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We study the dynamics of a fully coupled network of N classical rotators, which can also be
viewed as a mean-field XY Heisenberg (HMF) model, in the attractive (ferromagnetic) and repulsive
(antiferromagnetic) cases. The exact free energy and the spectral properties of a Vlasov-Poisson
equation give hints on the values of dynamical observables and on time relaxation properties. At
high energy (high temperature T') the system relaxes to Maxwellian equilibrium with vanishing
magnetization, but the relaxation time to the equilibrium momentum distribution diverges with N
as NT? in the ferromagnetic case and as NT3/? in the antiferromagnetic case. The N dependence
of the relaxation time is suggested by an analogy of the HMF model with gravitational and charged
sheets dynamics in one dimension, and is verified in numerical simulations. Below the critical
temperature the ferromagnetic HMF model shows a collective phenomenon where the rotators form
a drifting cluster; we argue that the drifting speed vanishes as N ~'/2 but increases as one approaches
the critical point (a manifestation of critical slowing down). For the antiferromagnetic HMF model a
two-cluster drifting state with zero magnetization forms spontaneously at very small temperatures;
at larger temperatures an initial density modulation produces this state, which relaxes very slowly.
This suggests the possibility of exciting magnetized states in a mean-field antiferromagnetic system.
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I. INTRODUCTION

In this paper we study in detail a simple model of N
interacting particles moving on the unit circle [1]. The
coordinate —m < 0; < 7 of particle 7 is its position on the
circle and p; its conjugate momentum. The equations of
motion derive from the following Hamiltonian:

N o N
L Y A _ _0.)] =
H—; >t o ‘Z [1—cos(8; —0;)]=K+V, (1)

3,j=1

where K and V are the kinetic and the potential energy,
respectively. Each particle interacts with all others and
thus moves in a force field which is, at each time, the sum
of the individual fields produced by all the others. The
interaction strength is rescaled by the number of parti-
cles, making the potential thermodynamically stable [2].
Defining a spin vector associated to each particle

m; = (cosb;,siné;) , (2)

we observe that the interaction term in (1) corresponds
to the Heisenberg X-Y interaction, in the infinite range
mean-field case. Therefore, we call this model Hamil-
tonian the mean-field X-Y model (HMF). The positive
interaction case, € > 0, corresponds to the ferromagnetic
model; the € < 0 case corresponds to the antiferromag-
netic one. The thermodynamics of model (1) can be de-
rived exactly (see Sec. II), but its nonequilibrium dynam-
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ical behavior cannot (see Secs. III and IV). This shows
up clearly if we write down the equations of motion

N
. € .
0; =F, = N ;sln(0i —-0;), (3)

where F; is the force on the ith particle. They correspond
to a system of fully coupled pendula. Let us introduce
the total spin vector

1 N
M= (Mo, My) = > m; (4)

i=1

and the phase of M,

M
tang = ﬁ: , (5)
with — < ¢ < w. After these definitions, Eq. (3) can be
reexpressed as that of a perturbed pendulum

6; = —eM sin(6; — ¢) . (6)

Both M and ¢ depend on time through the coordinates
#;. Therefore the motion of each particle is determined
self-consistently by the time evolution of the spin vector
M, which itself depends on the motion of all the particles.
We study two kinds of systems, according to the sign of €.
When € > 0 (see Sec. III), the potential is attractive and
the ground state is reached when all the particles have
the same position on the circle. In this case the dynamics
corresponds to that of a ferromagnetic model. An exam-
ple of a low energy state is shown in Fig. 1(a), where we
represent the unit circle together with the coordinates 6;
of all the N particles. When € < 0 the potential becomes
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repulsive. Model (1) then describes the dynamics of an
antiferromagnetic system (see Sec. IV). The ground state
would correspond to the uniform distribution of the IV
particles on the circle p; = 0, §; = 2mxi/N. This state
is dynamically stable. However, as we will see, a two-
cluster state [see Fig. 1(b)] forms spontaneously at very
small energy, or it can be excited by an initial modula-
tion of particle density at a larger energy. In both the
ferromagnetic and the antiferromagnetic cases there ex-
ists a large kinetic energy (large temperature) state in
which each particle visits uniformly all the circle, making
M = 0. Thermodynamically, the ferromagnetic model
has a second order phase transition with order parame-
ter M; while in the antiferromagnetic case the free energy
is constant (see Sec. II).

