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The Nosé-Hoover thermostat, which is often used in the hope of modifying molecular dynamics tra-
jectories in order to achieve canonical-ensemble averages, has hidden in it a Toda “demon,” which can
give rise to unwanted, noncanonical undulations in the instantaneous kinetic temperature. We show
how these long-lived oscillations arise from insufficient coupling of the thermostat to the atoms, and give
straightforward, practical procedures for avoiding this weak-coupling pathology in isothermal molecular

dynamics simulations.
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I. INTRODUCTION

Since the pioneering work of Nosé [1], which was made
more practical and accessible for general molecular dy-
namics (atomistic) simulations by Hoover [2], a large
number of constant-temperature studies have been per-
formed [3,4]. The Nosé-Hoover (NH) thermostatting
method is motivated by imagining that the system is put
into contact with a thermal reservoir, which can contrib-
ute to, or take away from, the thermal motion of the sam-
ple being studied in a homogeneous way, rather than at a
physical boundary (discontinuity). At the heart of the
thermostatting techniques using feedback, such as Nosé-
Hoover, are two principles: (1) the temperature in a clas-
sical system is simply related to the kinetic energy of the
atoms; (2) the motion of each atom is altered by an extra
term in the acceleration equation that is linear in its ve-
locity, and which bears a strong resemblance to simple
viscous damping.

In simple viscous damping, every particle is slowed
down by a force opposite to its velocity, with a propor-
tionality constant y >0, so that the temperature drops
exponentially with time to zero. In order to deal with
nonzero temperatures via viscous damping, Berendsen
and co-workers proposed direct feedback [5], where the
damping coefficient is no longer strictly a constant, but is
instead, a heat-flow variable, y(1— T, /T), that can be ei-
ther positive or negative, depending on the instantaneous
kinetic temperature T of the sample being thermostatted
(T, is the temperature of the thermal bath in which the
sample is homogeneously immersed). While Berendsen’s
method reduces to simple viscous damping when T, =0,
it is ill-posed when (for T, >0) the initial temperature is
chosen to be T(0) << T,

Hoover (and independently, Evans) proposed another
approach [6]—differential feedback—where the heat-
flow variable satisfies an even more complex constraint,
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namely, that of holding the kinetic energy of the sample
at a constant value. (In the work of Hoover and Evans,
the term ‘“Gauss thermostat” is employed for this iso-
kinetic dynamics in honor of Gauss’ principle of least
constraint.) In order to achieve constant kinetic energy,
the heat-flow variable is found to be proportional to the
time derivative of the potential energy divided by the
temperature T,. For this reason, the Gauss thermostat is
ill-posed if the thermostat temperature 7', =0; moreover,
if for T,>O0, the initial temperature is chosen to be
T(0)=0, the Gauss thermostat will forever spin its
wheels, to no avail—the temperature will remain at zero.
The Gauss thermostat is equivalent, in the limit of small
time steps, to scaling particle velocities at each time
step—for several years prior to the Gauss thermostat,
this was referred to as “ad hoc velocity rescaling.”

The Nosé-Hoover thermostat goes one step further in
complexity by introducing a new dynamical variable with
its own equation of motion—hence, integral feedback.
The purpose of this extra dynamical variable is to allow
the instantaneous kinetic temperature T to fluctuate,
while assuring that its long-time average is equal to T,.
In many ways, the NH thermostat is attractive because it
is easy to implement, having only one coupling parameter
(the rate of thermostatting), and because it shares with
the Gauss thermostat the property of time reversibilty
[7], as contrasted with the irreversible approaches of
Berendsen and standard viscous damping. The NH ther-
mostat suffers from the same zero-temperature dysfunc-
tionalities as the Gauss thermostat—you cannot achieve
zero temperature, and you create something from noth-
ing (i.e., start from zero temperature).

For all three of these examples of deterministic feed-
back, nonequilibrium steady states are guaranteed to
achieve a steady-state temperature equal to Ty, although
the Berendsen and Gauss thermostats both require an ad-
ditional term in the heat-flow variable proportional to the
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external driving force. Empirical studies show that trans-
port coefficients, obtained from nonequilibrium steady
states using any of these thermostats, are essentially in-
distinguishable [3].

In this paper, we show how one extra equation of
motion (for the heat-flow degree of freedom) in the Nosé-
Hoover thermostat can lead to surprising—even
disturbing—results if care is not taken in its implementa-
tion. That is, the NH thermostat can easily cause the
temperature of a many-body classical system to exhibit
persistent noncanonical oscillations, as though it were
driven by a ‘“demon”—a Toda oscillator [8]. This
pathology can be avoided by coupling the thermostat
sufficiently strongly to the particles. We motivate this
strong coupling by considering the fundamental nature of
the thermostatting process. Here, we will be interested
primarily in equilibrium states—mean values, fluctua-
tions about the mean, and time correlation functions, or
their power spectra.

