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Multiple responses at the boundaries of the vulnerable window in the Belousov-Zhabotinsky reaction
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We study vulnerability in the Belousov-Zhabotinsky reaction using experimental and numerical
methods. We show that the width of the vulnerable window (VW) decreases with increasing velocity of
wave propagation. A detailed study of the structure of the VW revealed a new efFect: the development
of multiple responses to a single premature stimulus; a single premature stimulation in a homogeneous
one-dimensional medium generates two or three propagating waves. We locate this efFect in the para-
metric space and discuss its mechanism.

PACS number{s): 05.70.Ln, 82.20.Mj

I. INTRODUCTION

The vulnerability of an excitable medium is a
phenomenon that is usua11y connected with the dynamics
of cardiac tissue after a single premature stimulation of
the wake of a propagating wave; such a stimulation may
result in cardiac arrhythmia [1—3]. The simplest system
for studying vulnerability is a one-dimensional fiber. In a
fiber an indication of cardiac arrhythmia is the oc-
currence of unidirectional blocking of propagation, in
other words, a wave propagates in one direction but is
blocked in the other. Such unidirectional blocks are usu-
ally considered to be a first step in the development of
reentrant cardiac arrhythmia [1—4] (see [5] for more
references).

Recently vulnerability has been observed in the
Belousov-Zhabotinsky (BZ) reaction [6—9]. In addition
to the fact that the study of vulnerability in a chemica11y
active medium is itself of interest, the resemblance of
wave patterns in the BZ reaction and in the heart allows
one to expect the dynamics in the two systems to be qual-
itatively similar [9]. The results obtained in the BZ reac-
tion can be used for an interpretation of the dynamics in
the heart, where realistic experiments are laborious and
dificult to carry out.

Previous theoretical studies of the vulnerability were
carried out in cellular automata models [2,10] and in sim-

ple two-variable models of excitable systems [5,11,12]. It
was shown that characteristic features of the
phenomenon can be well understood in one-dimensional
(1D) systems [10,5,13]. In 1D systems premature stimu-
lation can cause three possible wave patterns: bidirec-
tional, unidirectional, and decaying (blocked) propaga-
tion [5]. The region of unidirectional propagation, where
in response to a local disturbance pulse propagates in one
direction and is blocked in the other, is usually called the
"vulnerable window" (VW) [6]. The VW corresponds to
the region where vortices originate in 2D and 3D sys-
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tems. Theoretical estimations [3) predict that the width
of the VW is inversely proportional to the wave propaga-
tion velocity.

We have performed a detailed study of vulnerability in
the BZ reaction using experimental methods and comput-
er simulations. We study the structure of the VW and
show that its width depends on the wave propagation ve-

locity in accordance with theoretical estimations [3].
Computations with much better precision made in the vi-

cinity of the VW boundaries revealed the following effect:
the existence of a region of wave splitting, where a single
premature stimulation initiates several (two or three)
propagating waves. The mechanism of the phenomenon,
based on the transition from unstable damped waves to
stable ones, is discussed.

II. SIMULATION AND EXPERIMENTAL METHODS

Computer simulations were performed in a two-
variable model of the ferroin-catalyzed BZ reaction
developed by Rovinsky and Zhabotinsky [14] with rate
constants estimated in Ref. [15]. The model has been
verified experimentally to adequately simulate spatiotem-
poral phenomena in the BZ reaction [15—17]. According
to the model, the dynamics in a perfectly stirred vessel is
described by the differential equations for bromous acid
(x) and ferriin (z) [14,15]

X 1 x(1—x )—2qa +PZ X P
dv E 1 —z x+p
dz z=x a
d'T 1 z
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=G(x,z )+5hp,dz =
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Here F (x,z) and G (x,z) are the right-hand sides of Eqs.
(1); r; are spatial coordinates, p; are scaled spatial coordi-
nates; 6 is the Laplacian operator with respect to the
coordinates p; 6=D, /D„ is the ratio of the difFusion
coefficients. We assume D =D, =2X10 cm s

The computations were carried out in a one-
dimensional array of 3000 or 12000 elements using the
Crank-Nicholson (CN) method of integration and
Neumann's ("no fiux") boundary conditions. The CN
scheme allowed us to use a small space step, h =0.002
mm. A time step h, =0.01 s was chosen so that the
zero-dimensional system (1) could be calculated stably.
To study wave splitting, the array length was increased to
12000 elements, and the space and time steps were re-
duced to 0.0005 mm and 0.001 s, respectively. A further
decrease in h„and h, did not improve the accuracy of
calculations by more than a few percent, i.e., the space
and time parameters measured vary by just a few percent
in the 6ner grid.

