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Natural symmetries and regularization by means of weak parametric modulations
in the forced pendulum
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The suppression of chaos in the driven pendulum due to a small parametric modulating term is stud-
ied theoretically with Melnikov s method, and the results are compared with those from classical pertur-
bation theory. I obtained coherent results for the initial phase differences between the two modulations
for which the chaotic dynamics is regularized. It is also shown that these values are compatible with the
surviving natural symmetry under the parametric modulation.
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I. INTRODUCTION

Control of chaos by applying only small resonant para-
metric perturbations [1—4] seems to be an effective pro-
cedure due both its robustness Uis-a-Uis noise and its ap-
plicability to experimental situations. The choice of a
parametric modulation (PM) instead of, e.g., a forcing
term was previously considered from the observation that
PM's can change the stability properties of hyperbolic or
elliptic fixed points in the phase space of linear systems.
It was conjectured that this result is also valid for non-
linear systems. (See Ref. [2] for a more thorough discus-
sion. ) The validity of this method in the general case has
not been rigorously proved, although its effectiveness was
demonstrated for the case of a Duffing-Holmes (DH) os-
cillator subjected to a PM of the cubic term [2,4]. In fact,
it has been stated that the effect of a PM of a sine
term —in the example of a driven pendulum —is to favor
chaos [1]. On the contrary, in this paper I will show how
such a PM stabilizes the chaotic motion provided there is
a suitable phase difference between it and the original
forcing, and for certain values of its amplitude. These
phase differences are distinct from those found for the
DH oscillator [4]. Generally speaking, one can expect
them to depend on both the underlying conservative sys-
tem (potential shape and homoclinic orbits) and the PM.
In particular, as will be shown, they are closely related to
the natural symmetries of the system.

Taking this into account, all the evidence indicates that
the stabilization by a resonant PM at subharmonic fre-
quencies of the main driving term is a generic method for
perturbed Hamiltonian systems.

The rest of the paper is organized as follows. Section
II gives the results concerning the suppression of chaos in
the driven pendulum with a PM of the sine term by
means of the analysis of the previous results arising from
Melnikov's method (MM). In Sec. III, it is shown how an

analysis of the natural symmetries of the complete system
explains some results arising from MM. The inclusion of
some numerical examples illustrates the scope and accu-
racy of the theoretical derivations. Section IV discusses
the partial comparison (for the main resonance and sym-
metric oscillations) of the results from Secs. II and III
with those expected from classical perturbation theory.
(The details of the stability analysis of the symmetric os-
cillations are contained in an Appendix. } Finally, Sec. V
includes a summary of the results and conclusions.

II. MELNIKOV'S ANALYSIS

The MM [5,6] is perhaps the only analytical technique
currently available to provide a criterion for the oc-
currence of homoclinic chaos in a dynamical system, and
it is today considered a standard method. Although the
predictions from MM are both limited (only valid for
motions based at points sufficiently near the separatrix)
and approximate (the MM is a first-order perturbative
method}, they are of great interest due to the general
scarcity of such analytical results in the theory of chaos.
Since it has been described many times by distinct au-
thors [1,5 —9], I do not discuss it in detail here, but ana-
lyze the results previously obtained from it.

The dimensionless equation to be studied consists of a
damped, harmonically driven pendulum with a PM of the
sine term

x = —[1+g cos(Qt +8) ]sinx —5x +y cos(cot),

where x is the angular coordinate and Q, g, and 8 are the
normalized frequency, amplitude, and initial phase, re-
spectively, of the PM (g «1) which has a suppressory
effect on the chaotic dynamics of the remaining system
(5,y « 1) [10]. 5, y, and co are the usual normalized pa-
rameters: damping coefficient, driving term amplitude,
and frequency, respectively. The physical meaning of
such a PM is clear: the simple pendulum is mounted on a
vertically oscillating point of suspension (see, e.g., [11]).

The application of MM to Eq. (1) gives us [1]

'Corresponding address. M (to) = —C+ A cos(coto)+8 sin(Qto+8), (2)
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with

C =85,
A =2my sech(n. co/2),

B =2mgQ csch(n. Q/2),
(3)

A —C:—d+0, (4)

where the equals sign corresponds to the case of tangency
between the stable and unstable manifolds. If we now let
the PM act on the system (gAO) such that B ~d, i.e.,
A —B —C ~0, this relationship represents a necessary
condition for M*(to} to always have the same sign,
specifically M*(to) & 0, which is

with

y sinh( n.Q/2)
Q2 cosh(~co/2)

For general Q and 8 (0+ 8~ 2'), we shall see that this
condition is not sufhcient to assure the negativity of
M*(to). In order to obtain such a sufficient condition,
we shall first need five lemmas. For the sake of clarity,
we shall treat separately the cases M (to).

