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Estimation of mutual information using kernel density estimators
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Mutual information is useful for investigating the dependence between two experimental time series.
It is often used to establish an appropriate time delay in phase-portrait reconstruction from time-series
data. A histogram based approach has been used so far to estimate the probabilities. It is shown here
that kern l density estimation of the probability density functions needed in estimating the average mu-

tual information across two coordinates can be more effective than the histogram method of Fraser and
Swinney [Phys. Rev. A 33, 1134 (1986)].

PACS number(s): 05.45.+b, 02.50.Rj

I. INTRODUCTION

Mutual information [1] provides a general measure of
dependence between two variables. Consequently, it is an
important statistic when analyzing experimental time
series from nonlinear systems. The two variables of in-
terest may be lagged copies of the scalar time series of the
same observable or two coordinates in a multivariate time
series. Let us denote the time series of the two variables
as s&, s2, . . . , s, , , s„, and q&, q2, . . . , qj, , q„.
where n is the record length and the sampling rate Bt is
fixed. The mutual information between observations s;
and q is defined in bits as

P, (s;,q)I s, =lo$|q i &qjg2p()p()
where P, q(s;, q ) is the joint probability density of s and q
evaluated at (s;,q ) and P, (s; ) and P (qj ) are the margin-
al probability densities of s and q evaluated at s,. and q.
respectively.

If s and q are independent, their joint probability densi-
ty P, q(s;, qj ) will simply be the product of their marginal
probability densities P, (s, ) and P (q ) and I, (s, , q. ) is
zero. On the other hand, if s; is completely determined
by q, then I, (s;,q ) will tend to infinity. The mutual in-
formation measure is symmetric, i.e., I, q (s;,q )

=Iq, (qj, s; ). Information theoretic and entropy based in-
terpretations of mutual information exist [1].

Where the overall dependence between the two series is
of interest, one can define (analogously to linear correla-
tion) the auerage mutual information I, as

P, (s, ,q)~ ""'""" P(s)P ( )

This measure is useful for identifying components in mul-
tivariate sampling that seem to be related or independent.
A particular recent use [2—4] is the choice of an ap-
propriate delay parameter while reconstructing a state
space from an experimental time series.

There has been growing interest in state space recon-
struction from time series data in fields as diverse as hy-

drology [5], hydrodynamics [6], epidemiology [7], and
chemistry [8]. The state space is constructed by
developing a d-dimensional embedding in terms of
a vector time series x(t) using time delays
x(t)=[x„x, „x, 2„.. . , x, (d, i,]. For short and
noisy data the quality of the reconstruction depends on
the value chosen for r [8]. If r is too small, the recon-
structed attractor is restricted to the diagonal of the
reconstruction space because x, and x, will be nearly
the same. On the other hand, if ~ is chosen too large, and
the system is chaotic, then all information to properly
reconstruct the attractor may be lost, since neighboring
trajectories have diverged and averaging in time and/or
space is no longer useful. Consequently, a good choice of
~ is one where the coordinates are first nearly indepen-
dent.

Fraser and Swinney [1] proposed the use of the first
minimum of the average mutual information (I„„)ast' t —7

a criterion for choosing ~. This choice may be better
than choosing r using the autocorrelation function (ACF)
as a criteria on [9—11] since the ACF only measures the
linear dependence, while I„„measures the nonlineart' t —7

dependence of two variables. However, neither criterion
always gives the best possible result [12,13] in a given sit-
uation. Nevertheless, I, q

is useful for investigating the
dependence between coordinates and also for identifying
other variables that may be useful for attractor recon-
struction.

Fraser and Swinney [1] used a multivariate histogram
for the estimation of the probabilities P ( ) needed for es-
timating the average mutual information I„„.Here

t —7

we propose the use of kernel density estimators instead of
histograms. Our investigations show that this is particu-
larly advantageous with small data sets. A brief overview
of kernel density estimation as used here follows. Exam-
ples that illustrate the improvement possible using these
estimators are then provided.

II. KERNEL DENSITY ESTIMATION OF I„

Kernel density estimation (KDE) is a nonparametric
method for estimating probability densities. We learn
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from the statistical literature [14—16] that kernel density
estimates can be superior to the histogram in terms of (i)
a better mean square error rate of convergence of the esti-
mate to the underlying density, (ii) an insensitivity to the
choice of origin, and (iii) the ability to specify more so-
phisticated window shapes than the rectangular window
for "binning" or frequency counting. The latter can be
exploited in multivariate settings for significantly im-
proved density estimates.