(a)

(b)

FIG. 1. The particles 7 < §; < 7 are all represented by
small open circles on the unit circle. (a) Clustering state with
U = 0.05, N = 1000, ¢ = 1. (b) Two-cluster state with
U = —0.499, N = 1000, ¢ = —1, very close to the ground
state.
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Hamiltonian (1) may also be related to other types of
models with long-range interactions. Indeed, the poten-
tial energy in (1) is the first term in a Fourier expansion
of the potential energy of a system composed of N iden-
tical parallel sheets with an infinite extent in the (y, z)
plane, moving along the x axis with periodic boundary
conditions (L being the length of the periodic line) and
with a constant acceleration between two crossings. The
equations of motion of this system are

N +4oco

=Fi=—a) > i sin(kn(:z:,- ~ mj)> , (7

j=1n=0

where z; is the position of the ith sheet along the = axis
and k, = 2m(2n + 1)/L. In the model of charged sheets
(CSM) [3,4]

o= —40%/(uLeo) , (8)

o being the surface charge density, p the mass density,
and ¢p the permittivity of the vacuum. In the model of
gravitational sheets (GSM) [3,5]

a=167Gu/L , (9)

where G is the Newton constant. The analogy of Eq. (7)
with that for the HMF, Eq. (3), is evident. The dynam-
ics is modified by the presence of higher Fourier com-
ponents in the force, but we argue that several large
scale collective properties are not strongly affected by
adding interactions on smaller spatial scales, although
relaxation properties are modified. We show in Fig. 2
the force function for the GSM, together with the one
mode HMF force and the one corresponding to adding
one further mode; a particle will feel strong differences
among these force functions only when it is visiting the
regions at the border of the plateau. However, the rela-
tion among the dynamics of the CSM, GSM, and of the
HMF is subtle; similar phenomena are observed by look-
ing at M = (Efv COS(kowi),zf:V sin(koz;))/N (which
corresponds to the first mode of the electrostatic field),
but differences in the low energy spatial distribution of
particles are present. Numerical simulations show the
presence of a “clustering state” for the GSM [3] at small
energy as in the ferromagnetic HMF. A “declustering”
transition is present as energy is increased. On the con-
trary, for the CSM the averaged M vanishes as in the
antiferromagnetic HMF. However, one obtains long-time
persistent oscillations of M if one initially excites the sys-
tem with a nonuniform particle density distribution [6].

An analogy of ferromagnetic Hamiltonian (1) with
models of self-gravitating systems has been proposed in
Ref. [7]. A Vlasov-Poisson equation has been introduced,
which reveals an instability at a critical temperature; be-
low this temperature a “clustering” state is stable. A
discrete time version of model (1) has been studied in
Ref [8]. It reduces to a system of globally coupled sym-
plectic maps, and shows a “clustering” phase in the small
momentum range for the ferromagnetic case.

Model (1) may be considered as a microcanonical sim-
ulation of the mean-field X-Y model. Analogously to
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FIG. 2. Behavior of the force F; in formula (7) with one,
two, and an infinity of Fourier components, generated by a
particle at position z; = 0.

what is done in Ref. [9] for the Ising model, we add a ki-
netic energy term through the conjugate variable of the
angle ;. As for the Ising microcanonical dynamics we
have strong violations of ergodicity, but still the dynam-
ics reproduces some features of the equilibrium solution,
as we will see in the following.

There are also physical justifications for adding a ki-
netic energy term. One is the presence of single ion
anisotropy terms of the kind $2 in magnetic systems [10],
which in the classical limit play the role of a fictitious ki-
netic energy for the dynamics of the X-Y components
of the spin vector. Another is the more simple fact that
the dynamics of the X-Y model can be rewritten in the
semiclassical approximation, valid for large value of the
spin, exactly in the form (1), introducing appropriate
conjugate variables.

The equations of motion of our model (6) have also a
close form to those of Compton free electron laser (FEL)
amplifiers [11]. Also the phenomenology is quite close;
at some critical value of the average kinetic energy the
electrons begin to transfer their energy coherently to the
radiation field. The field amplitude plays the role of our
order parameter (4). The main difference from our model
is that in the FEL case the field is not generated self-
consistently by the motion of the electrons, but imposed
externally, with its own equation of motion.

II. EQUILIBRIUM STATISTICAL MECHANICS

We present in this section the calculation of the free
energy and of some relevant observables (e.g., M) of
model (1) in the canonical ensemble. The energy vs tem-
perature relation is also derived, to establish the con-
nection with the microcanonical ensemble in which the
numerical simulations are performed. The exact equilib-
rium solution of model (1) results from a straightforward
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application of the Hubbard-Stratonovich trick. The par-
tition function of model (1) is

N
7= [ ] dvudtexp(-pt) (10)
=1

where the integration is extended over all the phase space
and 3 is the inverse temperature, 8 = 1/(kgT). Z fac-
torizes into a kinetic contribution

2\ ¥
7r
Zg = | — ,
" (ﬂ)
and a potential one
Zy = exp(—ﬁezN)J , (11)
with
Be <
/Wll—];dﬁlexp(m 2:: s(0; — 0; )) (12)

J can be reexpressed as
» ,]]1: df; exp 2—]\7 (Z m,) , (13)

with m; defined in (2). We treat only the case ¢ > 0
in full detail. The negative € case is straightforward
after some simple analytic extensions. The Hubbard-
Stratonovich transformation in the g > 0 case reads

+oo
exp = /

where y € R2. Then Eq. (13) yields

+oo +oo
=2 fim [T
=1
X exp (—y2+v2uzmz~y) ,
=1

with 4 = Be/N. Exchanging the two integrals, one can
factorize the integration over the coordinates of the NV
particles. Then, performing this integration and rescaling

Y — ¥4/ N/20¢, one gets

-1 2ﬂ6 /+oo

x exp - N[ ln(zwfo(y»]) (14)