II. BACKGROUND

We begin by introducing the instantaneous kinetic tem-
perature of a system, whose long-time average—either
under standard molecular dynamics (microcanonical en-
semble) or under Nosé-Hoover dynamics (canonical
ensemble) —gives the thermodynamic temperature; in the
thermostatted case, that temperature will be guaranteed
to be T, while under standard Newtonian mechanics,
the temperature will, in general, be different. For N par-
ticles in a box of volume ¥ in d spatial dimensions, the to-
tal mass M, total linear momentum Mu, and the instan-
taneous temperature 7 in a molecular dynamics comput-
er simulation can be written as

N
M=3m,,

i=1

N
Mu= 3 my,; , (1)

i=1

N
dANKT =3 m;|u;|* .
i=1
(The atomic mass for particle i is m; and its velocity is
u;.)

Henceforth in this paper, we will use the term “tem-
perature” and “‘instantaneous kinetic temperature” inter-
changeably, even though we wish to emphasize that
“thermodynamic temperature” and “long-time average of
the instantaneous kinetic temperature at equilibrium’’ are
the only strictly correct equivalences. In nonequilibrium
situations, the instantaneous kinetic temperature is the
only meaningful definition [9]. (Notice that we have not
bothered to subtract the center-of-mass velocity u from
the particle velocities in the expression for the tempera-
ture. Most often, u is set to zero, and occasionally one
will therefore see the factor of N in the temperature ex-
pression replaced by N-1.)

The Nosé-Hoover equations of motion for the N parti-

cles and the dimensionless heat-flow variable £ are given
by
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(2)

where v is the rate of coupling of particles to the NH
heat bath, whose temperature is T,. If v is set to zero, §
becomes irrelevant and the particles obey Newton’s equa-
tion of motion. Common sense suggests that the temper-
ature responds on a time scale of 1/v, so that choosing
too small a value of v would result in a long time
for equilibration, while too large a value could perturb
the “natural” dynamics of the system [1]. (In the
Appendix, we present the Stgrmer finite-difference
approximation—time step 8—for these equations of
motion.)

The theoretical groundwork for the Nosé-Hoover ther-
mostat was most clearly stated by Hoover [2,7]: the dy-
namics should be such that any initial condition leads to
a sampling of the canonical phase space distribution
function py(x) after a computationally ‘‘reasonable”
length of time (here, x represents the coordinates q and
momenta p of the N particles, as well as the heat-flow
variable §):

polx)=——expl —BE(x)], x=(q,p,£) ,

Qo
Qo(N,V,To)= [dxe PE, B=1/kT,, 3)
E(x)=K(p)+<I>(q)+%NkT0§2 .

The canonical partition function Q, is the integral over
all phase space x of the Boltzmann factor of the internal
energy E, which includes a contribution from the ther-
mostat heat-flow variable (§ is postulated to be Gaussian
distributed with an average contribution of kT, /2, com-
pared to order N particle contributions from kinetic K
and potential ® energies).

The flow of an ensemble of trajectories of independent
(noninteracting) many-body systems, begun from
different initial conditions, can be represented by a gen-
eral, time-dependent phase-space distribution function
p(x,t), which obeys the Liouville (continuity) equation
[71:

%%+%(pu)=0 , u=x(x,t), 4)
where now u represents the equations of motion—the
“fluid” velocity of the ensemble at each point x in phase
space. Under equilibrium Nosé-Hoover dynamics [Eq.
(2)], the canonical distribution py(x) is the stationary
solution of the Liouville equation. This means that if the
system is sufficiently mixing, each and every trajectory,
begun from any initial condition whatsoever (except for a
set of measure zero), visits every small box of volume Ax,
located at point x in phase space, with probability
po(x)Ax. Consequently, a long-time average over a single
trajectory will be equal to a canonical ensemble average.
The Nosé-Hoover equations of motion are a necessary,
but not sufficient, condition for the dynamics to exhibit
canonical behavior at equilibrium. The sufficient condi-
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tion is that the equations of motion be Lyapunov unstable
(that is, excluding integrable systems), so that the motion
is chaotic and therefore, ergodic or “mixing.” (To be
precise, more complex equations of motion—variations
upon Nosé-Hoover—have been proposed [10]; while
they, too, satisfy this necessary condition, the original
NH equations are the simplest, one-parameter set that fill
the bill.)

The equations of motion contain the coupling parame-
ter v, which, if set to zero, gives Newtonian equations of
motion appropriate to the microcanonical ensemble.
That is, if we set up a canonical distribution of initial
conditions for the trajectories, and then propagate them
with standard molecular dynamics, the above argument
applies: the canonical distribution for the whole ensem-
ble will be preserved. But each trajectory will not
sample—independently—the canonical distribution;
only the entire ensemble will do that. A Nosé-Hoover
trajectory will sample the canonical distribution— pro-
vided that the interparticle forces are nonlinear and the
motion is sufficiently chaotic.

