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Four simple topological rules are derived that constrain the arrangement of critical points (saddles,
singularities, and extrema) in a random phase field. These rules relate the signs of the singularities to the
nature of the extrema (maxima or minima) and the topology of the saddles. Once the latter is fixed, only
a single degree of freedom remains and if, for example, some extremum is chosen to be a maximum, this
choice automatically determines the nature of all other extrema and the signs of all singularities. Thus,
even in a random wave field there are extensive, topologically mandated correlations between all critical
points. Higher-order gradient fields derived from the phase are considered and the rules and their in-

duced correlations are shown to apply also to these fields. Other aspects of the phase field are discussed
and it is shown, for example, that the number of saddles very nearly (but not necessarily exactly) equals
the number of singularities plus the number of extrema and that during the evolution of the wave field,

large numbers of different, specific features must appear simultaneously.

PACS number(s): 05.45.+b

I. INTRODUCTION

Fluctuations [1—13], correlations [1—4, 14—25], and
weak [26—38] and strong [39—42] localization of light in
random optical wave fields [43—45] (speckle patterns)
have been the subject of numerous recent investigations.
These studies are almost all concerned with the wave field
intensity (amplitude). Previous studies on the phase of
random wave fields have concentrated on the unusual
phase singularities (vortices) that are found in such fields
[46—65], but there is relatively little known about other
aspects of the phase of such a wave field. Here, we con-
sider the whole phase field, and we explore the relation-
ship between phase saddles, phase extrema (maxima and
minima), and phase singularities. We begin in Sec. II
with a discussion of an important cardinal rule for ran-
dom wave fields that simplifies the treatment of these
fields. %"e also formulate two propositions that have far
reaching consequences for the phase field structure. In
Sec. III we consider the relationship between phase sad-
dles and phase extrema, and we develop a simple deter-
ministic rule that we call the first loop rule that connects
these two features. In Sec. IV we review basic properties
of phase singularities, including a previously developed
deterministic rule we called the sign principle that relates
the signs of neighboring singularities [61,62]. We also
discuss a vector field description of these singularities
that proves especially useful in later sections. In Sec. V
we review the topological index theorem which is then
used throughout the remainder of this study. In Sec. VI
we discuss the relationship between phase saddles and
phase singularities, and we promulgate an enlarged ver-
sion of the sign principle that includes these two very
different wave field features. In Sec. VII we discuss inter-
relationships between phase saddles, singularities, and ex-
trerna, and we develop two additional deterministic
rules —the second and third loop rules —which connect
all three wave field features. In Sec. VIII we consider

higher-order gradient fields obtained from the phase, and
we show that the number of phase saddles approximately
(but not necessarily exactly) equals the sum of the num-
bers of phase extrema and phase singularities. In Sec. IX
we consider the scaling properties of the wave function
and the boundary conditions to the wave equation, and
we show that there cannot exist an exact rule relating the
numbers of saddles, singularities, and extrema in a ran-
dom phase field. This is in contrast to the intensity, for
which an exact rule does exist that relates the numbers of
saddles and extrema. In Sec. X we discuss the free space
evolution of the wave field and show that the creation of
a new phase singularity is accompanied by the simultane-
ous creation of myriad additional new wave field features.
%'e summarize our findings in Sec. XI. Throughout, we
use simple, physically intuitive arguments backed by
large scale computer simulations and illustrated by means
of numerous figures to provide a more complete picture
of the structure of random phase fields than may have
hitherto been available.

II. RANDOM %'AVE FIKI.DS

An important simplifying principle for random wave
fields is that all accidental coincidences (degeneracies)
have vanishingly small probability and can be neglected.
Accordingly, we need only concern ourselves with generic
features that remain stable under small perturbation. For
the two-dimensional random wave fields that are of in-
terest here, all features for which the wave function must
take on some particular value at some particular point in
the (x,y ) plane are nongeneric, and are therefore exclud-
ed. This cardinal rule excludes, for examp1e, second-
(and higher-) order phase singularities that require a sad-
dle point of the real part of the wave function to exactly
coincide with a saddle point of the imaginary part [62].
Also excluded are edge dislocations [46], which are lines
(continuous sets of connected vortices) along which the
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phase changes discontinuously. The generic phase singu-
larities in a random wave field are thus isolated points
corresponding to simple first-order zeros of the wave
function, a result first shown by Berry [47] using Cxauss-
ian statistics. The converse of the foregoing is also true,
and all zeros of a random wave function are both isolated
and of first order. Other important accidental coin-
cidences that are excluded are two or more phase extre-
ma or phase saddles with exactly the same value for the
wave function, phase ridges or phase canyons that have a
perfectly constant height or depth over some finite
length, and features that require the intersection of more
than two lines, such as higher-order stationary points. At
ordinary (second-order) stationary points of the phase y,
for example, both p„=By/Bx and p~=By/By vanish.
Stationary points thus lie at intersections of the zero
crossings of y„and p~ (the set of points or continuous
curves on which the function vanishes). At higher-order
(degenerate) stationary points also higher-order deriva-
tives vanish, so such points require additional zero cross-
ings to pass through an ordinary stationary point and
may be excluded as nongeneric. Accordingly, all station-
ary points in a two-dimensional random wave field are
both isolated and nondegenerate, and therefore can be de-
scribed locally by a second-order polynomial homogene-
ous in x and y (Morse's lemma [66,67]).

We will call lines of constant phase "equiphases. " Of
special interest are the equiphases that surround phase
extrema [Fig. 1(a)], phase saddles [Fig. 1(b)], and phase
singularities [Figs. 1(c) and 1(d)]. We note that, in order
to maintain the wave function single valued everywhere,
the phase is "folded back" into the primary interval 0 to
2n. (or, when convenient, —m to +n), s.o that after pass-

ing 2m the phase starts over again at 0. This apparent
discontinuity, which can always be moved "elsewhere"
by a uniform phase shift, is not physically meaningful,
however, and so does not show up as discontinuities in
the topology of contour maps of the phase field. Accord-
ingly, in what follows we ignore the 2m~0 phase
"discontinuity. "

We assume that our wave function (and hence both its
real and imaginary parts) is everywhere regular (single
valued, continuous, and differentiable), which implies
that the phase field itself must also be regular everywhere
except at zeros of the wave function (the phase singulari-
ties). From this it follows that two different equiphases
can never intersect (contact one another) except at a
singularity, so equiphases that do not form closed circuits
either terminate at phase singularities or continue on to
the boundaries of the wave field. Based on the study of
large scale computer simulations [59], we postulate that
only saddles and singularities that are close to the wave
field boundary can have equiphases that reach the bound-
ary. In what follows we therefore assume that in the
wave field interior the following two propositions hold.

(i) All equiphases that are not closed terminate on
singularities.

(ii) All equiphases that do not terminate on singulari-
ties are closed.