OO
dy exp(—y? + v/2ux-y) ,

where y is the modulus of y and I is the zero order
modified Bessel function. The free energy is given by
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with Z the partition function given in (10). Then, using
the saddle point method,

pp = t(%) -2

B8 2
+max, ( - ;—; +1In (27rI0(y))> . (15)

Since F' depends only on the modulus y, there is an in-
finity of minima reached when

Yy I

Be Ip
This is a consistency equation whose minimal free energy
solution is y = 0, corresponding to a vanishing magneti-
zation, for Be < 2. For Be > 2 the solution is a nonvan-
ishing B-dependent value of y, which can be determined
numerically. The magnetization is given by the ratio of
Bessel functions I /Iy in Eq. (16) evaluated at the solu-
tion of the same consistency equation, as it can be proven
by solving the external field dependent free energy and
computing its derivative for vanishing field (a calculation
that we omit here). However, this result can be easily
guessed considering that this ratio is bounded by +1 and
—1, reaching these values for y = 400 and y = —oo, re-
spectively. The phase transition is second order and the
critical exponent is the classical one (1/2). This can be
seen by Taylor expanding (16) and solving for y. In Fig. 3
the theoretical curve representing the magnetization vs
energy U = H/N is the dashed line.
The internal energy (or energy density) U is given by

u - ABF)

op

y)=0. (16)

which yields

U=i+5(1—M2) (17)

28 2
and is represented by the dashed line in Fig. 4. When
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FIG. 3. Modulus of the magnetization in formula (4) as a
function of the energy U = H/N. The dashed line is the the-
oretical equilibrium result, the points are results of numerical
experiments performed in the microcanonical ensemble.
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FIG. 4. Temperature (twice the averaged kinetic energy)
as a function of the energy U = H/N. The dotted line is
the theoretical equilibrium result, the points are results of
numerical experiments in the microcanonical ensemble.

€ < 0 the procedure applied for the € > 0 case can be eas-
ily repeated, but the unique solution of the consistency
equation is y = O for any 8. Therefore, the antiferromag-
netic HMF has no phase transition, the magnetization
remains zero. The free energy and the internal energy
are those in formulas (15) and (17) with M =0 (y = 0).

III. NONEQUILIBRIUM DYNAMICS OF THE
FERROMAGNETIC HMF

To integrate numerically model (1) we use a second or-
der symplectic scheme (leap-frog), choosing a time step
of the order of 1% of the characteristic linear pulsation
V€, which gives energy fluctuations ©(10~%). Since the
interactions among all particles in HMF are the same, the
size of the algorithm is O(NV) instead of O(N?), provided
the total spin vector M is evaluated before computing the
force. We study the time evolution of large N systems
(typically N = 10000). To be initially in nonequilibrium,
the runs all begin with a water-bag [4,12] velocity distri-
bution, corresponding to a constant distribution on the
momentum support [—a, a], either localized or uniform
over the coordinates.

A. Identification of the dynamical regimes

As described in Sec. II for equilibrium states, sub-
critical and supercritical situations occur depending on
the value of the internal energy, with a critical energy
U, = (3/4)e (in all the numerical experiments described
in the following € = 1). We present in Fig. 4 the numer-
ical measurements of the temperature T' = 2(K(t))/N,
where K is the kinetic energy defined in Eq. (1) and ()
denotes time averaging, as a function of U. Both Fig. 3
and Fig. 4 clearly confirm the presence of a critical en-
ergy U. where magnetization M vanishes and the 7/U
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relation becomes linear. To get more information on the
dynamical properties of the subcritical regime, we intro-
duce a distinction between two classes of particles: high
energy (HEP) and low energy (LEP) particles.

The separatrix width of the perturbed pendulum mo-
tion of Eq. (6) is 2veM and its energy e(1+M). Particles
with an energy e; > €(1 + M),

e+
e; = 7+Nj§=:1(1——cos(0i—0j)) s

which we call high energy particles (HEP), will visit all
the circle while those having an energy e; < (1 + M),
the low energy particles (LEP), will not. These latter
are trapped in the resonance bounded by the separatrix.
We use the notion of separatrix and the identification of
the two populations of particles, HEP and LEP, to define
the trapping probability p(U), as the fraction Npgp/N,
where Npgp is the number of LEP, after the system has
reached its equilibrium state. This quantity is the analog
of the “activity” parameter introduced in Ref. [13]. We
represent in Fig. 5 the energy dependence of p(U). p(U)
remains close to unity up to U = Uy, with U, = 0.3, as
shown by the intersection of the two straight segments in
Fig. 5. As soon as U > Uy, p(U) decreases, reaching zero
at U = U.. We call the regime U € [0,U,] subcritical
bounded regime, because a cluster of particles with no
center of mass kinetic energy forms spontaneously from
the initial condition, as we will comment in the following;
this also corresponds to trapping of the majority of the
particles in one resonance. For U € [Uy, U] the center of
mass of the cluster drifts. We call this regime the subcrit-
ical translational regime. In the supercritical regime, the
separatrix width shrinks to zero, giving p(U) = 0. The
kinetic energy is large enough for most of the particles to
visit the circle.