The Nosé-Hoover equations of motion are deceptively
simple—as we have said, the simplest, one-parameter
way to achieve canonical dynamics—and from the equa-
tion of motion of the heat-flow variable, it is clear that
the long-time average of T is guaranteed to be the
prescribed value T, (even under nonequilibrium steady
driving by an external force). If { is bounded (a reason-
able assumption at equilibrium, where we expect it to os-
cillate about a value of zero—no heat pumped into or
out of the system—or at the nonequilibrium steady state,
where it fluctuates about some nonzero value), then the
long-time average of its equation of motion is zero, and as
a consequence, the average temperature is that of the
thermostat:

z_ o Lot oo H0—¢0)_ | T _
-t o €550 0 [ T

However, we actually have to do thermostatting simula-
tions to see whether or not the temporal behavior of the
temperature is reasonable—the Liouville formalism only
says that Nosé-Hoover dynamics makes it possible to
achieve canonical-ensemble behavior along a trajectory.

At equilibrium, the temperature in a finite system fluc-
tuates about the mean value: 8T=T—(T), where
(T)=T, in the NH thermostatted system. If the NH
system exhibits canonical fluctuations (within a computa-
tionally “‘reasonable” time), as it should if it is sufficiently
mixing, then the variance of the temperature, as deter-
mined from the canonical distribution function in Eq. (3),
is

((BT)?)y== , (6)

where the subscript “0” indicates the canonical-ensemble
value. In contrast, a microcanonical [standard molecular
dynamics (MD)] simulation is characterized by a much
smaller variance [11]:
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(8T )up i N <, ((8T)?), C.’ (7)

where the subscript “MD?” refers to the microcanoical-
ensemble value (remember, in standard microcanonical
MD simulations, only by iteration can one achieve
(T)=T,). The total constant-volume heat capacity is
C,—the kinetic part is C;=(d /2)Nk; the potential part
is Cf. For a harmonic system, the ratio C% /C, is one-
half; for a dense fluid, it is somewhat smaller. Note that
while the variance of temperature in both microcanonical
and canonical ensembles decreases like 1/N, the ratio is
always Cf/C,.

The higher moments of the temperature distribution
are the skewness

(677) [ 8 ' .

(T2 |av | ®
and the kurtosis

((8T)?)2 dN |’

where again, the subscript “0” indicates the canonical re-
sult. These higher moments are subject to larger statisti-
cal uncertainties than the variance. In practice, only the
variance and skewness are really useful for determining
whether a system is canonical, and therefore where the
NH thermostat has achieved its purpose of producing a
mixing system with a computationally reasonable length
of time.

III. THE TODA DEMON
IN THE NOSE-HOOVER THERMOSTAT

We chose to study, as an example of an inherently mix-
ing system, the two-dimensional (2D) Lennard-Jones (LJ)
fluid of 90 particles at the normal solid density and at a
temperature of about 2.5 times the melting temperature.
(The LJ unit of distance is the minimum of the potential
ro; the unit of energy is the well depth of the potential &;
the unit of mass is the atomic mass m; from these, the
unit of time ¢, is defined by the relation e=mr3/t3. In
these simulations, we used a time step of §=0.01z,,
which was found to give essentially the same results as
6=0.005; see the Appendix for a discussion of the finite-
difference approximations to the equations of motion and
the integration errors.) The rate of coupling of the ther-
mostat to the particles was chosen to be v=1/t,.

In Fig. 1, we show the time history of the temperature
and the heat-flow variable under Nosé-Hoover thermos-
tatting in the 2D LJ fluid. The fluctuation in the temper-
ature in this simulation is enormous, overshooting the
mean value by a factor of 2, and undershooting by half.
There is, moreover, a profoundly persistent period of os-
cillation of about 27. The initial temperature was
set equal to the thermostat temperature 7 (0)=T,
=1(=e/k), and the NH heat-flow variable was set to
zero (particles were placed on triangular lattice sites and
given random velocities appropriate to the Maxwell-
Boltzmann distribution [12]). All these initialization
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FIG. 1. The temperature T and heat-flow variable § for the
2D, periodic, 90-atom LJ fluid at normal density (p=po), ther-
mostatted by Nosé-Hoover dynamics at a temperature To=1
(about 2.5 times melting), with a coupling rate of particles to the
thermal bath of v=1 (LJ units). The initial atomic positions
were triangular lattice sites; velocities were chosen from a
Maxwell-Boltzmann distribution at temperature T(0)=T),; the
heat-flow variable was set at {(0)=0.

steps would seem to be perfectly reasonable and certainly
within the bounds of common practice for such a MD
simulation. However, the observed temperature variance
is 17 times the canonical expectation. This is clearly an
unwelcome result for a supposedly “thermostatted” sys-
tem.