7T /2

0

37K/2
These complementary (nontrivial) propositions have the
most far reaching consequences, and wiH be seen to be

major determinants of the phase field structure.
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FICx. 1. Equiphases of generic critical points in a random
phase field. (a) Extremum (maximum or minimum) surrounded
by closed contour lines. (b) Saddle point. The simplest sym-
metric saddle is described by f(x,y)=y —x =(y —x)(y+x).
This function is zero at the saddle center (origin) x =y =0, sym-
bolized throughout by a black dot, is positive in regions marked
+, negative in regions marked —,and vanishes on the lines
y=+x, here called bifurcation lines. Throughout, bifurcation
lines of saddles are symbolized by heavy lines and other equi-
phases by light lines. For the example shown, the sign of the
wave function changes each time a bifurcation line is crossed,
while traversing the saddle point along the vertical y axis (hor-
izontal x axis) one passes through a phase minimum (max-
imum). (c) Positive and (d) negative first-order phase singulari-
ties. The phase circulates once from 0 to 2~ counterclockwise
(clockwise) around positive (negative) singularities and changes
discontinuously by ~ along every line that passes through the
center of the singularity. Throughout, singularities are general-
ly symbolized by circles which contain the sign of the singulari-
ty.

III. SADDLES AND EXTREMA

The classical picture of a saddle is a minimum along
one principal axis and a maximum along the other. An
important topological property of a saddle point is that it
is a self-intersection of an equiphase, and is thus a bifur-
cation point for the field of lines defined by all the
different equiphases. This is illustrated in Fig. 1(b). The
converse of the foregoing is also true, and wherever a bi-
furcation of equiphases occurs a saddle point must be
present. The lines passing through the center of the sad-
dle, which are uniquely labeled by the value of y at the
saddle point, have directions that cannot be uniquely
determined by a limiting process based upon the direc-
tions of neighboring contours, as the limit depends upon
whether one approaches from the right or from the left
[Fig. 1(b)]. We call these special lines "bifurcation" lines,
and restrict use of the word "contours" to equiphases
whose direction (dy /dx = —p„ /gr ) is well defined
everywhere. Worth noting is that, although the position
of a saddle point and/or the value of the wave function at
this point may be changed by an arbitrarily small, local
perturbation, such a perturbation cannot eliminate the
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saddle point altogether, since saddles, extrema, and
singularities are individually topologically stable features
of the wave function [66,67].

We will need a name for the segments of a bifurcation
line that radiate outward from a saddle point, and al-
though the term "strands" is sometimes used, here we
will refer to these segments as the "arms" of the saddle.
In analyzing the properties of complicated phase fields it
is sometimes convenient to move a particular saddle
point into the (x,y) plane by adding a suitable (positive
or negative) constant to the wave function. This turns
the bifurcation lines into zero crossings of y, which now
changes sign across every arm of the saddle [Fig. 1(b)].

As indicated at the end of the previous section, all
equiphases in the interior of a generic random wave field
either terminate on singularities or close on themselves.
This is also true for the equiphases that form the arms of
a saddle. We characterize saddles with no joined arms as
"open" [Fig. 2(a)], those with one pair of arms joined as
"half closed" or "one loop" [Fig. 2(b)], and those with
both pairs of arms joined as (fully} "closed" or "two
loop" [Figs. 2(c) and 2(d)]. A topologically important
property of closed saddles which makes them equivalent
in many ways to extrema is that there are no equiphases
emanating from these structures. Closed saddles are fur-
ther subdivided into "figure eights" [Fig. 2(c)] and "reen-
trant" [Fig. 2(d}]. We will refer to the two loops of a
reentrant saddle as the "interior" and "exterior" loops, in
obvious notation. A reentrant saddle may have the arms
of its interior loop joined directly [Fig. 2(d)], or these
arms may be connected via a pair of positive and negative
phase singularities (the interested reader may enjoy
sketching this configuration). Although apparently possi-
ble in principle, we note that we have never seen singular-
ities inside saddles, and so we will not dwell further on
this possibility.

Extrema, each of which is encircled by a set of closed
contours [Fig. 1(a)], and saddle points, each of which ra-
diates a pair of bifurcation lines [Fig. 1(b)], are always

found in close association, since, as indicated in Fig. 3(a),
neighboring extrema must be separated by a bifurcation
line. The question then quite naturally arises as to how
large numbers of these two very different types of struc-
tures with their topologically very different field lines
coexist in close association. The interesting, possibly
surprising answer, illustrated in Fig. 3(b), is that every ex-
tremum lies in the intimate embrace of the arms of a sad-
dle. Here, "intimate" implies the absence of any other
feature within the embrace, and by definition the exterior
loop of a reentrant saddle [Fig. 2(d)] does not embrace
the interior loop. We summarize the relationship be-
tween saddles and extrema in the following rule.

First loop rule. All extrema and closed saddles lie in
the intimate embrace of the arms of a saddle (bifurcation
loop).

This rule is based on exhaustive analysis of numerous
examples, and follows from the fact that the closed con-
tours of extrema and closed saddles must be cordoned off
by bifurcation lines in order to preserve continuity of the
field lines between singularities. The converse of this rule
is shown in Sec. V to also be true, and whenever the arms
of a saddle are joined they necessarily embrace either an

(c)

(c)

FIG. 2. Generic four-armed saddles in a random phase field.
Only saddle points and the bifurcation lines that pass through
these points are shown. (a) Open saddle, no arms joined. (b)
One loop saddle, one pair of adjacent arms joined. (c),(d) Closed
saddles, both pairs of adjacent arms joined. The closed saddle
in (c) is dubbed a "figure eight, '* and the one in (d) is called
"reentrant. " The two loops of a reentrant saddle are labeled in-
terior and exterior in obvious notation.

FIG. 3. Saddles and extrema. (a) Neighboring extrema must
be separated by a bifurcation line. (b) Extremum embraced by
the joined arms of a single saddle. This is the generic arrange-
ment in a random phase field. (c) Two saddles join arms to ern-

brace one extremum yielding a topologically possible but
nongeneric arrangement. (d) Both loops of a figure eight ern-

brace the same type of extremum (maximum or minimum). In
the example shown the saddle point has been moved into the
(x,y ) plane by addition of a suitable constant to the phase func-
tion so that the value of the phase is zero at the saddle point and
along the bifurcation lines. Inside the two closed loops of the
saddle the phase is positive [Fig. 1(bi] and continuously in-

creases as one moves away from the bifurcation lines towards
the loop centers. Accordingly, both loops embrace maxima. (e)
The loops of a reentrant saddle embrace extrema of opposite
type. In the example shown the exterior loop embraces a max-
imum and the interior loop a minimum.
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extremum or a closed saddle. Worth noting is that, al-
though in principle two or more saddles can join arms to
embrace one extremum [Fig. 3(c)], such a structure re-
quires two different saddle points to have the same value
for the wave function and is nongeneric. The first loop
rule and its converse are applicable not only to phase
fields but also to the wave field intensity (amplitude), and
are one of the major determinants of the structure of
these fields. Extrema enclosed within deeply nested
closed saddles may also occur, and are the generic struc-
tures in random amplitude fields (speckle patterns). We
note, however, that we have never seen nested saddles in
a phase field, random or otherwise.