The simulations were performed in two steps. At the
beginning two or three 180 s period pulses were initiated
near the left wall and passed through the medium. The
next pulse was considered to be a stationary propagating
reference pulse. During the second step, a stimulation
was applied to the wave of a reference pulse. The simula-
tion consisted of keeping the activator x variable on the
value of 0.5 [see Eqs. (1)] for 2 s in the region of 0.2 mm
width. these parameters correspond to the stimulation
duration and the electrode diameter used in the experi-
ments [6,9].

C = [Fe(phen)3+ ]+[Fe(phen) 3+],
A = [NaBr03], B= [CH2(COOH)2],

hp is an acidity function, q =0.6 is a stoichiometric fac-
tor, and k; are rate constants.

The calculations were carried out for the BZ reaction
of the following composition: A =0.25M, B=0.25M,
and C =0.006 25M. To investigate the dependence of the
parameters studied on the velocity of waves, hp was
varied from O. l to 0.5. The composition mimics the BZ
reaction recipe used for the experimental study of similar
processes [6,9]. The rate constants k; were rescaled to
18 C using the temperature dependences described in
Ref. [15]:

k =7 9M s ' k =1350M 's

k =7.94X10 M s ' k =1.19M s

Eg =1.59X10 M s '
7 k,3=7.94X10 s

To study spatiotemporal effects, we added diffusion terms
to Eqs. (1):

=F(x,z)+ b,zx,dx

The standard technique was used for the natural exper-
iments [6,9]: a solution of sodium bromate (0.25M),
malonic acid (0.25M), ferroin (6.25 mM), and sulfuric
acid was carefully stirred and poured into an 8 cm diame-
ter Petri dish to form a layer 0.8 mm thick. After a delay
of several minutes (to allow for bromomalonic acid syn-
thesis and equilibrium) the medium was ready for the ex-
periments. To investigate the dependence of the parame-
ters studied on the velocity of waves, the concentration of
sulfuric acid was varied from 0.1M to 0.5M.

To study the effect of vulnerability experimentally we
used a protocol similar to that used in the computer
simulations. First, a train of 180 s period waves was ini-
tiated somewhere near the wall of the experimental cell
with a silver wire. On reaching the middle of the Petri
dish, waves in such a train were regarded as planar sta-
tionary propagating reference pulses (waves were regard-
ed as planar provided the curvature of the front was less
than 0.4 cm '). Secondly, the wakes of reference pulses
were stimulated with a 0.2 mm diameter silver wire by
immersing the tip of the wire into the solution for 2 s.
Depending on the distance from the wave front of the
reference wave, the stimulation resulted in different wave
patterns that were recorded on a videocassette for com-
puter treatment with the ordinary image processing pro-
cedures as described in Refs. [6,9,18].

To compare the 2D experimental results with the 1D
computer simulations we suggested that 2D circular
waves initiated in the wake of a wave correspond to bi-
directional propagation in 1D simulations; spiral waves
correspond to unidirectional propagation; damped waves
in 2D correspond to damped waves in 1D. This allowed
us to plot the experimental results and computer simula-
tions on the same figure (Fig. 2 below). A discussion of
the validity of the comparison of 2D and 1D effects of
vulnerability can be found in Ref. [5].

III. RESULTS

A. The vulnerable window

Typical wave patterns occurring in response to a
stimulation of the wake of a wave are shown in Fig. 1.
According to Ref. [5], the type of the response is deter-
mined by the site of the stimulation: stimulation in the
zone of absolute refractoriness results in no waves, or in
only damped propagation [Fig. 1(a)]. When stimulation
is applied far behind the reference wave, i.e., to the medi-
um at rest, it causes bidirectional propagation [Fig. 1(c)].
In the intermediate zone, unidirectional propagation is
observed [Fig. 1(b)].

The width of the zone of unidirectional propagation,
the VW, is shown in Fig. 2. In this 6gure we have plotted
the data both of computer simulations and of natural ex-
periments. The results of the natural experiments can be
used to verify the validity of the use of model (1) to simu-
late the effect of vulnerability. The VW width measured
experimentally proved to be about 1.5 times as great as
that in computer simulations. There are two major
reasons which explain the discrepancy: (i) we used a rela-
tively simple two-variable model of the BZ reaction, and
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(ii) the VW was measured in 2D experiments and in 1D
simulations. Despite the similarity of vulnerability effects
in 1D and 2D media [5], a quantitative difference should
still occur. However, we regard the discrepancy of 50%
as reasonable for the used class of the BZ reaction model.

