly random reponse, then it is very likely to
be quasiperiodic, though it may be chaotic instead. In
this section a statistical test is developed to confirm
whether a given time series is (i) low-dimensional chaotic
or (ii) quasiperiodic contaminated by Gaussian noise.
This test relies on the di8'erence in the representations
of quasiperodic and chaotic signals.

Quasiperiodic response

An elementary quasiperiodic system response may be
represented by

n and m being integers. Thus, the Fourier spectrum of
x(t) consists of a dense set of &equencies. Only a few
matrices A are sufBcient to represent many quasiperi-
odic responses reasonably accurately; but a large num-
ber of A„are needed if the underlying dynamics is
chaotic [20]. This enables a quick distinction between
a quasiperiodic and chaotic systems.

The representation [(4) and (5)] has certain limita-
tions. If a particular quasiperiodic response appears
very complicated, its representation may require a dense
set of A, hence rendering distinction based merely
on frequency spectra incorrect. Badii and Meier have
shown [20] that the system response as perceived &oxn
a Poincare section plot may resemble an aperiodic or
chaotic response, and even the correlation function eval-
uated over a small time interval might appear chaotic. In
such instances, double Poincare section plots can be used
to identify the correct system behavior [20]. Further-
more, system noise has not been accommodated in (4)
and (5).

Therefore, we propose that a quasiperiodic response is
better represented as the quantized response

(6)

where TV is the set of indices of the codebook frequencies
obtained by performing a transform vector quanti-

zation (TV@) [21] of the given signal using a Gaussian
window function in the frequency domain, A are the in-
dependent and normally distributed amplitude vectors,
while e(t) is an autocorrelated stationary stochastic pro-
cess.

The representation (6) can be modified to analyze mea-
sured time series (which are necessarily discrete). Let
y(k) be the measured state vector at time t = kT, where
T is the sampling period and k is an integer. Its predic-
tor may be obtained from (6) using a multivariate ARMA
(auto regressive and moving average) model [22] as

x(t) = axcos(&xt) + a2cos(Ld2t)) xv(k+ 1) = 4xv(k) + @e(k),

where x(t) is the state vector, ax and a2 are two ampli-
tude vectors, and uq and u2 are mutually incommensu-
rate &equencies (i.e. , P- is an irrational number). The

where tv(k) = e(kT), 4 and 4 are the ARMA model co-
effxcients, and e(k) is the normally distributed prediction
error.
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2. Chaotic maponae

3. Teating pt ocedure

A given time series is first assumed to be quasiperi-
odic and modeled using (6) and (7)—prediction errors
e(k) are thus obtained. Next the time series is assumed
to be chaotic and represented using the neural network
model —to obtain e(k).

The two sets of prediction errors are used to verify the
null hypothesis

~0: pe —e =0) (8)

Following the findings of Baker et aL [23], we can state
that chaotic responses cannot be parsimoniously repre-
sented by (6). But, nonlinear models such as neural net-
works may be used for representation and prediction of
chaotic time series [17]. The inethodology of develop-
ing a neural network based representation of a chaotic
response is as follows.

Prom a given time series, we may set up the input
(i.e. , training and/or testing) patterns based on the opti-
mal embedding dimension obtained using other methods
(e.g. , surrogate-data test). The output of the neural net-
work consists of the last component of y(k + 1). After
training the neural network using selected training pat-
terns, the same patterns may be used for testing. Al-
ternatively, patterns extracted &om a second experiment
cond. ucted at the same control parameter combination
and tool wear level may be used. for testing. Neural net-
work model prediction errors e(k) may be obtained by
testing the trained network.

where 9() is a nonlinear mapping function.
The evolution Ay(k) of a small perturbation Ay(0) of

the initial state y(0) is given iteratively by

b.y(k+ 1) = JQ"(y(0))Ey(0). (12)

Here, J stands for the Jacobian such that JB"(y(0)) =
~~(~)

( & )„„(gl,and

lim e " JQ"(y(0)) = 1,

where A is the global I yapunov exponent [24] of the at-
tractor represented by y(k).