Changing the initial temperature from T(0)=T, to
T(0)=2T, might seem to offer an improvement, based
on the rough equipartition of energy expected for a dense
fluid or solid. The result, shown in Fig. 2, is clearly
preferable to that of Fig. 1. Now, the fluctuations are
considerably reduced, both for the temperature and the
heat-flow variable; however, the persistent oscillatory
period of about 27 (frequency w=~1) is still apparent.
Unfortunately, upon closer examination, we find that the
temperature variance is too much reduced: 0.52 times
canonical. Thus, the system is not canonical at all—it is
as though the thermostat were not even turned on. This

3 T T
r fluid t=0: kT/z-:=2,§=O,vt°=1 1
2 f .
kTre i
1
0
¢ ]
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FIG. 2. Temperature and Nosé-Hoover heat-flow variable for
the 2D LJ fluid (nominally at the same thermodynamic state as
in Fig. 1); initial conditions were 7(0)=2T, and £(0)=0.
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is just as terrible—even though not quite so obvious—as
the temperature fluctuations in the first initial condition
[T(0)=T,]

Preparing the sample in a way designed to make the
system forget entirely its peculiar initial conditions—that
is, by first thermostatting using Berendsen’s method
(y=2/t,) for a time of 5t(, followed by standard micro-
canonical MD for another 5¢(, and then applying Nosé-
Hoover—also does not solve the problem, as shown in
Fig. 3(a) for early times, and in Fig. 3(b) for later times,
where the oscillations have finally built up again to the
same apparent value as in Fig. 2. Indeed, the variance
accumulated over the time span of ¢t =10 to 25¢, in Fig.
3(a) is 0.41 times canonical, while over the span of t =135
to 160t,, the variance is 0.53 times the canonical value.
The microcanonical variance is 0.46 times the canonical
one, while under Berendsen thermostatting, the variance
is even lower, 0.41 (the Berendsen temperature depends
nonlinearly on the coupling rate: at y =10, the value is
reduced further to 0.36).

:--- > Berendsen
2 <G--->» Newton

kT/e

3 e
t/t°='|0: kT/e~'l,§=O,vto=1:
2
1
0
(b)

-1 PRV S S IR S S ST N T Y SO S ISR S SR I B

135 140 145 150 155 160
tt

o

FIG. 3. Careful preparation of 2D LJ fluid by equilibration
using Berendsen thermostat, followed by Newtonian mechanics,
before thermostatting by Nosé-Hoover (same thermodynamic
state as in Figs. 1 and 2): (a) early times; (b) late times (compare
with Fig. 2).
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In order to determine what becomes of these initial
conditions and answer the question—does the “thermos-
tatted” system eventually exhibit canonical behavior over
some extremely long-time scale?—we ran these simula-
tions for as much as 10%*,(10° time steps). In the case of
Fig. 1, where early fluctuations are too large, the en-
velope of the temperature slowly damps down to the ex-
pected canonical fluctuations after a time of about 2000¢,,
(~5000 vibrational periods). Similarly, for Figs. 2 and 3,
where early fluctuations are too small, the temperature
fluctuations build up to the canonical value on about the
same long-time scale. (Apparently, there is no recurrence
of the early noncanonical fluctuations, i.e., a superperiod-
ic behavior, such as that seen in the famous Fermi-Pasta-
Ulam problem [13], at least on these very long-time
scales.) For smaller temperatures, such as 7,=0.1
(about i the melting temperature of the 2D LJ system),
we ﬁnd the time constant for this relaxation of fluctua-
tions toward canonical to be longer by a factor of more
than 2. From the point of view of practical molecular dy-
namics simulations, we would say that this behavior of
the thermostat violates the ‘“Principal of Exhaustion of
the Observer”: it is unreasonable to wait more than a few
vibrational periods to attain canonical behavior.

How are we to explain these profoundly disturbing re-
sults, namely, the persistent low-frequency oscillation of
o=~1 and the failure to attain the canonical temperature
variance, by nearly a factor of 2, regardless of initial con-
ditions? Part of the answer lies in a perturbation analysis
of the equations of motion, provided that we coarse-grain
time, so as to eliminate the high-frequency (o~ w,) oscil-
lations, leaving exposed the low-frequency undulation in
the temperature that so concerns us. The rate of change
in the internal energy of the particles, E,=K + &, can be
related to the heat flow into the system from the thermal
bath:

N
=3 imilw*+@({q}),

i=1

N
Emu u+zgq} u;

i=1

=2ui-(F,—v§miu,~)—‘2F,~'ui (10)

i=1 i=1

- 2
=—v{ 3 m;lu|

i=1
= —dNkv{T .