Given an origin yo and a bin width h, the bins of the
histogram are defined through the hypercubes formed by
intervals [yo+mh, yo+(m+1)h] for integers M. The
histogram is defined by

P(y)=(No. of y; in same bin as y)/(nh ) . (3)

While the histogram is easy to comprehend, it has
several drawbacks. It is discontinuous and changes with
the choice of the origin and bin width. Silverman [14] il-
lustrates these problems graphically. Histogram con-
struction is such a routine process that many fail to real-
ize that even when using identical bin widths, different
origin choices may change the histograms significantly.
Clearly, it may be desirable to choose h differently by
coordinate in the multivariate setting. In situations
where the underlying data lie essentially in a subspace of
dimension smaller than d (because some of the coordi-
nates are strongly dependent), it may be desirable to con-
struct histograms with orientation dictated by such a sub-
space.

Fraser and Swinney's [1] algorithm is based on an
adaptive partitioning of the data such that each bin con-
structed has a nearly uniform distribution of points. Uni-
formity of points in each bin is checked using a y test at
a specified level of significance. If the test for uniformity
fails, that bin is partitioned along a coordinate. Conse-
quently, the size of the bin used can vary over the state
space. This adaptive binning strategy is quite sophisticat-
ed for histogram estimation.

One can free the histogram of sensitivity to the choice
of origin rather easily. Define a "bin" (or hypercube) of
width h centered at the point of estimate y. This leads to
a moving window rather than a fixed window estimator.
Now one can still invoke the definition in (3) for a valid
density estimate. The purpose of "binning" is to develop
a "local" estimate (i.e., in the neighborhood of y) of the
relative frequencies of events. There is no formal reason
to stay with hypercubes as bins. One could use other
shapes that still lead to a valid estimate of the probability
density. When a generalized weight or kernel function is
used the resulting estimator is called a kernel density esti-
mator, given [14] as

1P(y)= —g K(~),n,.

where

(y —y;) S '(y —y;)9—
h2

K ( u ) is a multivariate kernel function,
y=[y„y2, . . . , yd] is the d-dimensional random vector

whose density is being estimated, y; = [y„.,y2,. yd, ],
i =1—n are the n sample vectors, h is the kernel band-
width, and S is the covariance matrix on the y, The ker-
nel function K(u) is required to be a valid probability
density function. In this case we use the multivariate
Gaussian probability density function for K(u), which is
given as

K (u) = „„,exp( —u /2) .1

(2m. )"~ h "det(S)'~

4
(4 +2} n

—1/(d +4) (7)

The application of this algorithm to the estimation of
I proceeds as follows.

(i) For a given r, form the n, data pairs (x„x, ,); and
the series x, ; and x, ;, i = 1, . . . , n, .

(ii) For i = 1, . . . , n„estimate the probabilities
P„(x, , ), P„(x. .. ), and P „((x„x, ,), } at the

sample point, using Eqs. (4)—(7), with appropriate values
of d and sample estimates of S (x, ), S(x, ,), and
S(x„x, ), respectively.

(iii) Form the estimate I„„asin (2).

An evaluation of K(u) represents the weight given to an
observation y;, which is based on the distance between y
and y, . The distance used here is the Euclidean distance
modified to recognize the covariance in the coordinates.
We can see from (4) that the kernel estimator is a local
weighted average of the relative frequency of observa-
tions in the neighborhood of the point of estimate. The
kernel function K( ) prescribes the relative weights and
H prescribes the range of data values over which the
average is computed. The role of the covariance matrix S
is to recognize possible linear dependence among the
coordinates. Its use allows one to appropriately orient
the resulting kernel function and vary the bin width in
proportion to the scale of variation in the rotated coordi-
nates. Singular value decomposition is used to evaluate
the inverse in (5) and to recognize rank deficiency in S. It
may sometimes be desirable (if computational resources
permit) to use a local (based on, say, k nearest neighbors
of y) covariance matrix Si(y). In this work S was based
on the full sample available.

There are many methods for choosing the bandwidth
h. Some of the best ones in the statistical literature are
due to Sheather and Jones [17], for d= 1, and Wand and
Jones [18],for d=2. The computational burden associat-
ed with these and other data driven, automatic band-
width selectors can be formidable. Here we made an ex-
pedient choice of the bandwidth as the one that mini-
mizes the mean integrated square error in P(y) if the un-
derlying distribution is assumed to be multivariate Gauss-
ian. While this is not a theoretically satisfying choice, its
performance in our tests was comparable and the compu-
tation time was orders of magnitude lower than the more
rigorous choices. The "optimal" Gaussian bandwidth
corresponding to the kernel choice in (6) is given by
Silverman [14] as

1/(d +4)
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III. DATA SETS USED FOR COMPARISON

In order to demonstrate the application of the KDE
for the estimation of I„„and the subsequent choice oft' t —T

a useful delay time ~, four simulated time series are
chosen. They are (1) 400 data points from the sine wave
x, =sin(0. 02m. t), t =1, . . . , 400; 500 data points from an
autoregressive (AR) model

x, =px, ~++1 p—N(0, 1) (where p=0. 85); (8)

dxldt = —y —z,
dy Idt =x +0.15y,

dzldt =0.2z(x —10) .