Both of the extrema enclosed by the arms of a figure
eight must be of the same type, i.e., two maxima or two
minima [Fig. 3(d)], while for a reentrant saddle, if one
extremum is a maximum the other must be a minimum,
and vice versa [Fig. 3(e)]. These conclusions follow from
the fact that the direction of increase of the phase (or in-
tensity) as one crosses any one of the arms of a saddle
suffices to determine what happens at all other arms, and
this in turn determines whether the embraced extremum
is a maximum or a minimum [Figs. 3(d) and 3(e)].

Although the first loop rule specifics where extrema
will be found, it does not specify the extremum type. We
fill this gap in Sec. VII where we derive two simple rules
that determine whether a given extremum will be a max-
imum or a minimum.

IV. SINGULARITIES

Although in optics the wave function is conventionally
described in terms of the amplitude A =(G +H )'~ and
phase y =arctan(H /G ) of a complex field
F(x,y)=G(x, y)+iH(x, y), it is sometimes convenient
to use a vector field description, as is often done in solid
state physics [68,69]. In this representation one defines a
vector field %(x,y) =%xx+%'ry, together with an asso-
ciated order parameter O(x,y ) =arctan(%'r /0'~ ) that
measures the angle the vectors make with respect to the x
axis. Here x and y are unit vectors along x and y, and to
avoid confusion with partial derivatives we use upper
case subscripts X and F to denote the components of a
vector. The equivalence of the two descriptions is estab-
lished by writing %x(x,y )=G(x,y ) and %r(x,y )

=H(x, y), which yields 0(x,y)=y(x, y). In the com-
plex field representation, topological singularities of the
phase y are located at the intersections of the zero cross-
ings of 6 and H, while in the vector field representation
the equivalent topological singularities of the order pa-
rameter 0 are located at the intersections of the zero
crossings of 0'~ and 0'~. The utility of the vector field is
that it is easily generalized to permit the definition of to-
pological singularities for functions other than the phase
(Sec. VIII and Ref. [64]).

For the complex field representation, the sign (+ or —
)

of a singularity [Figs. 1(c) and 1(d)] is given by the sign of
dy/d8, where the local polar angle 8 is conventionally
measured counterclockwise from the x axis of a local x,y
coordinate system centered on the singularity.
Equivalently, the sign of a singularity in the vector field

representation is given by the sign of dO/d8. Single
valuedness of the wave function guarantees that in both
cases this sign is the same everywhere along a convex
path that encircles only the given singularity. Using the
fact that the singularity is a first-order zero, the sign of
dp/d 8 is found by direct calculation to equal the sign of
the Jacobian J=B(G,H)/B(x, y) [58,59], while the sign
of dO/d8 equals the sign of B(%'x,%r)/B(x, y).

Even in a random wave field there exists a deterministic
principle that relates the signs of neighboring singulari-
ties that we called the "sign principle ' [61,62]. This prin-
ciple reads: Adjacent singularities on any zero crossing
of G or H (%'x or 4„) must be of opposite sign. Since
this rule implies that we can unambiguously determine
which singularities are adjacent on a zero crossing, self-
intersections of zero crossings must be eliminated by a
small, local perturbation of the wave function, which can
always be done without penalty [46]. Numerous far
reaching implications of the sign principle are discussed
in Refs. [61—64].

All topological singularities in our random wave field
are first-order zeros, so that both y and 0 change discon-
tinuously by ~ on any line passing through the center of
the singularity. This leads us to define lines of reduced
phase y*=y(mode. ) and lines of reduced order parame-
ter 8*=0(mode) that thread their way continuously
through the wave field from one singularity to another.
We note that the definition of 0 is equivalent to remov-
ing the heads of the arrows comprising the vector field %.
The zero crossings of G (%x) correspond to equiphases
with y (0)=0 or m, and those of H (%r) correspond to
equiphases with y (0)=sr/2 or 3m. /2. But the phase of a
wave field may be uniformly shifted by an arbitrary
amount without changing its internal structure, so that
any equiphase can be turned into a zero crossing of G or
H. Similarly, 0 may be uniformly shifted by a coordinate
rotation, so that any line of constant 0 can be turned into
a zero crossing of %z or %z. Accordingly, the sign prin-
ciple is extended to read [62] as follows.

Sign principle. Adjacent singularities on any contour
of constant reduced phase (order parameter) must have
opposite signs.

The restriction to contours again arises from the re-
quirement that we must be able to unambiguously deter-
mine which are the adjacent singularities, and this, in
turn, requires that the direction of the equiphase be
everywhere well defined. Thus the sign principle cannot
be applied to the bifurcation lines of a saddle. We recall
that, unlike the self-intersections of zero crossings, isolat-
ed saddle points are only shifted by small local perturba-
tion but not eliminated altogether. Accordingly, a new
principle is required for singularities that terminate bifur-
cation lines. This new principle is derived in Sec. VI.

V. THE TOPOLOGICAL INDEX

Associated with each type of stationary point and
singularity (collectively critical points) is a quantity called
the topological index. The value of this index is obtained
by observing how lines of equal value of the function ro-
tate over one complete circuit around the critical point
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[66,67]. If the lines rotate through 2nm. in the same (op-
posite) direction as the circuit, the index is + n ( —n ).
The indices for an extremum (maximum or minimum)
and for an isolated first-order point singularity (positive
or negative) equal +1, while for a generic four-armed
(second-order) saddle the index is —l. (Illustrations for
these and other critical points may be found in Sec. 36 of
Ref. [66].) For nongeneric saddles containing 2j arms
with j )2, the index may be seen to be 1 —j. (Odd armed
saddles cannot occur in a regular wave field. ) The index
associated with some region of the wave field is the sum
of the individual indices of the critical points in this re-
gion. The index associated with a closed saddle, for ex-
ample, is the same as that of a single extremum, +1.
This follows from the fact that the saddle, whose index is
—1, must contain either two extrema or a pair of positive
and negative phase singularities, whose indices sum to
+2. By straightforward extension, deeply nested closed
saddles with arbitrary combinations of enclosed extrema
and/or singularities also always yield a net index of +1.
Accordingly, extrema and closed saddles are for the most
part topological equivalents, as is suggested by the fact
that both are surrounded by closed contours.

We can now give a formal justification for the converse
of the first loop rule. As the index of a closed contour lo-
cated just inside the joined arms of a saddle that form a
bifurcation loop is + 1, we conclude that the indices of all
critical points contained within the loop sum to unity.
But the bifurcation loop is also an equiphase, so that the
net change in phase during traversal of the loop vanishes.
This implies that the topological charges of all critical
points contained within the loop sum to zero. These twin
requirements of a net index of unity and a net topological
charge of zero imply that the loop can embrace only a
single extremum or closed saddle, which is the converse
of the first loop rule. The first loop rule itself, although
correctly describing the interior of random wave fields,
cannot be proven in this way, as the role is not universal-
ly true —a simple counterexample to the rule is provided
by the function f(x,y)=exp[ —(x +y )]. We note,
however, that a closed circuit that lies just outside the
arms of a bifurcation loop and that includes the saddle
point has an index of zero, so that both the index and to-
pological charge of a bifurcation loop with its saddle
point and enclosed critical points are zero. Accordingly,
bifurcation loops are topologically "neutral" and can be
inserted anywhere within the wave field using only local
perturb ations.