Simple theoretical estimations can be made of the
width of the VW [3]. That theory was originally pro-
posed for a cellular automation model, but was then
widely used to describe continuous media [5,7,8). This is
one of a few relatively simple theories which describe vul-
nerability effects for a wide range of parameters. The
basic points of the theory are the following. Changing to
a moving frame, g'=x ut, w—e find the VW measured in
time units: tvw is proportional to L/U, where L is the
electrode length and v is the reference wave velocity; the
VW measured in space units, Ivw, was assumed to be a
constant [3].

Our observations confirm that tv~ is roughly inversely
proportional to U [Fig. 2(a)]. However, the line does not
go through the origin. The same effect was observed in
computations and is discussed in Ref. [5]. It is also seen
that the experimental points do not lie exactly on a
straight line. To emphasize this effect, we calculate lv~
which is vtvw. Thus deviation from the straight line in
Fig. 2(a) corresponds to deviation from the constant level
of lvw(v) [Fig. 2(b)]. The computations show that lvw is
not a constant, but there is a twofold decrease of lvw as u

increases from 0.0018 to 0.006 cm/s. Despite the large
scatter of the experimental points [Fig. 2(b), circles], one
can see a similar change in the experimentally measured
lvw. The origin of the experimental errors is discussed
below.

The physical meaning for the nonstationarity of lvw
[Fig. 2(b)] and the deviation of tvw from a straight line
[Fig. 2(a)] is a deformation of the pulse shape with chang-
ing propagation velocity. This, in turn, results in a
change in the refractory tail and the VW.

The boundaries of the VW are shown in Fig. 3. The
curves in this figure divide the plane into regions where
different wave patterns occur. Below the curves depict-
ing the left VW boundary there is no stable propagation,
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FIG. 1. Typical responses to the stimulation of the wake of a
wave with a time delay b, t: (a) damping wave, At =16.8 s, (b)
unidirectional propagation, At=32. 5 s, and (c) bidirectional
propagation, At =48 s. Each of the sections (a) —(c) is composed
of two plates presenting the spatiotemporal distribution of ferri-
in (upper plates) and bromous acid (lower plates). In each plate
the horizontal axis stands for space in the range 0 to 6 mm; the
vertical axis is time from 0 s (bottom) to 180 s (top). The refer-
ence waves are seen in the lower right-hand corners of the
plates. The lighter regions correspond to the higher concentra-
tion of the species.
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FIG. 2. Vulnerable window width vs reference wave velocity.
The VW measured in time units (a) is invesely proportional to
velocity, as predicted by the theory [3]. In contrast, the VW
measured in space units (b) is not a constant. Circles represent
experimental data and diamonds computer simulations.
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but damped pulses occur. This curve fences in a region
conventionally called the region of "absolute refractori-
ness. " Above the curve of the right VW boundary, bi-
directional propagation occurs. In this region the medi-
um is at rest. Between the two regions unidirectional
propagation (VW) is observed.

B. Splitting the vvaves

The above-mentioned conventional classification of
wave patterns adequately describes the dynamics of a sys-
tem far away from the boundaries of the VW. Near the
boundaries damped propagating pulses appear; these are
usually regarded as decaying pulses [19,20,5]. We studied
the dynamics of such damped pulses and found that the
decay is not the only way of their evolution. Under the
appropriate conditions damped pulses can transform into
stably propagating pulses which qualitatively change the
wave patterns in the system.

As a stimulation is applied near the boundary of the
VW (near the curves in Fig. 3), multiple responses occur
after only one stimulation. Figure 4 shows wave patterns
that have arisen after a stimulation near the left boundary
of the VW. Double responses on plates (b) and (c) are
seen between the regions of damped (a) and unidirectional
(d) propagation. A similar effect is shown in Fig. 5,
where triple responses (b) and (c) occur near the right
VW boundary. The wave patterns depicted can be inter-
preted as a wave splitting.

To understand the phenomenon one should note that
after initiation a pulse moves in the wake of a reference
wave, i.e., it moves with gradually decreasing amplitude
(Fig. 6) and velocity (Fig. 7). The difference in propaga-
tion velocities results in an increase in the distance be-
tween the reference wave and the pulse. Such a damped
pulse would die out (Fig. 6, circles), unless it crossed the
boundary of the region of absolute refractoriness with a
large enough amplitude to initiate a new stably propaga-
ting wave (Fig. 6, diamonds).