(10)

I is also estimated using the histogram method of
Fraser and Swinney [1] for a comparison with the KDE
approach. We tried three versions of the Fraser and
Swinney algorithm. They are INTER (1986), MUTINFO (19
June 1992), and MREDUND (10 July 1992). The results of
MREDUND (called FSH here) seem to be better than the
rest. Therefore, we present comparative results of the
KDE and FSH only.

IV. RESULTS AND DISCUSSION

The average mutual information is calculated up to lag
100 for each of the data sets using both the KDE and
FSH. Of primary interest is the success of each algo-
rithm in computing I and its impact on the subse-

t —7

quent choice of a first local minimum of I with
t —

7

respect to ~. We find that this lag ~' can vary quite a bit
across methods, with the choice from FSH often being
poor. For selected cases, it was possible to analytically

(2) 4096 data points from the Lorenz attractor [19] for
the variable x with samples every 0.05 s (12 parts per or-
bit) given by the system of three differential equations

dx ldt =16.0(y —x),
dy Idt =x (45.92—z) —y,
dz/dt =xy (

—4.0z);
and (3) 2048 data points from the Rossler attractor [20]
for the variable x given by the system of three ordinary
differential equations

compute the requisite probabilities and use them to
derive the expected sample estimates of I „.In theset' t —T

cases, we found that the KDEs were numerically quite
close to those from the analytical expressions. We do not
fully understand why the FSH numbers were significantly
different. No simple scaling factors were able to explain
the difFerence. These results are now itemized.

(i) Figure 1 shows the results for the sine data set. The
ACF of this series, cos(0.02m.t), has a minimum ( —1) at
lag 50 and is zero at lags 25 and 75. The I„„estimat-t' t —7

ed from the KDE has a minimum at lags 25 and 75 and
at lag 50, I„„ is infinite (which is to be expected from

the sine data with a period of 50). The lags of maximumI„„arethe same for the KDE and FSH. However,

the estimated ~* value for FSH is 2, which is obviously
not the correct one (25) that is indeed obtained using the
KDE. The "rough'* character of the FSH estimates is
disturbing. Often investigators [2] find it necessary to
smooth the resulting I„„(~)with respect to ~ to deter-

mine an appropriate ~'. While this is clearly necessary
given the FSH estimate, it can lead to a choice of ~' that
is an artifact of the smoothing method. The KDE esti-
mates do not suffer from these problems because the
smoothing is done at the density estimation stage. The
numerical estimates ofI„at lags 25 and 75 from the

KDE are 43.7 and 35.7. These compare favorably with
the analytical estimates at these lags, which are 48.0 and
42.0. FSH reports 3.2 and 4.2.

(ii) The results for the AR data are shown in Fig. 2.
Note that for an AR Inodel the joint and marginal densi-
ties P„„(), P„( ), and P„( ) are all Gaussians and

hence I„„canbe calculated directly by fitting Gauss-

ian distributions to the data. From Fig. 2 we observe
that there is little difference in the analytical estimates
and the KDEs of I „,while FSH once again

significantly underestimates. The lag ~'would be selected
as 11 from the KDE and from the analytical expression,
while it would be 3 from FSH.

(iii) For the Lorenz attractor and Rossler attractor (see
Figs. 3 and 4), both the KDE and FSH give similar values
of z'. However, the numerical values of I „are oncet'
again quite different. The sample sizes used for these
data sets were larger than for the first two. Increasing
the sample size with the first two data sets did not im-
prove FSH performance appreciably.
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FIG. 1. I„„ from the KDE (~ =25) and FSH (v*=2) fort'
sin(0. 02m t).

FIG. 2. I„„ from the KDE (~*=11),fitted Gaussian den-

sities (~*=11),and FSH (~ =3) for the AR data.
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FIG. 3. I„„ from the KDE (~ =3) and FSH (v*=2) for

Lorenz data.

FIG. 4. I„„ from the KDE (w =5) and FSH (~ =5) for"r'"t —r
Rossler data.

Given the results here, it is clear that the KDE pro-
vides an attractive alternative to the FSH method for es-
timating the average sample mutual information. The
implications for coordinate selection in reconstructing a
phase space are also clear. We were frankly surprised to
see the large di6'erence between the FSH estimate and the
KDEs (or analytically based estimates) for our test cases.
FSH is a rather clever adaptive histogram estimation
strategy, whereas the KDE we used is rather naive (e.g. ,
no attempts are made to optimize the bandwidth using a
data driven procedure). Extensions to the estimation of
marginal and total mutual information for multiple coor-
dinates follow directly. An adaptive kernel density es-
timation strategy for the multivariate probability density
estimation has been developed by Lail and Bosworth [21].

They partition the data using a k-d tree [22] and then es-
timate local covariance matrices Sk for each partition k
rather than using a global covariance matrix in (6). This
can easily be adapted for the estimation of mutual infor-
mation and would provide another alternative within the
nonparametric framework.
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