In the subcritical bounded regime T/U ~ 1 and nu-

(18)

1.0+
4 +
.
O
0.8 - N
06 o
e}
N
B4 + N=100
' X N=1000
A N=10000 A
0.2 o N=100000
<
0.0 - 2 °
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

u

FIG. 5. Trapping probability p(U) as a function of the en-
ergy U. The horizontal straight segment is drawn to show
that in the bounded subcritical regime p(U) = 1. The other
straight segment guides the eyes through decreasing values of
p(U) in the translational subcritical regime. The intersection
between the two segments determines U ~ 0.3.
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merical results are in good agreement with the theoret-
ical equilibrium calculation of Sec. II. The dynamics is
dominated by potential energy; all the particles linearly
oscillate in the neighborhood of a constant global phase
¢ with pulsation veM [see Egs. (6)]; no drift in ¢ is ob-
served and the system forms a single still cluster (see
Fig. 1). The phase ¢ shows time spectral properties
similar to those of a single particle. In the subcritical
translational regime the averaged kinetic energy shows a
decrease with energy, indicating a negative specific heat.
This result might be a nonequilibrium effect, as we will
argue. However, one should also observe that our model
does not verify the subadditivity condition [2], which in
turn implies a violation of convexity; thus, this result
might also be relevant as far as equilibrium properties
are concerned. In the subcritical translational regime the
phase ¢ in Eq. (6) drifts; this corresponds to a motion of
the cluster on the circle (we will comment on this in the
following). In the supercritical regime (U > U.), the
agreement with the statistical predictions is again good.

B. Phase dynamics in the translational regime

For energies Uy, < U < U, the system has energy
enough to generate a sizeable fraction of HEP. As an
example, we represent in Fig. 6 the time evolution of the
phase ¢(t) together with the number of HEP, when this
latter is zero or one. The phase has a drift only when
at least one HEP is present. When no HEP is present,
on the other hand, ¢ fluctuates around a constant mean
value.

Let us consider the one-particle distribution function
f(0,p,t), defined as usual through the probability dP =
fdédp of finding a particle with a coordinate in the inter-
val [0, 6 + df] and momentum in [p,p + dp] at time ¢ [14]
in the continuum N — oo limit. We have numerically
computed the reduced distribution n(8,t) = [ f(6,p,t)dp
for N = 10000. Figure 7 clearly shows the presence

- o(t)
o — - - " +  Nygp L
~~ Z
= s}
< Q
o= 0
T T T T
3000 3200 . 3400 3600

FIG. 6. We plot the phase ¢ vs time with a full line. The
crosses are set to 1 if there is one untrapped particle, and to
zero if all particles are trapped. This shows that phase drift
is present only when at least one particle is untrapped. The
scale on the left axis is for the phase. N =100, U = 0.3.



FIG. 7. Plot of the distribution function n(0,t). U = 0.4,
N = 10000. The contour plot is also drawn in the (¢, §) plane.

of a single drifting cluster of particles. The drift sig-
nals a collective motion of all the particles and yields in
(M, M,) plane a circular shape with radius M given in
formula (16) whose thickness scales as 1/v/N (see Fig. 8).

The drift of the phase is a consequence of the conser-
vation of total momentum and of the existence of a sep-
aratrix. Let us explain this simple fact. Let ((¢) be the
window averaged phase (the size of the window is large
with respect to 1/v/eM), and define the coordinates in
the moving frame with origin in (,

0:(t) = C(t) +ni(t), (19)
#(t) = ¢(t) +9¥(2), (20)
where

>, sin(ni) )
2 cos(m:)

As suggested by numerical simulations, the average phase

tany(t) =

1.0
U=0.4
N=10000

0.5+

MY
0.0
-0.5
1.0

FIG. 8. M, vs M, for U = 0.4 and N = 10000 after a
transient. The experiment is the same as in Fig. 7.
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((t) slowly varies on a time scale p > 1/veM. Conser-
vation of total momentum implies

: 1 &
O =-% Z(ﬁi) ; (21)

if we restrict, without loss of generality, to an initially
vanishing total momentum. Here, () represents an aver-
age over the time interval p. If a separatrix exists, then
only the HEP have a nonzero slowly varying average mo-
mentum p; — ¢, while the average contribution of LEP to
the total momentum is zero; thus we can restrict the sum
on the right-hand side of Eq. (21) to HEP. Since also ¢
is slowly varying over pu,

_ Nuep
NpEp

oW
|

(P)uEP , (22)

where (p)ugp is the time averaged momentum of HEP.

In Fig. 9 we show a numerical check of Eq. (22). In
the low energy subcritical bounded regime, Eq. (22) is
trivially the equality between two vanishing quantities,
while in the supercritical regime the hypothesis that ¢
slowly varies is no longer valid (instead the time average
of { is zero in this regime).