An important property of the index of some bounded
region is that it is conserved under continuous perturba-
tion of the wave field, provided only that no critical point
crosses the boundary (index theorem) [66,67]. This latter
restriction is a weak point of the index theorem, since
there is no general rule that permits one to decide in ad-
vance when and where critical points will move in or out
of the region of interest. This is illustrated in Fig. 4 using
a simple model phase field [60]. From this figure it may
be noted that the mobile critical points are saddle points,
which often leave the wave field altogether, being ex-
pelled to infinity. On the other hand, in a closed space
from which no feature can be expelled such as the surface

FIG. 4. Three saddles needed to satisfy the index theorem
are missing from this model phase field. The field was created
using the product wave function of Eq. (la) of Ref. [60] with al-

ternating positive (closed squares) and negative (open squares)
isotropic (a=+1, o =p=0) singularities arranged at the
corners of a square of side s to yield an arrangement whose net
topological charge is zero. When s =0, the four singularities an-

nihilate one another, the phase is everywhere uniform, and the
topological index of the (empty) phase field is also zero. When

~s~) 0 (the wave function is invariant to the sign of s), four
singularities (index +4) and one saddle (X shaped black region
at figure center, index —1) are created and the net index of the
phase field is +3. Since s is made to vary continuously through
zero, the index ought to be continuous throughout the act of
creation, implying that additional saddles with a total index of
—3 are created together with the singularities. These missing
saddles are presumed to be expelled to infinity at the moment of
creation.

of a sphere, the index theorem can be used to good effect,
as is done in an interesting, instructive paper by Nye,
Hajnal, and Hannay, who studied two-dimensional ocean
waves on the surface of a spherical planet [70].

In the deep interior of an infinitely extended planar
random wave field, no feature can be expelled from the
region of interest, as every finite region is bounded by
numerous contour lines that connect the surrounding
(fixed) phase singularities. On its way out of the wave
field the feature cannot cross these contours as this would
make the wave function multivalued. The feature also
cannot open a clear channel for its escape, as this would
require a major reconstruction of a large segment of the
wave field. Accordingly, we conclude that all features are
"trapped" by the surrounding contour lines. An example
of this trapping is shown in Fig. 5. In later sections we
assume this trapping and use the index theorem to dis-
cuss local configurations of critical points in the interior
of a random wave field.

VI. SADDLES AND SINGULARITIES

We now enlarge the sign principle to include bifurca-
tion lines. We first define the order of an equiphase in
terms of the number of self-intersections (saddle points)
that it contains. An equiphase that is a bifurcation line of
an isolated saddle is of order 1, a nongeneric equiphase
that is a bifurcation line which runs through two saddle
points is of order 2, etc. , while a contour is an equiphase
of order zero. Within this definition the sign principle is
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enlarged to read as follows.
Enlarged sign principle. Adjacent singularities on equi-

phases of even (odd) order must be of opposite (same)
sign.

The proof of this assertion is obtained by shifting the
phase (order parameter) of the wave field so as to make
the equiphase of interest into a zero crossing of either 6
(%'z) or H (4r), and then using the (unenlarged) sign
principle together with the method of contour extensions
described previously [61,62]. This is illustrated in Fig.
6(a), while Fig. 6(b) shows that the bifurcation loop
formed by joining together the arms of a single saddle is
an equiphase of order 2, since in traversing the loop one
passes twice through the saddle point. In what follows
we reserve the term bifurcation line for the "straight"
lines that pass only once through the saddle point.

The enlarged sign principle implies that in a generic
random phase field bifurcation lines always terminate on
singularities with the same sign, while contours and bi-
furcation loops always terminate on singularities with op-
posite signs. In a random phase fjeld the topological

(b)

I I
I

i
i I
I

(c)

(b)

FIG. 5. Trapping of saddles in the interior of a random phase
field. The field was created using the product wave function of
Ref. [60] with a large number of randomly distributed isotropic
singularities. (a) Interior of initial configuration. Positive (neg-
ative) singularities are symbolized by closed (open) squares.
Saddles show up as distorted X shaped regions which are either
black or white depending on the value of the phase, with the
saddle point itself located at the center of the X. (b) A positive
and negative singularity twin is created near the center of the
(white) saddle just above the center line of (a). Both topological
charge and topological index are conserved here since the sad-
dles created together with the singularities are trapped by the
surrounding contour lines and cannot escape to infinity.

FIG. 6. The enlarged sign principle. (a) —(c) Zero crossings of
the real (imaginary) part of the wave function are shown by
heavy (light) lines. Contour extensions of the imaginary part of
the wave function are shown by dashed light lines. Virtual vor-
tices created when these contour extensions cross a zero cross-
ing of the real part of the wave function are labeled by their
signs + or —.The phase of the wave is shifted to turn a given
saddle point into a self-intersection of the real part of the wave
function. (a) Application of the (unenlarged) sign principle
demonstrates that the singularities that terminate a bifurcation
line of an open saddle must be of the same sign. The interested
reader may enjoy extending the argument to show that singular-
ities with the same (opposite) sign terminate bifurcation lines

containing an odd (even) number of saddle points. (b) The
singularities that terminate the bifurcation line of a one-loop
saddle are shown to have opposite sign. As the saddle point is
traversed twice in passing between the singularities, the bifurca-
tion line contains two saddle points. (c) The singularities that
terminate the arms of a generic four-armed open saddle are
shown to alternate in sign from one arm to the next. The in-

terested reader may enjoy showing that this sign alternation is

true also for n-order (degenerate) saddles containing n bifurca-
tion lines [e.g. , f(x,y)=y(y —x ), n =3,y=0, +x]. Hy remov-

ing the degeneracy [e.g., f(x,y ) =(y —s)(y —x )] the order of
a bifurcation line of an n-order saddle may be seen to bc n —1,
so that the bifurcation lines of a third-order saddle, for example,
are terminated by singularities of opposite sign. (d) The generic
arrangement of saddles and singularities in a random phase
field. The X shaped regions of nearly constant phase surround-

ing each saddle point are shown shaded.
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charges (+1) of the singularities that terminate the arms
of an open saddle are easily seen [Fig. 6(c}]to always sum
to zero. As discussed below, open saddles predominate in
random phase fields. Accordingly, in a random phase
field the generic arrangement of saddles and singularities
is that shown in Fig. 6(d).