This concept of Lyapunov exponents may be extended
to a d-dimensional time series, the integer d & 1. In
that case, the single A must be replaced by a diagonal
matrix containing d Lyapunov exponents computed &om
the eigenvalues v (k) of the positive semidefinite matrix
[J~"(~(0))l [J~"(~(0))) s

(ii) the nature of quasiperiodicity is complicated (for in-

stance, arising from multiple bifurcations), not much con-
fidence can be placed on the results of Sec. IIB. There-
fore, the Lyapunov-exponents test has to be performed in
such situations. Lyapunov exponents are the best quan-
tifiers of chaos in a dynamical system. They signify the
divergence rate, along a particular direction, of small per-
turbations to an orbit.

Suppose the state of the system is sampled at times
t = kT, 0 & k & ¹ For simplicity, let us consider a
one-dimensional time series y(k) and the corresponding
nonlinear map

~(k+1) = ~(~(k))

where p„; is the population mean of e(k) —e(k). If IIO
holds, the time series is quasiperiodic. The alternative
hypothesis may be stated as

lim —log, [v (k)] (m = 1, ..., d),
1

a-+~ 2Q
(14)

Hg.. p, ;&0.
If Hz holds, the time series is very likely to be chaotic.
Hypothesis testing may be carried out using the normal
statistic

Src

N, ' (10)

C. Lyapunov-exponents test

If a given time series fails the null hypothesis (8), it
is not quasiperiodic (whether contaminated by Gaussian
noise or not) and is very likely to be chaotic. But, if
(i) the length of the time series is not large enough and

where N, is the sample size (i.e., the number of testing
patterns), K is the sainple mean of m = e —e, and sz is
its sample variance.

Thus the prediction errors obtained from both assump-
tions are compared, and a normal test is used to ei-
ther confirm or reject, the hypothesis of the absence of
quasiperiodicity and presence of chaos.

for a given y(0). The superscript T denotes the trans-
pose.

A system is dissipative if the sum of the d Lyapunov
exponents is less than zero, and it is chaotic when at
least one of the Lyapunov exponents is positive. The
presence of positive I yapunov exponents is regarded [13]
as a reliable confirmatory test for the presence of chaos.

However, the unavoidable presence of noise or other
contamination tends to increase the Lyapunov exponents.
Therefore, the measured signal has to be separated &om
noise. If the time series were linear, signal extraction
using a narrow-band window could be sufBcient and all
necessary analyses could be carried out in the Fourier do-
main. But Fourier analysis is of little avail for a nonlinear
time series.

The crux of the problem in the latter case is to char-
acterize the given signals by identifying and separating
components originating &om various sources. We em-

ploy a wavelet transform to perform signal separation.
The procedure to accomplish this transform has been
described by Dai et al. [25]. Interested readers are also
referred to the excellent manual on wavelet transforms
written by Naylor and Silverman [26].

The following assumptions underlie the application of
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bing action lead to complications that are not completely
revealed in three-dimensional plots [11].This fact is also
con6rmed by the double Poincare section plots discussed
later. The Poincare section plots of the force system at
a difFerent control parameter setting, i.e., cutting speed
of 160 feet/xnin and feed of 0.0064 in. /rev are shown in
Fig. 4. On comparing Figs. 3 and 4, as well as &om nu-
merous other Poincare section plots, we conclude that the
dynamics does not change significantly over the working
range of the control parameters.

We drew lag plots at difFerent wear levels, as exempli-
6ed by Fig. 5. Lag plots correlate the If th state to the
(k + r)th state, where r is the lag [14]. Lag of r = 4 was
used for plots. The first column shows the lag plots of
feed force (Ef [k] versus Ey[k —4]), and main force (E [k]
versus E [k —4]) for a fresh tool, with k = 4, 8, 12, ... .
The second column has the same plots drawn for a worn
tool. These plots also con6rm the presence of a distinct
structure underlying the sensor signal data. In particu-
lar, the underlying structure corresponds to either deter-
ministic chaos, quasiperiodicity interfered with Gaussian
contamination, or "noisy" periodicity. The exact identity

of the underlying structure can be ascertained from the
quantitative analytical procedures outlined in Sec. II.