A consequence of this slow drift of the phase is the
appearance of two resonances centered on (¢, () in the
(6, p) plane of width 2v/eM, which strongly overlap since
é ~ 1/ V/N, as it has been observed numerically in the
time intervals where ¢ is constant in time (see Fig. 10);
the two resonances are not present at the same time
(an example is given in Fig. 11). The rescaled average
drift N1/2¢ grows with U approaching the critical en-
ergy (see again Fig. 10). A chaotic sea in the narrow
domain O(1/v/N) swept by the motion of the separatrix
is present. Moreover, on much longer time scales weak
chaos reaches also the center of the resonances, due to
the effective superposition of the two resonances [15]; it
is on these time scales that we expect agreement between
equilibrium averages and time averages.

Both in the subcritical bounded and in the transla-
tional regimes, n(6,t) is nonuniform at each time (corre-
sponding to the presence of a localized pattern, the clus-
ter of particles). In the subcritical translational regime,
because of the collective motion of the cluster the time av-
eraged distribution (n) becomes uniform. When the ini-
tial condition of the system is very far from equilibrium,
as it is the case in Fig. 11, where initially momenta are
distributed in a water bag and coordinates are lumped
at a given value, the dynamics develops initially a spiral
structure in the Boltzmann p space [a snapshop of the
coordinates and momenta {6;,p;} of all the particles into
the (6,p) plane] [14]. The spiral structure was already
known to exist in the dynamics of GSM [16]. This struc-
ture is characterized by a differential rotation and by a
global motion of its center with a speed given by Eq. (22).
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C. Relaxation time in the supercritical regime

In the supercritical regime, the particles move almost
freely. The clusters involve a negligible fraction of the
particles and have a short lifetime, and the phase ¢ has
zero average. The spatial distribution of the particles is
almost uniform on the circle and the functions M, (t) and
M, (t) take most of their values in the fluctuation range
o0@1/vN ). In order to estimate numerically the typical
relaxation time 77 of the initial water-bag velocity distri-
bution to the Maxwellian one, we identify in the system
two families of particles at time 0: SPO (slow particles)
and FPO (fast particles). SPO groups the N/2 parti-
cles having initially a momentum |p;| < a/2 and FPO
those having initially a momentum |p;| > a/2, where o
is the width of the initial water-bag momentum distribu-
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8}

FIG. 10. Nl'/zé as a function of U. The data collapse prove
the scaling of ¢ as N~'/2 for various values of U.

tion. One must remark that this partition has a differ-
ent nature than the one introduced previously between
HEP and LEP; in the supercritical regime the separatrix
shrinks (M = 0), making all particles HEP. Therefore the
partition into SPO and FPO is inside the HEP group.

The relaxation time is determined through the time
evolution of

1
Kspo(t) = 5= > »i, (23)
2K 1€SPO
1
Kepo(t) = 5 > %, (24)
2K 1i€FPO

where Kspo(t) and Krpo(t) correspond to the kinetic
energy fraction carried by the slow and fast particles, re-

FIG. 11. Boltzmann p space for U = 0.4 and N = 10000
in the transient state, together with the separatrix of the per-
turbed pendulum of Eq. (6) (full line). The experiment is the
same as in Fig. 7 and Fig. 8.
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TABLE I. Correspondence among physical parameters and behaviors of HMF, CSM, and GSM.
R is the radius of the circle in the HMF (R =1 in our case).
HMF CSM GSM
linear pulsation wHMF = 1/ |€] wpl = % wy = /167nGuN
Plasma pulsation Jeans pulsation
temperature T =2R(K) T = (%) = v} T = (%) = v
screening length Aumr = R, /ITTI Ap = wﬂpT Ay = :tJ
collective |F‘:—| <1 Ap K A AL A
behavior Langmuir modes Clusters
grain gHMF = 21—\1,'- % gosm = ﬁ}\—D ggsm = ﬂf\—_,
parameter
spectively. K is the total kinetic energy. As the system 1 9
evolves, the two populations SPO and FPO mix them- gGgsm = Ny’ (26)

selves exchanging their kinetic energies and the quantities
Kspo (t) and KFpo(t) relax to 1/2.

In the study of the GSM the relaxation of the quanti-
ties defined in Egs. (23) and (24) is also considered [12].
A relaxation time

1

_— 25
gasmwy ( )

TGSM =

is introduced, which is defined in terms of the “grain”
parameter [17]

where N/ = N/L is the density of sheets on the periodic
segment of length L and Ay = v;/w;, v, being the aver-
age squared speed of the particles obeying Eq. (7) and
wy = /16nGpN the Jeans pulsation (see also Sec. V and
Table I). As discussed in the Introduction, the dynam-
ics of the ferromagnetic HMF resembles that of GSM, if
only large scale behavior is studied. In Sec. V we discuss
in detail how to establish a correspondence between the
physical parameters introduced in the two models; this

1 10 loglO(T) 100 1000
I 1 1 L L1 11 Il 1 1 1 1.1 11 II 1 1 1 11 11 IL
6
10°
10°
- ] FIG. 12. Relaxation time 75 as a function
b of N with T = 1 (crosses), and vs T with
°§ 10* 3 N = 10000 (full diamonds). In the figure
o) 3 the theoretical slope 1, corresponding to the
- ] N dependence, is also reported (dotted line),
. together with the slope 2 related to the T
10° dependence (full line).
2 _J
1 O I T T T 1T rT1rr I T T T T rrrr I T T T T rrrr l
10' 10° 10° 10*