Since all singularities in a generic random phase field
are of first order, the phase circulates once from 0 to 2~
along a convex closed path that encircles a single singu-
larity. Accordingly, a given equiphase can contact a
singularity only once. This implies that only one arm of a
saddle can terminate at a singularity, so that open saddles
grip four different singularities, while saddles with a bi-
furcation loop grip two. But how many diferent saddles
can hold one singularity? The answer may be developed
in the following way. We start with two singularities A

(+}and 8 ( —) connected to each other by contours. Ex-
amining the phase map of this structure we observe that
A, for example, must be contacted by one bifurcation line
[Fig. 7(a)]. Adding another singularity C (

—
) and con-

necting A to C requires that a second bifurcation line
contact A [Fig. 7(b)], while connecting still another
singularity D (

—
) to A requires still another bifurcation

line to contact A [Fig. 7(c}],etc. We thus conclude that
the number of bifurcation lines that contact A equals the
number of singularities to which 3 is connected by con-

tours. But each bifurcation line must belong to a
different saddle point, so if A is connected to m different
singularities it must be held by m different saddles. The
converse of this is also true, and if a given singularity is
held by m saddles it must be connected to m other singu-
larities.

What is the average value of m? A first-principle cal-
culation based on, say, Gaussian statistics appears to be
quite impossible at the present time, so we supplement
theory with empirical information to estimate (m }.We
recall that nested saddles are never seen in random phase
fields, so they are either completely absent or of negligible
statistical weight. Accordingly, only one-loop saddles
[Fig. 2(b)] are ever found. Neglecting edge effects (wave
field boundary), this permits us to divide the total number
of saddle points (N„d) into two classes, those that con-
tain four free arms [n4 in number, Fig. 2(a)], and those
that contain two [nz in number, Fig. 2(b)]. Since each bi-
furcation loop embraces a single extremum (NE in num-

ber), we have Nz=nz In a. later section we show that
the number of singularities (N„„s) plus the number of ex-
trema substantially equals the total number of saddles.
From this follows N„„=n,4. The total number of free
arms is 4n4+ 2n2, and these arms must be divided among
n~ singularities, so (m ) =4+2n2/n4. From large scale
computer simulations [59] we have found that within a
statistical uncertainty of -2%%uo N„d = 14NE, so that
n~=13n2. Adopting this value, we have (m }=4
+ —,', =4.15. Thus, on average each singularity is held by
slightly more than four different saddles and is connected
to slightly more than four different singularities. In a
similar fashion we easily conclude that the average num-
ber m ' of singularities held by each saddle is
(m'} =(4n4+2n2)/(n4+n2)=3. 86.

In light of the fact that there are so few phase extrema,
it is natural to inquire why these features which are so
abundant in random intensity fields are so rare in random
phase fields. As discussed previously [59], the average
number density of phase singularities is 1 for every two
coherence areas. Since it is a topological necessity that
there be one phase saddle for each singularity, saddles
and singularities together have a joint number density of
1 per coherence area. But the wave field is not expected
to vary appreciably on length scales less than the coher-
ence length, so that one feature per coherence area essen-
tially exhausts the possible spatial variation of the wave
field. Accordingly, we may conclude that phase extrema
are so rare because there is little room left in the phase
field to accommodate them.

VII. SADDLES, SINGULARITIES, AND EXTREMA

FIG. 7. The number of bifurcation lines (heavy lines) con-
tacting positive singularity 3 equals the number of negative
singularities to which it is connected by contours (light lines).
A connects to (a) one singularity B, (b) two singularities B and
C, and (c) three singularities B, C, and D, and is contacted in
turn by one, two, and three bifurcation lines, respectively.

The rule that the two ends of a bifurcation loop ter-
minate on singularities with opposite signs [Fig. 6(b)]
leads to a rule for phase extrema. We consider traversing
a bifurcation loop starting always at the negative singu-
larity and ending at the positive singularity (Fig. 8). If we
traverse the loop counterclockwise (the positive 0 direc-
tion by our sign convention) we assign a positive sign to
the loop, and if we traverse it clockwise (negative 6) direc-
tion) we assign to the loop a negative sign. As discussed
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Lo

(c)

(b)
FIG. 8. The sign of a bifurcation loop is determined by its

terminating singularities. The saddle point is moved into the
(x,y ) plane and its bifurcation lines become zero crossings. The
bifurcation loop is traversed by always starting at the negative
singularity and ending at the positive singularity. The direction
of increase of the phase about each terminating singularity is
shown by arrows. These directions determine which side of the
bifurcation line is positive and which side is negative, and thus
fix the sign of the bifurcation loop. (a) The loop is traversed
counterclockwise (positive direction) and its sign is seen to be
positive. (b) The loop is traversed clockwise (negative direction)
and its sign is seen to be negative. The interested reader may
enjoy working through the six additional cases in which the
signs of the singularities are interchanged and/or the loops
shown are reflected about the line joining the singularities. In
all cases the sign of a loop is positive (negative) if it is traversed
in the positive (negative) direction.

in Sec. III, every loop must contain either a single ex-
tremum or else a closed saddle, and for the case of an ex-
tremum we have the following.

Second loop rule Maxim. a (minima) are contained only
in positive (negative) bifurcation loops.

This simple but important rule is an immediate conse-
quence of the fact that the wave function increases (de-
creases) for a positive (negative) loop as one moves to-
wards the loop center from any point on the boundary
(Fig. 8).

We now develop a rule for handling extrema within a
closed saddle that nests within a loop of some other sad-
dle. Although there are various routes to such a rule, the
route we use employs the index theorem together with
the second loop rule to find the sign of an internal loop
based on the sign of the external loop that embraces it
(Fig. 9). Specifically, we imagine recording the structure
of the nested loops on a "loop map, " and then having all
extrema and saddle points internal to some outermost
loop Lo annihilate one another in pairs as required by the
index theorem, leaving a single extremum Eo embraced
by Lo [Fig. 9(a)]. We assume the sign of Lo is fixed by its
terminating phase singularities as described previously,
so that Eo is uniquely determined by the second loop
rule. Consulting our loop map, we introduce into Lo the
next outermost saddle, which we label S'. One of its
loops must necessarily embrace Eo. If S' is a figure eight
[Fig. 9(b)], the extrema contained within its two loops are
both of the same type as Eo, so the signs of both loops are
the same as the sign of Lo. We have thus determined
that when dealing with figure eights the sign of an inner

FIG. 9. The sign of an internal loop is the same as the sign of
the external loop that embraces it. (a) Starting point for the
analysis in the text. The sign of the outermost loop Lo is as-
sumed here to be positive and the extremum Eo that it embraces
is a maximum. (b) A new saddle S' which is a figure eight is
created inside Lo. Since Eo must be inside one loop of this
figure eight and is a maximum, and since both loops of a figure
eight have the same sign [Fig. 3(d)], both loops of S' are posi-
tive. Both loops of S' are embraced by Lo and both are seen to
have the same positive sign as Lo. (c) The new saddle S' is reen-
trant. As discussed in the text, upon passing through the saddle
point of S' along the dashed line one passes over a maximum, so
the interior loop of S is negative. Since the interior and exteri-
or loops of a reentrant saddle have opposite signs [Fig. 3(e)] the
exterior loop is positive. This exterior loop, which is the only
loop embraced by Lo, is seen to have the same positive sign as
Lo.

loop is the same as the sign of the outer loop that em-
braces it.