2. Vibv ation eyetem,

Representative time-series data for the vibration along
the main and feed directions are shown in Fig. 6. These
and other plots show that the dominant time period of
the vibration system is approximately 6ve time steps, i.e. ,
5T.

The Poincare section plots of the vibration system
(exemplified in Fig. 7) reveal the presence of a low-
dimensional attractor. As for the force system, the
Poincare plot of the vibration system is not very sensitive
to changes in the control parameter setting; however, it
is affected by the cutting tool wear. Lag plots confirmed
these observations.

We also performed graphical analysis of acoustic emis-
sion signals. The chief sources of acoustic emission in
turning operations are the plastic deformatioxi zones [1].
Acoustic emission is extremely sensitive to microlevel
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TABLE I. Estimated capacity fractal dimension (D~) for
four sensor signals.

C. Surrogate-data test

Sensor
Main force sensor
Feed force sensor
Main vibration sensor
Feed vibration sensor

Fractal dimension D„
1.65
1.62
1.67
1.58

The surrogate-data test was conducted on the equi-
spaced time-series data representing the sensor signals
obtained &om actual experiments. The average decorre-
lation time of the data was eight time steps. The first
minimum of the mutual information function [13] for dif-
ferent data sets was found to be four time steps for force
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FIG. 8. Time-series plots of acoutic emission sensor for a
fresh tool (top), a partially worn tool (middle), and a fully
worn tool (bottom). [Cutting speed = 130 feet/min, feed =
0.0088 in. /rev; flank wear = 0.0000 in. (fresh tool), 0.006 in.
(partially worn), 0.0175 in. (fully worn). )
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TABLE II. Results of the surrogate-data test for a piecewise linear AR model.

Sensor

Main force sensor
Feed force sensor
Main vibration sensor
Feed vibration sensor

dg = 2
—2.35
—3.13
—4.23
—2.88

d~=3
—3.34
—3.55
—5.12
—4.17

Average z statistic
dg ——4
—6.12
—7.23
—10.01
—7.45

dg ——5
—6.05
—6.83
—9.13
—7.42

dg ——6
—6.01
—4.88
—6.95
—6.23
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sensor signals and five time steps for vibration sensor sig-
nals. The mutual information function leveled ofF after
nine time steps.

The first 2048 data points fLom the main force, feed
force, main vibration, and feed vibration sensors were
used for the test. Scalar time-series data &om individ-

ual sensors were tested. The tests were conducted for
embedding dimensions d~ ranging &om 1 to 6. Corre-
sponding to the largest frequency of interest, time delays
of one to six time steps were used, and the prediction
interval of four time steps in the reconstructed state vec-
tor (approximately half of the first significant minimum
of the mutual information function) was used. Twenty
surrogate data sets were generated.

Prediction errors were computed for the original time
series and the surrogate time series. Hypothesis test-
ing was performed for three prediction models used:
(i) piecewise linear AR model, (ii) nearest-neighbor-
based predictor, and (iii) neural network predictor. The
Mann-Whitney rank-sum statistic was then obtained.
Let us note that the values of z & —2.33 correspond to a
99%%up confidence level of stating that prediction errors of
the original data sets are signi6cantly lower than those of
the surrogate data sets, implying that the original time
series is indeed nonlinear [29] and possibly chaotic [12].

The results of the surrogate-data test for linear,
nearest-neighbor, and neural network predictor models
are presented in Tables II, III, and IV, respectively. The
results show that the measured time-series data corre-
spond to a chaotic or nonlinear process because the min-
imum z statistic for all sensors is well below the 99'%%uo

con6dence level of —2.33. In other words, the vibrations
of the cutting tool, the forces, and hence the turning
dynamics, are nonlinear and possibly chaotic. Further-
more, &om Table II, it is evident that the predictability
of the measured state vector is high if d~ ——4 because
the minimum z statistics occur when d~ ——4. This result
is in consonance with the value of the optimal embedding
dimension obtained using fractal dimensions [30]. More-
over, it may be noted &om Table V that the prediction
errors resulting from the neural network model was about
10'%%uo lower than those from the local linear model. This
reinforces the confirmation that the measured time-series
data are nonlinear.