Now, suppose that we average over the high-frequency
oscillations in the system; then, the internal energy can be
decomposed into the zero-temperature potential energy,
®,, and the thermal part, given by the heat capacity
times the temperature:

E,=®,+C,T, an
E,=C,T,

where the bar over the symbols indicates this coarse-
grained average over roughly one vibrational period.
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The coarse-grained average of Eq. (10) involves the
average of {7, which itself can be obtained in the same
manner as the average temperature [recall Eq. (5)]:

- T _z|_
o=y ]

=(T=(T,=ET. (12

That is, the average of the product is the product of the
averages. Of course, this result is strictly true only in the
long-time limit, while we wish to use it for the intermedi-
ate time scale between the fast atomic vibrations and the
slow oscillations due to the thermostat. Therefore, we
use the latter form of the equality in Eq. (12); that is, the
coarse-grained average temperature is not strictly equal
to Ty, but rather executes smoothed oscillations about
T,. Then, we can combine Egs. (10) and (11), dropping
the bar symbol:

T _ dNk
Cc,T=—dNkveT T=C

vE . (13)
v

Having coarse-grained the variables { and T over the
high-frequency vibrations of the system, we can intro-
duce a collective variable for the system, which we will
call the coordinate of a pseudoparticle, along with its ve-
locity and acceleration:

T T

r==—ﬂn7f;<==7f; e N
__T_adNk .
T c,
(14)
_dNk . _dNk ,| T . |_dNk , _,_
C, vE= va T, 1 va(e 1)
=—%r+ -,

where the fundamental harmonic frequency of oscillation
of this pseudoparticle is given by

dNk
C

v. (15)

v

For most condensed-phase systems (including anharmon-
ic solids and dense fluids), C, =dNk, so that o =~v.

If time is now scaled by this new frequency, i.e., s =wt,
then the equation of motion of this pseudoparticle is such
that it moves in a potential well —the Toda potential:

Fls)=e "—1=—¢'(r), @r)i=e "+r—1. (16)

This describes the motion of the famous Toda oscillator,
which in the nonlinear regime is the temporal analog to
the soliton in the Toda chain [8]. As the pseudoparticle
goes up the repulsive wall (» <0), r exhibits a sharp peak
as a function of time—the temperature of the many-body
system is greater than T; in the attractive tail (» >0), r
goes through a broad valley—the temperature of the
many-body system is less than T, (see Fig. 1, for exam-
ple).

Now, it should be clear why Fig. 1 exhibits undula-
tions in the temperature and the heat-flow variable: a
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Toda demon (pseudoparticle) has been created in the
Nosé-Hoover thermostatted system, and it causes the un-
dulations at frequency w=~v=1 to persist for a very long
time. Clearly, such behavior is unacceptable, with early
thermal fluctuations that are far larger than would be ex-
pected in an isothermal system. From simulations show-
ing this pathology, we would expect abnormal predic-
tions for thermally activated processes, such as diffusion.
For more gentle initial conditions, as in Figs. 2 and 3, the
early thermal fluctuations are hardly bigger than stan-
dard MD, that is, a factor of 2 too small. In either case,
the thermostat has failed miserably, since the relaxation
towards canonical behavior takes an enormous length of
time. What can be done to correct this bizarre, non-
canonical behavior?

IV. OPTIMIZING THE THERMOSTAT COUPLING

The one free parameter (other than the desired temper-
ature T) in the Nosé-Hoover thermostat is the coupling
parameter v, which, as we saw in the preceding section,
can induce an unwanted undulation in the instantaneous
kinetic temperature of the system at a frequency w~wv.
So as not to greatly perturb the ‘“natural” (microcanoni-
cal) time dependence, a seemingly reasonable (and not at
all uncommon) choice for v is a value much smaller than
the characteristic frequency @, which can be computed
from the second derivative of the pair potential ¢’’ at the
equilibrium zero-temperature, zero-pressure spacing r,
(the sound speed is ¢, =rgw,). For the LJ system,

r%q)"(ro)=725=ma)gr3(=mc§)
=’(00t0=\‘ 72=8.49 . (17)

From this, one might have imagined that v=1 would
have been a reasonable choice for the thermostat cou-
pling in the LJ dense fluid. However, our results show
that such a choice fails to provide sufficient coupling.
What, then, is a reasonable choice that will make the sys-
tem a mixing one under NH dynamics, on a reasonable
time scale?