A. Motion near the upper homoclinic orbit

Lemma I. Let Q/~ be irrational. Then there is some
t~ such A cos(cot~)+B sin(Qt~+8) ) A B. —

Lemma II. Let qQ=pco for some positive integers p
and q. Then a to exists such that cos(toto )= —sin(Qto~ +8)=1 if and only if

2m +3/2 —8/m
2n

(7)

for some integers m and n.
Remarks. Note that a requirement for Eq. (7) to be

where the positive (negative) sign refers to the top (bot-
tom) homoclinic orbit (of the underlying conservative
system):

xo(t)=+(4arctane' —m), xo(t)=+2secht .

As is well known [6], the Melnikov function (2) mea-
sures the distance between the perturbed stable and un-
stable inanifolds in the Poincare section at to. If M*(to }
has a simple zero, then a homoclinic bifurcation occurs,
signifying the possibility of chaotic behavior. Observe
that the PM introduces an asymmetry between the homo-
clinic orbit with xo &0 and that with xo &0. As wi11 be
demonstrated below, this asymmetry gives rise to turbo dis-
tinct sets of phase differences between the cosines in (1)
that are suitable for the regularization of the dynamics,
corresponding to (the orbits based near) the two homo-
clinic trajectories.

Suppose that for /=0 we are in a chaotic state for
which the associated Melnikov function Mo (to)= —C+ A cos(ceto ) has simple zeros, i.e.,

fulfilled for some integers m and n is 8=m &~/~2, rn,
integers. For the particular case (co=Q, 8=0) con-
sidered in Ref. [1],lemma II implies that it is not possible
to find integers m, n fulfilling Eq. (7). This permits one to
explain why in that reference it is reported that the PM
favors chaos instead of its suppression.

Lemma III. Let f (t;p, q) =[1—cos(pt/q)]/(1 —cost),
t real, p and q integers. Then f is finite if and only if
q = l. One also has that 0 +f (t;p, 1) p .

It is obvious that for Eq. (5) to also be a sufficient con-
dition for M+(to) to be negative for all to, one must have

B. Motion near the lower homoclinic orbit

For this case we need two additional lemmas.
Lemma IV. Let 0/co be irrational. Then there is some

t~ such that B sin(Qt~+8) —A cos(cot&) ) A B. —
Lemma V. Let qQ=pco for some positive integers p

and q. Then a to exists such that cos(toto )

=sin(Qto +8)= —1 if and only if

2m +3/2 —8/m'

q 2n+1
for some integers m and n. The same Remarks hold as
for Lemma II.

In this case, for Eq. (5) to be also a sufficient condition
for M (to) to be negative for all to, one must have

A —B ~ B sin(Qto+ 8)—A cos(toto ) .

We then look for the values of co, Q, and 8 permitting Eq.
(12) to be fulfilled for all to From Lemm. a IV, the reso-
nance condition is again required: pco=qQ. With that,
Lemma V gives a condition for Eq. (12}to be verified for
a infinity of to values. Let us suppose that p, q, and 0
satisfy Eq. (11). It is then possible to rewrite Eq. (12) as

A ~ 1 —cos(pr/q)
B 1 —cos~

(13)

where r =—coro —(2n + 1)~. Lastly, with q = 1, Lemma III
provides the condition (10) for Eq. (13) to be fulfilled for
all ~.

A —B ~ A cos(toto)+B sin(Qto+8) .

We now look for the values of 0, ~, and 0 permitting Eq.
(8) to be fulfilled for all to Fro.m Lemma I, a resonance
condition is required: pco=qQ. In such a situation,
Lemma II provides a condition for Eq. (8) to be satisfied
for a infinity of to values. Thus, let us suppose that p, q,
and 8 verify Eq. (7). One can then rewrite Eq. (8) in the
form

A ~ 1 —cos(pt/q)
B 1 —cost

with t =ceto —2n m. Finally, if q = 1, Lemma III provides
a condition for Eq. (9) to be fulfilled for all t:

( R
2

P
with R given by (6).
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The proofs of the lemmas are quite straightforward, so
they will not be included here.