0.8

0.6
1

I i

1.5 2 2.5 3 3.5 4 4.5
Embedding dimension

I

5.5

Sensor Average z statistic

TABLE III. Results of the surrogate-data test for the
nearest neighbor prediction model (ds = 4). Minimum z
statistics occurred at d~ ——4.

FIG. 9. Representative data for (a) variation of correla-
tion function with box radius, (b) variation of fractal dimen-
sion with embedding dimension for two experimental runs
conducted using a fresh tool. (Cutting speed = 160 feet/min,
feed = 0.0136 iii./rev. )

Main force sensor
Feed force sensor
Main vibration sensor
Feed vibration sensor

—5.78
—7.19
—6.91
—4.55
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TABLE IV. Results of the surrogate-data test for the neu-
ral network prediction model (da = 4). Minimum z statistics
occurred at d~ ——4.

TABLE V. Percentage improvement in the prediction er-
ror from the neural network model over the piecewise linear
model at d@ ——4.

Sensor
Main force sensor
Feed force sensor
Main vibration sensor
Feed vibration sensor

Average z statistic
—14.23
—11.94
—17.06
—9.89

Sensor
Main force sensor
Feed force sensor
Main vibration sensor
Feed vibration sensor

Percentage improvement
11.3
6.7
10.1
8.4

D. Quasiperiodicity test
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The results of the graphical analysis and the surrogate-
data tests have established the nonlinearity of the turning
dynamics. Specifically, the turning dynamics could be
either (i) low-dimensional chaos or (ii) quasiperiodicity
interfered with by an autocorrelated stochastic process.
Therefore, we went on to devise a quasiperiodicity test.

We first visualized the measured data using double
Poincare section plots. First we computed the second
significant period of the original time-series data (which
turned out to correspond to the second major minimum
of the mutual information function and the second dom-
inant &equency), and recorded a point on the Poincare
section plot only if the current time index was close to
an integral multiple of the second dominant period. The
recorded data points corresponded approximately to the
multiples of 63 time indices. Figure 10 is a represen-
tative double Poincare section plot of the force system
drawn &om data collected with a &esh tool at the fol-
lowing paraxneter settings: speed = 160 feet/min, feed
= 0.0136 in. /rev, and depth of cut = 0.05 in. It reveals
a definite structure which is not xnerely of type (ii).

A statistical test to correctly characterize the turn-
ing dynamics &om the given time-series data has been
outlined in Sec. IIB. We particularly noted that the
attractor appears to be a quasiperiodic two-dimensional

torus (as seen from the Poincare section plots), as well
as a three-dimensional torus (as seen from the double
Poincare plot). We therefore used a quantization rate
[21] of 4 to perform the TV@. From the quantized re-
sponse obtained from (6), four-dimensional vectors xi'(k)
were computed. Our iterative algorithm ensured that
xU(k) was a stationary stochastic sequence. Using xo(k)
an ARMA model was developed, and the prediction er-
rors e(k) were obtained therefrom.

A two-layer time-delay neural network with six input
nodes [four input nodes corresponding to the components
of xI(k), the fifth for speed, and the sixth for feed], six
hidden nodes and a single output node was trained with
2000 time-delayed patterns. Error backpropagation al-
gorithm [11] was used for training the neural network.
Then the neural network was tested using the same 2000
patterns plus 800 additional patterns and the prediction
errors e(k) were computed. Parenthetically, we note that
this testing strategy prevents overtraining the neural net-
work.

The prediction errors e(k) and e(k) were used to verify
the null hypothesis (8) with N, = 24500 and z' = 3.13.
Computed results showed that the hypothesis (8) was re-
jected at a 95% confidence level but accepted at a 99'%%uo

level. This explains why at first glance the attractor
of the turning dynamics may appear to be quasiperi-
odic, but actually it is not so. Perhaps in some regions
of the control parameter space, the attractor could be
quasiperiodic with a toroidal shape, but it certainly is
not so at the control parameter values corresponding to
practical cutting conditions.