This question forces us to think more deeply about the
very nature of the process of thermostatting a finite sys-
tem, whereby we wish to mimic a canonical sample of N
atoms in volume V drawn at random from an infinite sys-
tem at temperature T,. In standard molecular dynamics
simulations of dense fluids and solids, surface effects,
such as density fluctuations near hard walls, are reduced
by imposing periodic boundary conditions. That is, we
surround the MD sample of N atoms in volume V by a
universe of copies of itself. No free surfaces or walls en-
close the sample, but the replicated dynamics of neigh-
boring regions imposes restrictions on the power spec-
trum, or distribution of frequencies (collisional for fluids,
vibrational for solids). For example, the maximum wave-
length of disturbances allowed in the standard MD sys-
tem is governed by the sidelength of the periodic box,
L=V'4 In contrast, rather than exhibiting discrete
peaks broadened by anharmonicity, the frequency spec-
trum of a canonical sample is continuous, like that of the
infinite system. (We have already mentioned other dis-
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tinctions between a finite-size MD system and a canonical
sample: a MD simulation is isoenergetic, while the
canonical sample experiences fluctuations in energy
about the mean value; the temperature fluctuations in the
MD system are roughly half that of the canonical sam-
ple.)

Ideally, a thermostatted system, like the hypothetical
canonical sample, should experience the full spectrum of
frequencies of an infinite sample, in contrast to the re-
stricted set available to a periodic MD system. In order
to visualize this important feature of thermostatting, im-
agine that we try to mimic an infinite, one-dimensional,
harmonic chain of atoms by a small sample—Ilet us take,
as an extreme example, a single thermostatted atom.
What should the thermostat coupling be in order to
achieve something like a canonical sample? We will con-
sider first of all the one-dimensional harmonic oscillator,
thermostatted by Nosé-Hoover [14]. Then we will relate
this to a thermostatted Einstein cell model of a solid, and
compare the resulting temperature power spectrum with
that of a large chain.

In Fig. 4, we show the power spectrum of the velocity
for the unthermostatted (v=0) and thermostatted har-
monic oscillator (v=0.05 and 1). The theoretical spec-

100 g ,
g 3
10 ¢ 3
g
; 3
© 0.1 E
g E
g 0.0 E
0.001 : 7
M
0.0001 : S
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o
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E E
o _t' j
10 E e It vt =1 5
F H ° E
§ 1 vto = j
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2 0.01 (b) 3
0.001 £
0.0001 L L
0 1 2 3 4 5 6
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FIG. 4. Power spectrum of velocity in the single-particle 1D
harmonic oscillator. Solid curves, no thermostatting; dotted
curves, NH thermostatting: (a) weakly coupled (v=0.05); (b)
strongly coupled (v=1). The fundamental frequency w,=1.
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trum for v=0 is a 8 function located at ®=wy=1, which
is broadened by numerical errors associated with the
finite length of time of the trajectory. In Fig. 4(a) we
show the weak-coupling case, where the main peak is
only slightly perturbed by the thermostat, producing
splittings at wytv, wyt2v, and so forth. In contrast, Fig.
4(b) shows that setting the thermostat coupling to
v=w,=1 strongly perturb the spectrum by shifting the
main peak to slightly higher frequency, as well as produc-
ing higher harmonics.

The Einstein cell model, where one atom moves in the
potential field of all other atoms frozen at their lattice
sites, is characterized by the root-mean-square frequency
of the full quasiharmonic crystal, wp=(0?)!*~(d
+1)!"20,, for nearest-neighbor interactions in d dimen-
sions. Thus, in 1D, the Einstein frequency is 2!/%w,. For
the cell model, the temperature power spectra—both
unthermostatted (v=0) and thermostatted at the Ein-
stein frequency (v=wjy=2!"2)—are shown together in
Fig. 5(a). For the many-body systems we have considered
in this paper, we have chosen to study the temperature
time series, rather than the more computationally inten-
sive velocity autocorrelation function, from which one
could extract the full frequency distribution; the Einstein

100 ¢

10 F

E o1t
[V =
g L
g 0.01 ¢
0.001
0.0001 ©
100 ¢

10 &

g ¢
E o1t
2 :
g 0.01
0.001 &
0.0001 *

FIG. 5. Power spectrum of temperature in the 1D harmonic
Einstein cell model. Solid curves, NH thermostatting, strong
coupling (v=wg=Einsten frequency); dotted curves, no ther-
mostatting (v=0): (a) cell model (N =1); (b) comparison of cell
model with periodic harmonic chain (N =90).
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model example shows that, for our purposes, the simpler
temperature-series case exhibits the principal features of
interest.

The temperature power spectrum of our hypothetical
canonical sample, the thermostatted cell model, mimics
that of the full harmonic chain much more closely than
the unthermostatted cell model, as shown in Fig. 5(b).
Not too surprisingly, the main peak of the thermostatted
cell model is almost identical to that of the full chain, and
the lower-frequency secondary peaks are similar. The
highest frequency in the 1D chain occurs for the binary
mode at twice the fundamental frequency (that is,
Opax =200=2), so that for the temperature power spec-
trum, the maximum frequency is 4. On the other hand,
in the thermostatted Einstein model, even higher frequen-
cies are excited, although (other than the first harmonic
of the main peak) they are of relatively minor importance
and tend to follow the high-frequency envelope of the
chain (power is represented logarithmically).