C. Suppression theorem (ST)

1 — R,C
(14)

msx
p

Remarks. First, we can test the ST theoretically by
considering the limiting case 5=0 (no damping). From
Lemma II (Lemma V) and Eq. (14), one has Q=co,
8=3m/2 (8=m/2), and g=R as a sufficient and neces-
sary condition for eliminating stochasticity. [But this is
the obvious result arising from a direct analysis of Eq. (2)
with 5=0, i e , ha. v.ing M*(to)=0 for all to.] Second, for
a given set of parameters satisfying the ST hypothesis, as
the resonance order p is increased, the allowed interval
]g;„,g,„] for suppression shrinks quickly (as 1/p ). In
Fig. 1 is plotted the width hg'(co)=g, „—g;„versus co

for 6, y =const, showing the existence of a minimum fre-
quency for each resonance. Note that the minimum cu;„
is lower as the resonance order is increased. The asymp-
totic behavior b.g(co —+0, ac ) = Oc means that chaotic
motion is not possible in such limits. Third, the ST im-
poses having 8= 3m /2 as the unique value (for all the res-
onances) in order to tame chaos when we consider orbits
based near the upper homoclinic orbit. This is a conse-
quence of Lemma II for q =1. The striking result is that
one obtains different suppressory 0 values for distinct res-

3.0—

2.0—

1.0—

(c)
0.0—

0.0 0.5
I

'
I

1.0 1.5 2.0 2.5

FIG. 1. Function hg(co)=g, „—g;„vs co for 5=const,
y=const, and Q=pco. (a) p =1. (b) p =2. (c) p =3. g' and co

are dimensionless variables.

In brief, we have the fo11owing theorem: Let Q=p~, p
an integer, such that, for M+(to) [M (to)],
p =(2m +3/2 —8/m)/(2n) [p =(2m +3/2 —8/m)/(2. n
+ 1)] is satisfied for some integers m and n. Then
M*(to ) always has the same sign, i.e., M +(to) —(0, if and
only if the following condition is fulfilled:

dmin + 4 —kmax &

III. NATURAL SYMMETRIES

The damped, harmonically forced pendulum (/=0)
has a natural symmetry [12,13] with respect to the trans-
formation (x~ x, t +—t+—n/co), i.e., if [x(t),x(t)] is a
solution of Eq. (1) with g =0, then so is
[—x(t++/co), x(t+a. /—co)]. This means that nonsym-
metric stationary solutions always occur in pairs. As was
mentioned in Sec. II, for /%0 and arbitrary 8, this sym-
metry is generally broken. Note that the reason for that
breaking is

cos(Qt +8)W cos[Q(t +~/co)+8], (15)

for arbitrary co, Q, and 0. %'ith a resonance condition
Q =pro, the survival of the above symmetry implies

cos(p cot +8)= ( —1) cos(p cot +8) . (16)

It is clear that this is only the case for p an even integer.
For p an odd integer, we have the new transformation
(x~ x, t~t+vr—lco, 8~8+7r), i e , if [x(.t).,x(t)] is a
solution for a value 0, then so is
[ —x(t+a/co), —x(t +n /c)o] for 8+rr. Thus, this is the
origin of the differences between the corresponding (at
the same resonance order) permitted 8 values (from the
ST) for the two homoclinic orbits (see the third remark to
ST). Similar results have been found for the DH oscilla-
tor with a parametric modulation of the cubic term [14].

Computer simulations of the system described by Eq.
(1) showed overall good agreement between the numerical
results and the theoretical predictions, even when the ini-
tial conditions and the perturbation amplitudes do not fit
reasonably the MM requirements [6,8,9]. In Fig. 2 is
plotted an illustrative example for the limiting Hamil-
tonian case (5=0). The initial conditions were
(xo =O, xo) and (xo =0, —xo) for the cases (a), (b), (c) and
(d), (e), (f), respectively. Figure 3 shows an example in a
situation clearly outside the perturbative requirements.
For the set of parameters employed (see the caption to
Fig. 3), the prediction of the ST was
(g,„+g;„)/2=0.73978. The initial conditions were
(xo =O, xo) and (xo =0, —xc) for the cases (a), (b) and (c),
(d), respectively. Gbserve the symmetry transformation
between the chaotic orbits of cases (a) and (c), and be-
tween the periodic attractors of cases (b) and (d). The
power spectra corresponding to the velocity series of the
cases displayed in Figs. 3(a) and 3(b) is presented in Figs.
4(a) and 4(b), respectively.