We therefore conclude that, for the control parame-
ter combinations chosen for our experiments, the turn-
ing dynamics may be more accurately described as a
low-dimensional chaotic process than as a quasiperiodic
process interfered with Gaussian contaminants. Further-
more, for certain applications, the response of the turning
process may be represented by (6).

Since the quasiperiodicity test failed to confirm the
presence of chaos at 99% confidence level, another confir-
mation test had to be carried out. The final confirmation
of chaos was accomplished using the Lyapunov-exponents
test.

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
Main force E. Lyapunov-exponents test

FIG. 10. Double Poincare section plot of force system for
a fresh tool. [Cutting speed = 160 feet/min, feed = 0.0136
in. rev.

The methodology outlined in Sec. IIC was followed
to calculate Lyapunov exponents of the Poincare section
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TABLE VI. Results of the Lyapunov-exponent test. All entries except one are ( 2.0, the sole
exception arising due to inadequate filtering.

a

Sensor

Main force sensor
Feed force sensor
Main vibration sensor
Feed vibration sensor

d~=1
0.7208
0.3017
0.9216
1.9341

Dominant Lyapunov exponent
dg=2 3 dg=4
0.5216 2.2233 1.9885
1.0999 1.9949 1.8947
1.5689 1.8934 1.9931
0.7199 1.7263 1.9238

d~ ——5
1.7843
1.7489
1.8309
0.8356

plots, which may be referred to as the Lyapunov numbers
by some. First, the zer. :depth-of-cut signal was obtained.
Its energy content c was found to be 0.062 times the
average energy (= 2~ ) during the regular experiments,
and the threshold e'tg was computed using (15) to be
0.031.

Next, the Lyapunov exponents of the measured time-
series sensor signals were determined using the methodol-
ogy outlined by Abarbanel et al. [13].It involves express-
ing the overall divergence of a trajectory as a product of
local divergences and then computing the eigenvalues of
the product through QR decomposition [31]. The corn-
puted results are shown in Table VI. The dominant Lya-
punov exponents are ( 2.0 for 1 & d~ & 5; in particular,
they hover between 1.89 and 2.00 when d~ ——4, the opti-
mal embedding dimension. It follows there&om that the
dynamics of turning operation exhibits low-dimensional
chaos. The values of the Lyapunov exponents are slightly
higher than those usually regarded as being characteris-
tic of low-dimensional attractors. However, we conjecture
that the slightly higher values may be due to inadequate
filtering which has possibly allowed some noisy compo-
nents to pass through.

The results of the Lyapunov-exponents test imply that
piecewise linearization of the turning dynamics may be
appropriate for adequate control schemes.

IV. CONCLUDING REMARKS

of &actal dimensions in order to be concise in our report-
ing. We conjecture that with the availability of longer
time series in the future, the results of graphical anal-
ysis and the quantitative tests will be more convincing.
Furthermore, we found that the process dynamics is on
the edge of chaos because the Lyapunov exponents are
not very large. Therefore the turning dynamics may be
successfully learned by computational learning tools such
as neural networks [9, 11]. These neural networks can be
used for the on-line estimation of cutting tool wear [32]
and for chatter control [9] in turning.

To summarize our findings, the turning operation on
a lathe was statistically confirmed, perhaps for the first
time, to exhibit low-dimensional chaos, leading to the
conclusion that it is controllable. The surrogate-data
test and the quasiperiodicity tests showed that the turn-
ing operation is predominantly chaotic, whose low di-
mensionality was established by the Lyapunov-exponent
test. As these results were established &om actual exper-
iments, the invariants of the dynamics such as the &actal
dimensions —for the given range of process parameters-
are realistic, and may be used to develop practical models
to control the turning operation. This understanding is
in consonance with Ruelle's recent survey [5] of chaos
modeling of diverse physical phenomena. Presently, we
are developing a nonlinear dynamics-based theory to ex-
plain various physical phenomena that contribute to cut-
ting tool chatter in turning.

Using the battery of tests performed, the turning op-
eration on a lathe was found to exhibit low-dimensional
chaos. The Poincare plots of the force and vibration sen-
sors of the cutting tool revealed a definite structure, thus
establishing the presence of a low-dimensional attractor.

We did not state the interval estimates (i.e. , error bars)
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