52 CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-. .. 2369
10° S
S )
1 x N=1000 ~1 "
10° = ¥ N=5000
3 & N=10000 y
T A
> T %
‘:6 10* R
) -
_9 1 A x FIG. 13. Relaxation time 7¢ as a function
i of NT?. The points are well fitted by a slope
T * 1.
3
4 X
10% o
-Illl‘f T L} T IIIIII T L] T IIIIlI L} T l"Tll T
10° 10* 10° 10°

log, (NT?)

correspondence is summarized in Table I. According to
this table, it is easy to derive that the relaxation time
scale of the HMF should have the following dependence
on N and T

THMF ~ N\/T 3 (27)

once one has introduced the analogous “grain” parameter
for the HMF (see again Table I). We show in Fig. 12
the relaxation time 74(0), defined as the time required
for Kspo to reach a fixed arbitrary value o (0 = 1/4
typically) as a function of N. The linear dependence is
in agreement with the prediction of Eq. (27). However, as
far as the T dependence is concerned, the slope appears
to be close to 2, as shown again in Fig. 12. Therefore, the
relaxation to equilibrium in the HMF is much slower than
the one expected from our analogy with GSM. The NT?
dependence of 74 is summarized in Fig. 13, and moreover
we show in Fig. 14 the collapse of five relaxation curves of
Kspo corresponding to different values of N and T'. After
all, it is not surprising that the relaxation properties of
the ferromagnetic HMF are different from those of the
GSM, and it is quite remarkable that, at least as far as
the N dependence is concerned, we get the same scaling
law.

D. Frequency vs energy dependence

In the subcritical bounded regime, all particles are lin-
early oscillating in the center of the resonance. In this
linear regime one can analytically compute the spectral
properties of M. The spectrum of M, and M, has lines at
frequencies v, = k+/€ with even and odd k, respectively.

In the subcritical translational regime the spectrum is
broad due to chaos.

In the supercritical regime linear aspects again arise,
since more and more particles have a ballistic motion
and weakly interact among each other. Then, an initial
momentum distribution changes slowly. This allows an
explicit calculation of the frequency spectrum, using the
Vlasov-Poisson equations [18]. The use of these equa-
tions is also justified by the fact that the interaction we
consider is weak at small angle differences, implying the
validity of a noncollisional treatment.

The Vlasov-Poisson equations for the HMF are

0.5+
— N=10000, T=1
e N=10000, T=9 i 2
- N=1000, T=4 =
0479 N=1000, T=9 £y ,
—_ --- N=1000, T=16 3
S
Nt y
g
172

0.01 0

A 1
log, [t/(NT?)]
FIG. 14. Temporal evolution of the kinetic energy pertain-
ing to the N/2 low velocity particles in formula (23) with time
rescaled by 74 = NT? with N = 1000 and 10000 and several
values of T: T=1,T=4,T =9, T = 16.
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ot TPa "0y (28)
2
%é; = e/cos(@ - f(0',p,t)de'dp’, (29)

where f(0,p,t) is the time dependent distribution func-
tion, and V its self-consistent potential.
When the system is close to a stationary uniform state,

70,p,8) = fO ) + FP(0,p,1), (30)

where f(°)(p) is the stationary, uniform in 6, solution of
Egs. (28) and (29) (any function of p is a solution), and
fA)(8,p,t) is a small perturbation. Correspondingly, we
develop the potential

V(0,t) =V©O L vW(,1), (31)

where V(9 is constant because it is computed on the uni-
form distribution and V(1) is a small perturbation. Con-
sidering only the first terms in a perturbative expansion
one obtains

afw afm  av@ 55
— =0
5t P a6 36 op ’ (32)
82y ()

— —_anfW)pt ' g1
520 e/cos(B 0"\, p',t)de'dp" . (33)

Since f(1) and V(1) are periodic in 6 we can Fourier ex-
pand them in plane waves

D ,p,6) =3 / dwexpi(kd — wi) O (w,p) ,  (34)
k

v(e,t) = Z/dw expi(k6 — wt)Vk(l)(w) . (35)
k

Inserting these expressions in Eq. (28) and solving for
f,gl)(w,p) one gets

(1) (0)
1) _ KV, ' (w) 0f
o) = TR (36)

Substituting this expression of f,sl)(w,p) in the Fourier
expanded Eq. (33) yields for a given w component

) . € dp' 8f©
Xk:ka (w) [k exp(ik6) + 5 (/ 7k —w 0p

x [exp(16)dx,1 + exp(—iﬁ)ék,_l]] =0, (37

where 4; ; is the Kronecker symbol. The only nonvanish-

ing coefficients Vk(l) of the Fourier expansion in Eq. (37)
are those corresponding to & = £1 if the following rela-
tion is satisfied:

€ F©@dp
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which has been obtained after an integration by parts,
supposing that f(°)(p) decreases sufficiently fast at large
|p|. It is simple to prove that the values of wi; that
solve Eq. (38) satisfy the relation w; = —w_;. Moreover,
defining

V() = / dw exp(—iwt) V) (w) | (39)
one can prove that

ViV (t) = M, — iM, = exp(—iwnt)V{") (40)
V() = M, +iM, = exp(—iw_t)V | (41)

where Vj(:ll) are constants and M can be expressed in
terms of the perturbed distribution function

M, = / dfdp cos(6) fM (8, p, ), (42)
M, = / dfdpsin(0) f*) (8, p, t). (43)

We have thus formally computed the frequency spectrum
of the mean field M, although the solution of Eq. (38)
is nontrivial due to the presence of Landau poles [18,19],
which oblige to add a small imaginary part to the fre-
quency. Here, we restrict ourselves to consider a nor-
malized water-bag initial velocity distribution: f(® (p) =
1/2a on the support [—a, +a]. Neglecting damping and
instabilities related to the presence of Landau poles we
get the frequency
€

where T = a?/3 is the temperature. Using the result of

1.5+ A
e<0 | \
© N=1000 o
& N=10000
- Theory |
104+
S~
0
« |
Q
s |\ .
~ |
os+
"""""""""" e>0
] * N=1000
A N=10000
e —— Theory
0.0 4%
T T T T T T
0 2 4 6 8 10

FIG. 15. Dependence of the frequency (w/27)? given in
Eq. (45) on the energy U. The dotted (full) line is the theo-
retical prediction for € = —1 (e = +1) and the points are the
values obtained in numerical experiments (¢ = —1, open sym-
bols; € = +1, full symbols). Some of the points correspond to
the same value of U and are due to the presence of multiple
close frequencies in the spectrum, caused by the relaxation of
the initial water-bag distribution.
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Eq. (17) finally yields

w3, =6U — ge . (45)
Equations (40) and (41) show that at large temperatures,
if the system is prepared initially with a water-bag mo-
mentum distribution, M oscillates with a frequency given
by Eq. (45). However, one should observe that the values
taken by M are in the fluctuation range at high temper-
ature [1]. Figure 15 shows the main component of the
power spectrum of M as a function of the energy in a
numerical experiment on model (1). The theoretical pre-
diction in Eq. (45) is also reported; we observe a good
agreement in the considered energy range. A v/T depen-
dence of the characteristic frequency in the supercritical
regime was also derived in Ref. [1] studying the properties
of a function which characterizes recurrences.

IV. ANTIFERROMAGNETIC HMF

The statistical approach predicts the absence of phase
transitions when ¢ < 0 (the free energy is constant).
M, (t) and M,(t) take most of their values in a small
O(1/v/N) thermal fluctuation range band, corresponding
to density fluctuations of the particles on the circle. It
is therefore surprising that the nonequilibrium dynamics
reveals the collective phenomena that we discuss in this
section.

A. Clustering and magnetized oscillating states

Close to the ground state U = —0.5|¢|, at very small
temperature, an initially uniform state in 6 evolves to-
wards a two-cluster collective structure. In Fig. 16 we
report n(6,t), which shows two peaks at the cluster an-
gles; over time the two clusters remain separated by an
angle 7, which makes the order parameter M = 0. A neg-
ligible fraction of particles is again visiting all the circle,
as for the ferromagnetic subcritical case. However, the
two clusters drift on the circle, as it is shown in Fig. 16,
and also by the time evolution of

n(ﬂ, t)
A

FIG. 16. Plot of the distribution function n(6,t) for the
antiferromagnetic HMF. U =~ —0.5, N = 10000. The contour
plot is also drawn in the (¢, 6) plane.
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-0.5 0.0 0.5
@
M,

FIG. 17. M{? vs M{? for U ~ —0.5 and N = 10000. The
experiment is the same as in Fig. 16. The transient is also
shown.

N N
M® = (Mm(z),My(z)) = (—1%7— Zcos 20, —Ji—f Zsin 29,~) .
i=1 i=1

(46)

The two symmetric clusters give a coherent contribution
to M®), producing a circular shape in the (M,gz), Ml(,z))
plane; see Fig. 17. The modulus of M(? depends on U
and characterizes the size of the cluster and the number
of particles per cluster. The U dependence of M(?) is
shown in Fig. 18 for two different values of N. The curve
shrinks to smaller energies as IV increases, revealing the
possible presence of a zero-temperature phase transition,
characterized by the order parameter M(?. When ki-
netic energy is large enough the two-cluster state does

1.0
) A N=10000
M| * N=5000
Py
osH & x
*
Fay
*
a *
o.o—' T = T Ly X T8
-0.5000 -0.4999 -0.4998 -0.4997 -0.4996 -0.4995

U

FIG. 18. Modulus of M® in formula (46) as a function of
the energy U = H/N, for N = 5000 and N = 10 000.
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FIG. 19. M, vs time for the antiferromagnetic HMF. Ini-
tially we modulate 50% of the uniform spatial state with
wavelength 2w, U = —0.4, N = 10000. A similar, but ap-
proximately out of phase, behavior is observed for the M,
component.

not form and the spatial distribution remains uniform.