onances (8=m. /2 for Q=mco, m an odd integer, and
8=3m. /2 for Q = neo, n an even integer) in the case of tra-
jectories based near the lower homocIinic orbit. This
arises from Lemma V for q =1. Observe that since dis-
tinct 0 values imply different initial conditions for the
whole system (1), the above results give us information
about the size and symmetry of the basins of attraction of
the regularized orbits. In fact, as we will see in Sec. III,
the permitted 8 values are compatible with the natural
symmetries of the system (1).
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IV. SYMMETRIC OSCILLATING STATES

As was pointed out by Kautz and Macfarlane [15],the
type of chaos —in the example of a rf-biased Josephson
junction —for which the onset is accurately predicted by
the MM is described as phase-locked chaos [16—19].
This chaotic behavior is of a weak type (low positive
Lyapunov exponent), the displacement maintains syn-
chrony with the forcing, and its noise spectrum ap-
proaches zero at low frequencies. Thus, one might ob-
serve the suppression of this so-called "chaos without
diffusion" when the requirements of the ST are satisfied.
The simplest regular motion one can expect to find in this

way would be phase-locked symmetric oscillations, possi-
bly resulting from the reverse of the route: symmetric
oscillations —+symmetry breaking~period doubling~
phase-locked chaos [17,20,21]. From classical perturba-
tion theory, one can expect that the suitable 8 values —in
order to obtain symmetric oscillations —will be very
close to those predicted from the ST. For the purpose of
simplicity, only the case of the main resonance will be
considered here. Observe that if the normalized frequen-
cy co=0 (1 (i.e., if the natural frequency of the unper-
turbed pendulum is greater than that of the two modula-
tions), there will be some oscillation amplitude for which
the period of the conservative system matches the com-
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FIG. 2. Phase-space portraits for the parameters 5=0, y=0.01, co=1.0. Cases (a), (d) correspond to /=0. For the remaining
cases g'=(g;„+g,„)/2 and 8=3m/2 [(b),(e)], 8=m/2 [(c),(f)]. x and x are dimensionless variables.
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by comparing the frequency of the free oscillations im-

plied by (20) for y =5=/=0,
2.0—

cof, =+2J~(a)/a, (21)
1.6—

with the exact result (in which a is the amplitude of the
oscillation)

1.2—

0.8—

rof, = [(2/m. )II (sin —,'a) ] (22)
0.4—

where K is the complete elliptic integral of the first kind.
In Ref. [21] Miles reported that the error in cof, is less
than 5% for a & 2.40 (rof, )cof, ), to which range I shall
limit most of the following. Now with /&0, as a&=3.85
is the smallest zero of J„Eq.(18) implies

0.0
0.0 0.5 1.0 1.5 2.0 2.5

sin(/+8) =0 . (23)

By substituting cosP and sing from Eqs. (19) and (20), re-
spectively, one obtains

mo —2J, (a)
tg 0=+

5
(24)

From Eq. (20) we have 2J, ( a ) —ace —y. Thus, if
6o;co-y, we find

3n /2 —y, for x (t =0) & 0,
n /2 y, fo—r x ( t = 0) & 0.

Jo &0,
5 ) [J2 (J2 2)2]1/2/

g& (a/J, ) [(Jo—co /4)2+co 5 /4]'~

(26)

(27)

(28)

The condition (26) implies a&2.40 (the smallest zero
of Jo), in concordance with the aforementioned assump-
tion. Conditions (27) and (28) provide information about
the stability domains in the parameter space. Here, the
principal interest is centered on the comparison with the
results arising from the ST, so I will mainly concentrate
on Eq. (28). In Fig. 5 is plotted
—= (a/J, ) [(Jo—co /4) +co 5 /4]'~ versus a for 5=0.06
and several co values. One sees that the behavior is in
agreement with b,g(co) increasing as co diminishes from
co;„(see the second Remark to ST and Fig. 1). Also, for
a g' value above the minimum of a given co curve, there
will be a forbidden interval of a values for stability, as is
observed in numerical experiments. Figure 6 shows plots
of g'', „versus ro for several a values. These a curves
have a minimum such that co;„(a) decreases as a in-
creases. Observe that the g range for stability increases
wit a, i.e., while ro;„(a) decreases. This is coherent with
the decrease of the interval of ro values for which b,g(co)

Observe that exact agreement with the requirements from
the ST is achieved in the limiting case 5=0, without ad-
ditional restrictions on cx and cu.