While the 1D harmonic chain is far from an interesting
thermodynamic system, its temperature power spectrum
and that of a one-particle approximation—the thermos-
tatted Einsten cell model—provide an important clue for
the resolution of the question: What is the “right”
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FIG. 6. Power spectrum of temperature in the 2D LJ solid at
normal density. Solid curves, NH thermostatting at 7T,=0.1
(about 0.25 times melting) and v=15=~wpg; dotted curves, no
thermostatting: (a) full frequency range; (b) low frequencies.
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amount of coupling of the thermostat to the particles,
such that canonical-ensemble fluctuations in temperature
are obtained? The answer would appear to be to couple
strongly by setting v=wy.

In order to avoid the pathologies of either 1D or purely
harmonic systems, we return now to the 2D LJ system at
about 0.25 and 2.5 times the melting temperature: the
temperature power spectra are shown in Figs. 6 and 7, re-
spectively. We have set the coupling rate of the thermos-
tat to the system of 90 atoms equal to the Einstein fre-
quency, which, for the 2D L1J solid at normal density (p,)
is given approximately by 3'/2w,=14.7. The tempera-
ture power spectra of both thermostatted and unthermos-
tatted systems are remarkably similar for both solid and
fluid, with principal differences in the lower-frequency
domain, where the thermostatted systems have less power
than the standard MD counterparts.

In Fig. 8, we show the distribution of temperature for
the LJ fluid at about 2.5 times the melting temperature
for microcanonical (v=0) and Nosé-Hoover thermostat-
ting, both weakly coupled (v=1) and strongly coupled
(v=15). Itis very clear that the temperature distribution
in the weakly coupled thermostatted case is hardly any
different from that of standard MD, while the strongly
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FIG. 7. Power spectrum of temperature in the 2D LJ fluid at
normal density. Solid curves, NH thermostatting at T,=1
(about 2.5 times melting) and v=15~wg; dotted curves, no
thermostatting: (a) full frequency range; (b) low frequencies.
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FIG. 8. Temperature distribution for the 2D LJ fluid (T, =1)
for thermostatting rates v=0, 1, and 15.

coupled thermostat gives a significantly different distribu-
tion. In Table I, we show that, in fact, strongly coupled
thermostatted systems are canonical, while weak cou-
pling fails to produce canonical temperature fluctuations,
at least on a practical computational time scale. (Statis-
tics for temperature fluctuations were typically gathered
over a time of about 100¢,, or ~ 250 vibrational periods.)
An estimate for the minimum frequency at which cou-
pling could be effective is that of the longest wavelength
disturbance allowed by the periodic boundary conditions
we have imposed in both thermostatted and unthermos-
tatted 90-atom LJ systems: v=w,;, =2mwc,/L =6 (for
comparison, the equivalent system size in 3D is
90%/2=854 particles). As we see in Table I, this rate is
only marginally capable of producing a canonical sample.
Hence, one should use strong coupling, like v=wg, to en-
sure that the Nosé-Hoover thermostat produces— within
a couple of vibrational periods—a mixing system with
canonical fluctuations. This advice applies even for the

TABLE I. Temperature variance and skewness for the 2D LJ
system (90 atoms at normal density). T, is thermostat tempera-
ture, v is coupling rate of thermostat to particles. (From com-
parison of values in independent trajectory segments, the re-
ported variance results have an error of about 3%, while skew-
ness errors are about 10%.) The Einstein frequency is 14.7.

Ty v Variance® Skewness®

1.0 0 0.46 —0.1
1 0.53 0.2

6 0.81 0.5

10 1.07 0.6

15 1.00 1.0

0.1 0 0.50 0.1
1 0.54 0.2

10 1.05 1.1

15 1.03 1.2

0.01 1 0.72 —0.1
10 1.31 0.9

#Observation divided by canonical expectation [see Egs. (6) and

(8)].
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thermostatting of low-temperature (nearly harmonic)
solids, though the inherent limitation to T, >0 is una-
voidable for the NH thermostat.

To see how far this strong coupling can be pushed at
low temperatures, we also studied the 2D LJ solid
(N=90) at a temperature T;,=0.01 (% of the melting
temperature), with v=10. There, we found the tempera-
ture variance to be 1.31 times the canonical value (com-
pared to 1.05 at T;=0.1). For classical harmonic sys-
tems at very low temperatures, there is a tendency for the
trajectories to avoid the region of the so-called “Hoover
hole” where all the momenta are equal to zero [10].
Hence, as temperature drops somewhere between 0.1 and
0.01, fluctuations begin to be enhanced, compared to the
canonical value, under NH thermostatting.