If S' is reentrant [Fig. 9(b)], however, we are faced with
the problem of deciding into which of its two loops Eo is
to be placed. Suppose, for example, the sign of Lo is posi-
tive, so that Eo is a maximum (second loop rule) and the
phase increases as we move away from the boundary of
Lo towards the loop center. Inside Lo, as we cross the
saddle point of S' along one of its principal axes [Fig.
9(c)] we pass either over a maximum or through a
minimum. But the phase is increasing along all direc-
tions that lead directly (i.e., not across a bifurcation line)
from the boundary of Lo to the saddle point of S', so that
entry into the interior loop of S' from Lo must be over a
maximum. Coming down from this maximum into S' we
conclude that inside the interior loop of S' the phase de-
creases as we move away from the arms that form this
loop, so this interior loop contains a minimum. By the
second loop rule its loop sign is negative. Since the two
loops of a reentrant saddle are always of opposite sign,
the exterior loop of S' must then be positive and contain
a maximum, which is Eo. Repeating the above argument
for the case in which the sign of Lo is negative and Eo is
a minimum leads us to conclude that in this case the sign
of the interior loop of S is positive and the sign of the ex-
terior loop of S' is negative. Accordingly, the exterior
loop of the reentrant saddle S' always has the same sign
as Lo, the loop that embraces it. As this was also the
case for the loops of a figure eight, we obtain the follow-
ing.

Third loop rule. The sign of an internal loop is the
same as the sign of the external loop that embraces it.
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We recall that since a saddle does not embrace itself
the exterior loop of S' does not embrace its interior loop,
so the third loop rule is not contradicted by the fact that
the interior and exterior loops of a reentrant saddle al-
ways have opposite signs. With the assignment of loop
signs via the third loop rule, the second loop rule for
phase extrema holds also for nested loops. We again note
that in actual fact we have never seen an example of a
nested loop in a random (or any other) phase field. The
third rule, however, is of the greatest importance for am-
plitude (intensity) fields, where deep nesting of saddles is
the generic arrangement.

The sign principle implies that, for a fixed topology of
saddles (saddle points together with their bifurcation
lines), changing the sign of one singularity in a phase field
forces the signs of all other singularities to change. The
loop rules show that maxima must then change into mini-
ma and vice versa. A similar result holds for extrema,
and if a single maximum within a phase field is converted
into a minimum, then all maxima must be converted into
minima and vice versa, and all positive phase singularities
must become negative singularities and vice versa. Clear-
ly, the sign principle and the loop rules together eliminate
all but one degree of freedom for the critical points, es-
tablish stringent constraints on the possible structure of
random (and other) phase fields, and induce extensive,
unexpected, topologically mandated correlations between
a/l the difFerent critical points of the field.

As mentioned, deeply nested loops are generic to ran-
dom fields without singularities such as the intensity,
since saddle arms have nowhere to go and must close on
themselves. This is verified by our computer simulations.
The loop rules hold also for these fields, so if an ex-
tremum anywhere within some set of deeply nested loops
is identified (or arbitrarily chosen) as, say, a maximum,
then the loop rules (working both outward and inward)
suf5ce to fix the nature of all remaining extrema within
this set. This implies that neighboring intensity maxima,
minima, and saddles in a speckle pattern are not indepen-
dent, in agreement with our previous conclusions based
upon the sampling theorem [64].

y= arctan(H /G ) yields after straightforward calculation
S'=8+m. /2 (8+3+/2) for positive (negative) y singular-
ities. From this it follows that both positive and negative
qr singularities are positive, isolated, (isotropic [60]}first-
order 0 singularities. Thus all singularities of 0' are iso-
lated and of first order, and since 0' is regular every-
where between its singularities, the phase field 0' is
generically the same as the phase field y, and contains the
by now familiar mix of positive and negative singularities,
four armed saddles, and extrema enclosed in bifurcation
loops. The two phase fields difFer mainly in the number
of their singularities, since the number of 0' singularities
is NO. =2nz+2n4=2. 15N„„g. All of the foregoing is
confirmed in detail by our computer simulations, and in
Fig. 10(a) we present an example of a random phase (y)
field generated by these simulations, while in Fig. 10(b}
we display the associated 0' field.

The sign principle for the singularities of
y =arctan(H /G ) was originally derived for fields G and
K that are everywhere regular and do not themselves
contain singularities [61,62]. We now rederive this rule

VIII. SADDLES AND EXTREMA AS SINGULARITIES

We now turn phase saddles and extrema into singulari-
ties by defining the vector field:-(x, y)=Vy together
with its associated order parameter 0'=arctan(y~/y„).
As before (Sec. IV), the signs of the singularities of 8' are
given by d8'/d8, which equals the sign of the Jacobian
(Hessian) J'=B(y, p )/B(x,y), when this exists. Sta-
tionary points and singularities of y are the only singular-
ities of 0', since y is regular everywhere between its
singularities. Now, J exists at the stationary points of y
(recall Morse's lemma [66,67]), so that extreina of y are
positive, and saddle points of y are negative, isolated
first-order singularities of O'. J', on the other hand, is
singular at the singularities of y, but dO'/dI9 is not.
Moving the origin to the center of some arbitrarily
chosen y singularity, noting that leading terms in an ex-
pansion of the wave function (G and H) around the (first-
order) singularity are linear in x and y, and using

FIG. 10. (a) Generic random phase field y created by the
computer simulation described in Ref. [59]. (b) Order parame-
ter 0' of the gradient field V'y. In both (a) and (b) singularities
are located at the centers of the black and white striped
"pinwheels, " and saddles appear as distorted black or white X
shaped regions. In (a) a single extremum appears to the upper
right of center as a white teardrop shape on a black back-
ground, while the single extremum in (b) appears to the lower
right of center as a small black teardrop shape on a white back-
ground. The interested reader may enjoy matching the singular-
ities of (b) with the critical points of (a).
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for the phase field 8'=arctan(y /y ), since here both
y„and q& do contain singularities. Consider (Fig. 11)
two singularities 1 and 2 that are adjacent on a contour of
constant 0' labeled by C. C leaves singularity 1 with lo-
cal polar angle 0&, arrives at singularity 2 with local polar
angle 02, and corresponds to some value 0', 2 for the order
parameter. As the order parameter is continuous and
differentiable between singularities, there exists at least
one neighboring contour C' connecting the two singulari-
ties that leaves singularity 1 with local polar angle
8i+d8„arrives at singularity 2 with local polar angle
02+d02, and corresponds to the value 0',2+dO' for the
order parameter. Since C and C' never intersect between
singularities, d8i and d82, and therefore dO'/d8i and
d 0'/d 8z, must be of opposite sign (Fig. 11). We have
thus established that adjacent singularities on contours of
constant 0' are of opposite sign. Now, contours on
which O' =0 or m are zero crossings of y, and contours
on which 0'=m /2 or 3m. /2 are zero crossings of gr„. Ac-
cordingly, we have also established that 0' singularities
that are adjacent on zero crossings of y„or y must al-
ternate in sign, which completes the proof of the sign
principle. But we can go further. Since every singularity
of 0' contacts (by a limiting process) contours on which
0' equals 0, n /2, m, and 3n /2, all singularities of 0' lie at
the intersections of the zero crossings of y„and y„. Now
the singularities of 0' include the saddle points, extrema,
and singularities of y. Accordingly, we conclude that (i)
not only the stationary points of y but also its singulari-
ties lie on the zero crossings of y„and y», and (ii) on
these zero crossings saddle points alternate with either
singularities or extrema. As both y„and p» diverge at
the singularities of y, these conclusions do not appear to
be self-evident. They are, of course, fully confirmed by
our computer simulations.