However, it is interesting to remark that long living
collective oscillations, with a sizeable amplitude, are ob-
served when we initially modulate the spatial distribu-
tion n(6,0) of the particles with a wavelength 27 even
for larger energies provided T'/|¢| < 1. Each component
of the magnetization M oscillates with a non-negligible
amplitude as shown in Fig. 19. Also in this case the two-
cluster state forms spontaneously after a short time. The
maximal value of the amplitude of M depends on the am-
plitude of the initial modulation. The superposition of
the drift motion of the clusters and of their vibrational
motion with respect to the center of mass produces the
beatings observed in Fig. 19.

It is curious to observe such a behavior since it cor-
responds to a long-living magnetized state, which is not
expected on the basis of the equilibrium theory for the
antiferromagnetic HMF. Our numerical experiences sug-
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gest that the damping of this state may require an expo-
nentially long time in N.

B. Relaxation time and high energy frequencies

We study in this subsection the time evolution of
Kspo(t), see Eq. (23), in the high energy regime for the
antiferromagnetic HMF. The experimental conditions are
the same as those already described in Sec. III C. We rep-
resent in Fig. 20 the relaxation time 7,¢(0) to the value
o = 1/4 of Kspo(t) as a function of NT°/2. This law
is empirically derived from numerical experiments and is
again inspired by the analogy with CSM. The N depen-
dence is the same as for CSM, but the T dependence is
different. The relaxation is faster with respect to the fer-
romagnetic HMF. This difference may be the signature
of the presence of some small clusters in the supercritical
regime of the ferromagnetic system.

The temporal spectrum of M reveals a leading compo-
nent as described in Sec. IIID. This is the analogous of
the Bohm-Gross frequency wpg observed in CSM; quan-
titatively it is given in formula (45), changing the sign
of e. In Fig. 15 we show the main frequency present in
the power spectrum of M(t) as a function of U. The
agreement with theoretical predictions is excellent.

V. ANALOGIES WITH SHEETS DYNAMICS

The linear time scale of all the models introduced in
this paper can be obtained by Taylor expanding the force
in Egs. (3) and (7). This establishes the analogy among
WHMF = \/l_e— , the CSM “plasma” frequency wypy, and the
GSM Jeans’ frequency wy reported in the first line of
Table I. Temperature is given by the averaged squared
momentum v; and energy is conserved; the only sub-
tlety concerns physical dimensions, since for the HMF

]
g + N=100 A
10° X N=1000
3 A N=10000 N
1 X
5
~ 10" 3
® 3
5 3
— .
o0 ) FIG. 20. Relaxation time 7,¢ as a function
e 10* 3 of NT3/2, The points are well fitted by a
3 slope 1.
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@ is dimensionless, so to obtain a temperature one has
to multiply v; by the unit of length, the radius of the
circle R = 1. Through temperature and frequency one
can obtain a typical length, which is the usual Debye
screening length for the CSM, the Jeans’ length for the
GSM, and the “screening” HMF length, which charac-
terizes the onset of collective phenomena (see line 3 in
Table I). In plasmas, two different physical situations oc-
cur depending on whether we consider a length scale A
greater or smaller than Ap. If A < Ap, the dynamics
of the particles is dominated by the short range interac-
tions and microscopic effects are leading. No collective
structures can be observed because of disorder. When
A > Ap, on the other hand, collective structures appear
(e.g., Langmuir modes) [18,20]. Disorder and individual
particle effects can then be neglected with respect to large
scale behavior. Following the same scheme in the GSM,
the typical length corresponds to the Jeans’ length Aj.
Hence, when ) is smaller than the considered length,
the dynamics is again dominated by macroscopic effects.
There remains, however, a main qualitative difference be-
tween the gravitational and the charged sheets model: in
the first model an instability leads to a collapse of the
particles, while this is not the case for the second model
because the interaction is repulsive. In model (1), the
potential contains only one wavelength. The collective
behavior thus disappears when Agyp > 1. This cor-
responds well to the presence of a phase transition in
the ferromagnetic HMF, while for the antiferromagnetic
case only when T'/|¢| < 1 are collective effects present if
initially excited (although at very small temperature a
clustering state spontaneously appears).

The grain parameter should control the typical relax-
ation time to equilibrium also in the HMF, as for CSM
and GSM. However, although we find an agreement as far
as the N dependence is concerned, the time scale oc gﬁl\l,m
(see Table I) does not have the same dependence on the
temperature. Moreover, the ferromagnetic and the an-
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tiferromagnetic model show a different scaling. The N
dependence of the relaxation time implies the relevance
of nonequilibrium states in the thermodynamic limit.

We are just beginning to understand the analogies and
differences between magnetic system dynamics and sheet
dynamics. The first natural step to go on with this study
is to add a second Fourier mode to model (1) (see Fig. 2);
we expect in this case a richer phenomenology and the
presence of further phase transitions. We believe that
this study establishes a fruitful exchange of ideas and
methods between two very different fields, and that it
may lead to progress in the understanding of the dynam-
ics of systems with many degrees of freedom.
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