So far, we have only considered the low-frequency case
(v<<wg) of inefficient coupling of thermostat to parti-
cles. Interestingly enough, the case of overdriving by the
thermostat (v >>wg) can also be analyzed by the method
outlined in Sec. III: again, a Toda demon emerges. In
this other extreme limit of poor coupling, the interatomic
forces become unimportant, so that the system behaves

like a thermostatted ideal gas. Using the ideal-gas heat.

capacity in Eq. (15), we predict that the temperature os-
cillations should be driven at a frequency of w=2!"2v,
For the 2D LJ fluid at T;=1 and with v=100, we find
that the temperature exhibits a regular oscillatory period
of 0.043, which compares favorably with the predicted
value of 0.044. Once again, the early temperature fluc-
tuations are not canonical. This overdriving limit is only
of academic, rather than practical interest, since the ther-
mostat dominates the dynamics and forces us to reduce
the time step.

A final comment is in order for molecular systems: if a
molecule has internal vibrational frequencies that are
quite high, a global heat-flow variable acting on the
atomic velocities may well not equilibrate the bond-
vibrational, torsional (bond-bending, etc.), rotational, and
molecular center-of-mass vibrational components. Each
of these should then be thermostatted by separate heat-
flow variables, so as to achieve better coupling to the
high-frequency internal modes [15].

V. CONCLUSIONS

The Nosé-Hoover thermostat, because it represents in-
tegral feedback, has inherent in it the possibility of
unwanted oscillations in the instantaneous kinetic tem-
perature. We have shown that the characteristic period
of these undulations and their amplitude are the predict-
able consequence of a Toda demon hidden in the Nosé-
Hoover dynamics, at coupling that is either too low or
too high. Their presence in a thermostatted MD simula-
tion, along with temperature fluctuations differing from
the canonical expectation, are symptomatic of poor cou-
pling of the thermostat to the system. Such undesirable
effects can be eliminated by choosing a coupling rate v
that is equal to the characteristic vibrational (or, in dense
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fluids, collisional) frequency of the N-body system of in-
terest. For dense fluids and solids, even down to rather
low temperatures, the resulting equilibrium averages will
then be those of a canonical-ensemble system at the
desired thermostat temperature T, showing canonical
fluctuations about the mean.
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APPENDIX: STORMER INTEGRATION

The Nosé-Hoover equations of motion can be integrat-
ed by Stdrmer finite differences, where coordinates and
the heat-flow variable are evaluated at integral values of
the time step 8 (as are forces, which depend on coordi-
nates) while velocities are staggered by §/2 (as is the tem-
perature):

x()=x(t—8)+u(t—18)6+0(8%) ,

T(t—18)

()=t —8)+wv T,

—1(84+0(8%), (A1)

w(t—18)[1—Lve(1)s]+ 1)

14+ 1vE(2)d

)

u(t+18)= +0(8%) .

(For simplicity, we have dropped vector notation and
particle indices.) These central-difference equations [Eq.
(A1)] are perfectly time reversible, as are the Nosé-
Hoover equations of motion themselves [Eq. (2)]. By this
we mean that reversing time, velocities, and the heat-flow
variable results in the same equations of motion; thus, a
movie of the motion when run backwards through a pro-
jector satisfies the same mathematical description, even
though it may violate our sensibilities of macroscopic ir-
reversibility (Second Law of Thermodynamics) [7].

In order to achieve a stable and sufficiently accurate
representation of a realistic trajectory, the time step 5,
under most circumstances (densities near normal and
temperatures up to about twice the melting temperature),
should be chosen to be 3 to & of the Einstein vibrational
period, which is a straightforward calculation, given the
bulk modulus and its pressure dependence. For example,
at normal density in d dimensions, the Einstein frequency
o is approximately the square root of d +1 times the
fundamental frequency w, at the minimum of the pair po-
tential. The individual local errors in the Stégrmer solu-
tions shown above for coordinates, velocities, and the
heat-flow variable, are formally of order 8°, but when
combined to produce a time series of coordinates (veloci-



52 THERMOSTATTED MOLECULAR DYNAMICS: HOW TO AVOID...

ties being secondary in that they can be differenced in a
variety of ways), they give a local error of &* for the
second-order ordinary differential equations of motion.
Integrating (i.e., finite differencing) the coordinate for a
1D harmonic oscillator (fundamental frequency w,), for
example, over a finite time interval ¢ for times before
complete dephasing, wt <<24/(wy0)? gives a global er-
ror of the order w38%t /24. The Stgrmer method is usual-
ly referred to as “second-order accurate.” Should higher
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accuracy be desired for some reason—and therefore a
smaller time step needed than that suggested above—
higher-order methods (such as fourth-order accurate
Runge-Kutta) could be used, but they become computa-
tionally faster only for time steps of order ;}; of the Ein-
stein period or smaller, and also require more computer
memory than Stgrmer. In the work presented here, we
have used the Stgrmer method and checked the results by
halving the time step.
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