As the sign principle holds for 0' (as do the loop rules),
on closed contours of reduced 0' (mode) the number of
positive singularities must equal the number of negative
singularities if the sign principle is to be satisfied every-
where along the contour. On average the same is very
nearly true for open contours that reach the wave field
boundaries. Accordingly, we may conclude that there
are approximately (but not necessarily exactly) equal
numbers of positive and negative singularities in the
phase field O'. But positive 0' singularities correspond to

FIG. 11. The signs (dO'/dO) of adjacent singularities on a
contour of constant order parameter 0' are opposite. Singulari-
ties 1 and 2 are connected by contour C with order parameter
0». In going from C to neighboring contour C with order pa-
rameter 0»+d0', the local polar angles dO& and d82 are of op-
posite sign, so that singularities 1 and 2 also have opposite signs.

y singularities and y extrema, while negative 0 singular-
ities correspond to y saddles, so we conclude that for the
phase field y the number of phase saddles approximately
(but not necessarily exactly) equals the sum of the num-
bers of phase singularities and phase extrema. This ap-
proximate equality is consistent with the index theorem,
which may be interpreted as suggesting that the total in-
dex of the phase field ought to be the Euler characteristic
y= + 1 of a plane [66,67]. We note, however, that the in-
itial phase structure of the wave is created when the wave
peels away from the scattering surface or source distribu-
tion and lifts off to begin its journey through free space.
But this is a discontinuous process, while the structure of
the scattering surface or the arrangement of sources may
be completely arbitrary. Under these circumstances the
index theorem may not be invoked, and physical wave
fields exist that violate topological conservation laws
which are based on continuous evolution. (The sign prin-
ciple and the loop rules, however, are never violated. )

One well known example is given by the work of Arecchi
and co-workers [56] who produced laboratory wave fields
with a 6:1 preponderance of positive to negative phase
singularities, showing thereby that one may not invoke
conservation of topological charge during the process of
wave field creation. Similarly, using both theory and ex-
periment, Brambilla and co-workers [71] demonstrated
the existence of laser beams containing very different
numbers of phase singularities and phase saddles (but no
phase extrema) showing that one may also not invoke the
index theorem during wave field creation. Thus, the in-
dex theorem by itself is insufficient to obtain the approxi-
mate equality relating the numbers of saddle, singulari-
ties, and extrema developed above. In the next section
we show that, in spite of the fact that this approximate
equality does provide a good description of a random
phase field, no exact rule can ever exist for the numbers
of phase saddles, singularities, and extrema.

Previously, we found that the sign principle applied to
the phase field y induced strong correlations between the
internal structures of neighboring y singularities [61,63].
We therefore expect that application of the sign principle
to 0' will similarly induce strong correlations between
neighboring 0' singularities. As neighboring 0' singular-
ities correspond to neighboring y extrema, y singulari-
ties, and y saddles, we are now led to predict that all
these different features ought to be strongly correlated.
The many new, previously unsuspected phase correla-
tions that have emerged in this way will be reported on
elsewhere.

We conclude this section by noting that the enlarged
spin principle and its induced correlations, together with
the loop rules and their induced correlations, remain true
also for the field 0" defined as the order parameter of
VO', as well as for the field 0"' defined as the order pa-
rameter of VO", etc. The same is also true for the vector
fields and associated order parameters that are based
upon the wave field intensity (amplitude) [64]. This
infinite regress, which establishes a dense network of
correlations between all points in the wave field, will un-
doubtedly prove to have the most profound consequences
for the structure of random (and other) wave fields.
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IX. WAVE FUNCTION SCALING

We now show by means of an explicit counterexample
that in a random phase field there cannot exist an exact
rule for the numbers of phase extrema, saddles, and
singularities. This is in contrast to the wave field intensi-
ty, for which there does exist an exact rule due to
Longuet-Higgins [72] that requires the number of saddles
to be one less than the number of extrema. Consider a
speckle field projected onto the surface of a large hemi-
sphere of radius R centered on a sample that occupies a
square aperture of side L in a planar, infinitely extended
opaque mask. Measuring position on the sample surface
by coordinates g, g, we take the random amplitude and
phase of the wave on this surface to be a function of the
scaled coordinates g/L, ri/L. A physically acceptable
sample realization [59] that exhibits this scaling is a set of
n =1—X point sources with random amplitudes, phases,
and coordinates g(n) =r&(n)L /2, ri(n) =r„(n)L /2,
where r& and r„are two different fixed sets of random
numbers lying between + l. In order to eliminate
super Auous phase factors, we choose R such that
kR =(2j+ ,')~, wher—e k =2~/A. with A, the wavelength,
and we make the integer j sufficiently large such that
kL /R «1. Measuring position on the sphere surface
by means of the usual polar angle 0 and azimuthal angle
P, and using the Rayleigh-Sommerfeld formulation of
Huygens' principle [73,74], the real (G) and imaginary
(H) parts of the wave function may be written
G =yg(u, u )cosg and H =yh(u, v )cosg, where
u =kL sing cosP, U =kL sing sing, y =L /() R ), and g
and h are random Fourier transforms determined by the
specifics of the random sample. Due to the cosO factor, 6
and H both go to zero at the equator where g=rr/2, so
the wave field terminates at the equator. Because of the
form of the variables u and U and the scaling proper'ties of
the source distribution, the functions g and h and there-
fore q&=arctan(h /g) scale with sample size L such that
y(8', P') =qr(8, P) when sing' = (L /L ')sing and
Thus decreasing L causes the phase map to expand in
such a way that every feature on this map is shifted to-
wards the equator along a line of constant longitude. But
features that are initially close to the equator cannot be
shifted past the equator, and so these features fall off the
edge of the map and disappear. Taking account of the
cosO foreshortening of the apparent sample size which
leads to a 1/cosO elongation of the wave field coherence
area [43], the fraction of all features initially present that
fall away when L decreases to L' is easily seen to be
1 —(L'/L) . Halving L, for example, causes —,

' of all

features to cross the equator and disappear. Our comput-
er simulations [59] confirm that in a random wave field
different regions bounded by contours of constant lati-
tude contain randomly different selections of phase sad-
dles, minima, maxima, and singularities, so that decreas-
ing L causes undetermined numbers of each of these
features to vanish from the wave field. (If this were not
the case, definite relative numbers of each kind of feature
would have to be present on lines of constant latitude, im-

plying a regularity of the phase field structure that is not
seen. ) The foregoing demonstrates that no exact rule can

exist for the numbers of maxima, minima, saddles, and
singularities in a random phase field, in contrast to the
wave field intensity for which Longuet-Higgins s rule
does hold [73].