Going one step further, one can analyze the stability of
the solutions +a sin(cot —P). As is shown in the Appen-
dix, such an analysis leads to a generalized Mathieu's
equation. Then the application of Floquet theory gives
us (see the Appendix for details)

FICx. 5. Function g',„(see text) vs a for 5 =0.06 and different
co values. (a) m=0. 6. (b) co=0.8. (c) co=1.0. (d) co=1.2. (e)
co = 1.4. P and a are dimensionless variables.

is small (see Fig. 1 and the second Remark to ST) as ro;„
diminishes.

V. CGNCI. USIQNS

2.5—

2.0—

1.5—

1.0—

0.5—

0.0
0.6 0.8 1.0 1.2 1.4

FIG. 6. Function g', „(see text) vs co for 5=0.06 and some a
values. (a) a=2.4. (b) a=2.2. (c) a=2.0. (d) a=1.8. (e)
a = l.6. g' and co are dimensionless variables.

In this paper I have studied the suppression of chaos in
a damped, harmonically forced pendulum by application
of a PM of the sine term. Analytical estimates of the
ranges of parameters for stabilization were found by
means of the analysis of the results arising from MM. It
was shown that some of those analytical results have
their explanation in the natural symmetries of the whole
system, and hence that the study of such symmetries (if
any) could provide valuable information about the
suppression of chaos in more complex systems. It was
also demonstrated that the requirements for stability of
symmetric oscillations are coherent with the predictions
from MM. This means that MM is not only a powerful
tool for predicting the suppression of chaos but also for
obtaining key information about possible regularized
motion, in order to discriminate among the possible ones
based at a given initial condition.
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APPENDIX:
STABILITY OF SYMMETRIC OSCILLATIONS

In Sec. IV solutions of Eq. (1) of the form

x =+a sin(cot —
(t ) (A 1)

P c'+POP O=0, (A10)

P", +PcP, = 2r—lPc —(P, +2q, cosr+2q2 cos2r)PO, .. . .

Substituting (A8) and (A9) into (A7) and equating terms
of like order in q, one finds

were investigated, with a, co, and P related to y, 5, g, and
8 by Eqs. (18)—(20), (24). Such solutions will be observed
only if they are stable, i.e., only if any small perturbation
of X is damped. To this end one can consider [22]

X =X, +Re[e"'P(r)], (A2)

where X, is the symmetric solution to be tested,
cot ——P, Re means the real part of, r is a small parame-

ter, the real part of which must be nonpositive for stabili-
ty, and P (~P~ &&1) is periodic in v.. Substituting (A2)
into (1), linearizing in P, approximating X, by (Al),
neglecting the third and higher harmonics [as is con-
sistent with (Al)] in the Fourier expansion of cos(a sin~),
taking into account (21), and introducing

pc= n

Po = 3„cosn ~+B„sinn ~,
(A12)

(A13)

where n can take the values 0, 1, 1/2. Substituting (A12)
and (A13) into (Al 1), one obtains

P", +n P, = 2'—n (B„C„—A„S„)—P&(A„C„+B„S„)
—

q ) [ A„(C„,+C„+,)+B„(S„+,+S„,) ]
—q2[ A„(C„2+C„+q)

(Al 1)

From the Floquet theory, it is clear that P may be of
period 2m or 4n(at .the present order of perturbation) and
therefore

ri—= (r +5/2)/to,
P—:[r +5r+ Jc(a)]/co

q, =gJ, (a)/(aco ),
q, =J,(a)/co',

(A3)

(A4)

(A5)

(A6)

+B„(S„+2+S„2)], (A14)

where C„:—cosn~ and S„—=sinn~. The requirement that
P

&
be periodic implies that the coefficients of S„and C„

in (A14) must vanish (to prevent the secular growth to
P, ); requiring the determinant of the resulting homo-
geneous equations in 3„and B„ to vanish, one obtains

one obtains p~ =5.~~2q~+~. tqp (A15)

P=P +P +P +
p=p+p+p+ '' (A9)

where P„,P„=O(q"), q& qz, q=O(q), q =max(q&, q2).

P"+2qP'+(p+2q, cosr+2qz cos2r)P =0 . (A7)

Observe that (A7) reduces to Mathieu's equation if p and
either q, or q2 =O. Now, taking into account the
behavior of the perturbation solution of that equation
near one of its stability boundaries in a P, q plane [23],
one posits

r +6r+I.„=O,
where

L„= J(oa) co (n +—P)) .

(A16}

(A17)

The necessary and sufficient conditions for stability then
are L„)0 for n =0, 1, 1/2, and one obtains directly Eqs.
(26)—(28).

where 5 „ is the Kronecker delta. Combining (A4),
(A12) and (A15) in (A9} and neglecting O(q ), one ob-
tains
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