X. MULTIPLE EVENTS

A new phase singularity is created when an ordinary
intensity minimum dips down to become a zero of inten-
sity. But the birth of a new topological singularity
abruptly alters the wave field everywhere. As this is for-
bidden by continuity, in free space the new intensity zero
must immediately split into two, yielding twin positive
and negative phase singularities that conserve topological
charge [22,46,48]. Conservation of the topological index
requires, however, that in free space each phase singulari-
ty (index + 1) must be created together with a phase sad-
dle (index —1) [70]. We call this sequence of events the
"primary route" for the creation of singularities. In prin-
ciple, the index theorem also permits a secondary route.
Here, creation of twin positive and negative phase singu-
larities takes place from the paired phase maximum and
minimum contained within the loops of a reentrant sad-
dle without creation of additional phase saddles. (The in-
terested reader may enjoy visualizing this process and
determining the relationship between the signs of the
singularities and the nature of the extrema. ) We note,
however, that the resultant structure —singularities in-
side saddles —is never observed, so this secondary route
is evidently never taken in practice, and the primary
route described above is the generic route for the creation
of new phase singularities. Since phase singularities are
intensity minima (zeros), conservation of index also re-
quires that the second singularity of a new phase singu-
larity twin must be created together with a new intensity
saddle. The free space creation of a new phase singulari-

ty is thus seen to be a multiple event that heralds the
creation of sextuplets (twin positive and negative phase
singularities, two new phase saddles, a new intensity
minimum, and a new intensity saddle).

Conservation of index holds also for the order parame-
ter 0' of the gradient field Vy, and this enlarges the mul-

tiple event. When four new feature~ are added to the
phase field y during a multiple event (twin positive and
negative phase singularities and two phase saddles), four
new saddles must be added to the gradient field 0', which
brings the number of new wave field features that are
created to ten (dectuplets). But index conservation holds
also for the gradient field VI derived from the intensity I,
so that the creation of two new intensity features during a
multiple event (the second new zero minimum and its ac-
companying new saddle) must be accompanied by the
creation of two new VI saddles, bringing the number of
new features to twelve (duodectuplets). Clearly these ar-
guments may be endlessly extended to higher-order gra-
dient fields, and to other starting points such as the
creation of a new intensity extremum. Since all these new
features are created at the same time and in the same

place, they initially are highly correlated one with anoth-
er. As the wave field continues to evolve, these features
separate along continuous trajectories constrained by the
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sign principle and loop rules. But, structurally correlated
at creation, these new features are likely to remain corre-
lated even when widely separated, suggesting the ex-
istence of extended, topologically mandated but previous-
ly unsuspected correlations between many different as-
pects of the phase and amplitude of a random wave field.

XI. SUMMARY

Saddles, singularities, and extrema in a generic random
phase field are arranged as follows: Approximately —'„' of
all saddles are strung between four different phase singu-
larities, of which two are positive and two are negative in
sign, with singularities of the same sign terminating each
of the two equiphases (bifurcation lines) that pass straight
through the saddle point. The remaining saddles contain
a single loop and are terminated by a pair of positive and
negative phase singularities. This loop houses a phase ex-
tremum, and, conversely, extrema are found only within
such loops. The relationship between saddles and singu-
larities is governed by a deterministic rule, the enlarged
sign principle, and three additional deterministic rules,
the loop rules, govern the relationship between maxima
and minima and the saddles that house them. These loop
rules apply also to the wave field intensity, and govern
the relationship between saddles and extrema in this field.
We note that the sign principle and loop rules are not
only topologically necessary constraints, but are also
sufhcient in the sense that configurations for which the
rules appear to be mute turn out under closer scrutiny to
be forbidden.

On average, each phase singularity is connected to
slightly more than four different saddles, while each sad-
dle is connected to slightly less than four different singu-
larities. These connections are made via bifurcation
lines, which form a highly connected network that runs
throughout the phase field. There are two independent
networks of bifurcation lines; one connects the positive,
and the other connects the negative phase singularities.
These two networks are weakly coupled through the rela-
tively small number of looped saddles that house phase
extrema. Based on our computer simulations we conjec-
ture that, starting at any given singularity, any other
singularity can be reached by moving along these two
weakly coupled networks of bifurcation lines. Saddles
and their bifurcation lines therefore form a scaffold that
underlies the phase field structure.

The sign principle and the loop rules strongly couple
together all the singularities, saddles, and extrema in the
phase field, so that for a given topology of saddles chang-

ing the sign of a single singularity changes the signs of all
other singularities, turns all maxima into minima, and all
minima into maxima. Similarly, changing a single max-
imum into a minimum causes all maxima and minima to
be interchanged and reverses the signs of all phase singu-
larities.

Phase saddles, singularities, and extrema are all singu-
larities of an infinite regress of higher-order gradient
fields. The sign principle and loop rules apply also to
these higher-order fields. This leads to an infinite regress
of couplings of the spatial variation of the phase
throughout the phase field.

The number of phase saddles approximately (but not
necessarily exactly) equals the sum of the numbers of
phase singularities and phase extrema. Unlike the inten-
sity, for which an exact rule exists relating the number of
intensity saddles and extrema, no exact rule can exist for
the phase. This difference between the two fields rejects
the fact that, unlike the phase, the intensity goes to zero
at the wave field boundary with zero slope (gradient).

The field scattered by a multiple scattering medium has
a complex spatial variation of polarization that is deter-
mined by the phase and amplitude structure of its two or-
thogonal components. The spatial variation of the wave
field polarization is therefore expected to be at least in-
directly constrained via the topological rules developed
here that constrain the phase and amplitude fields of the
individual polarization components. Direct topological
constraints on the polarization are also likely and are
worth searching for.

During the free space evolution of the wave field, phase
singularities and saddles are necessarily created together
with intensity minima and intensity saddles in a multiple
event. Here too there exists an infinite regress of higher-
order gradient fields of the intensity and the phase that
couple together the spatial variations of these two
different aspects of the wave field. Clearly, the sign prin-
ciple, loop rules, interactions present during multiple
events, and other constraints that are likely to be found,
must lead to a broad range of previously unsuspected, to-
pologically mandated correlations between the phase,
amplitude, and polarization of a random wave field.
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