The dynamics of the change of a damped pulse to a sta-
tionary propagating one can be divided into several dis-
tinct stages. During the first stage (r =0—30 s) there is a
decrease in the amplitude and velocity of the pulse, until
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FICx. 3. Left boundary (upward triangles) and right boundary
(downward triangles) of the VW measure din (a) time units and

(b) space units as functions of the reference wave velocity.

the pulse almost stops (Figs. 6 and 7). Then (r =30—42 s)
the pulse increases in amplitude (Fig. 6, diamonds), but
still moves with low velocity (Fig. 7). During the third
stage (t =42 —45 s) the pulse intersects the boundary of
absolute refractoriness and quickly starts to gain velocity
(Fig. 7), forming a stably propagating wave (t =45—65 s).

Figure 8 shows a plot of the number of responses vs the
time delay. This plot has a hierarchical structure. There
are three wide regions: (i) of zero responses

WBBQI
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FIG. 4. Multiple responses
near the left boundary of the
VW. (a) Damped propagation,
At=17. 55 s; (b) and (c) double
response, At =17.58 and 17.71 s;
(d) unidirectional propagation,
At = 17.73 s. Note the split
damped waves in (c) and (d).
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I

I

FIG. 5. Multiple responses
near the right boundary of the
VW. (a) Unidirectional propa-
gation, Et=37.60 s; (b) and (c)
triple response, Et=37.61 and
37.63 s; (d) double response,
At =37.74 s. Note that the
fourth split (although decayed)
response is seen in (c).

(b, t =0—17.55 s), (ii) of one response (ht =17.73—37.60
s), and (iii) of two responses (b, t )37.64 s). These regions
correspond to the conventiona1 classification of responses
as "damped, " "unidirectional" (VW), and "bidirectional"
propagation [5]. Near the boundaries between these re-
gions, small areas of unusual double and triple responses
occur. Such multiple responses are caused by the wave
splitting described above.

Obviously, using the transformation AI =Uht, one can
plot a graph of the number of responses vs the spatial de-
lay D I (the distance between a premature stimulation and
a reference wave) which has a structure similar to that
shown in Fig. 8.

the occurrence of an infinite wave train.
The width of the window where wave splitting occurs

is narrow [Fig. 8]. This is why we did not observe the
effect in our experiments. The experimental points
presented in Fig. 2 illustrate the dependence of the VW
on the wave velocity. It should be noted that the experi-

2.0

IV. DISCUSSION

The wave splitting described above bears some resem-
blance to the dynamics described by Yakhno and co-
workers in the FHN model with special symmetry re-
quirements [21—23). They found that under appropriate
conditions a propagating front stops and starts splitting;
this is seen as a wave source. The effect was called the
"stopped front division" [21—23). These papers reported
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FICx. 6. Amplitude of damped waves [x variable in Eqs. (l)]
in the wake of a reference wave. Two kinds of dynamics are
possible for damped waves: decay (circles, At = 17.55 s) or tran-
sition to a stably propagating pulse (diamonds, dt = 17.58 s).
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FIG. 7. Propagation of a damped wave (diamonds, At =7.58
s) in the wave of a reference wave (circles). (a) Wave crest posi-
tion and (b) velocity. Jumps on the position and velocity curves
correspond to transitions to a stably propagating pulse. The
curve through the diamonds was plotted after the median filtra-
tion of the data.
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FIG. 8. The number of responses vs time delay of the stimu-
lation. The shaded area between 17.73 and 37.60 s corresponds
to the VW. Multiple responses near the VW boundaries occur
due to wave splitting.

mental points in Fig. 2(a) are divided into two clusters.
We used linear regression to fit the points for the follow-
ing reasons: (i) the linear dependence of the VW on 1/U
is predicted by the theory [3], and (ii) the linear depen-
dence is evident in computer simulations.

Comparison of the results of experiments and simula-
tions shows that there is large scatter in the experimen-
tally measured points. The error bars in Fig. 2 corre-
spond to the roughness of measuring space and time units
while using a computerized image processing system, e.g.,
the precision of the space measurements is restricted to
one pixel of a 512X512 pixel frame. In addition to such
device dependent errors there are processes occurring
inevitably in the system resulting in significant scattering
of experimental data. These are the deformation of the
surface of the solution while immersing the reference
electrode, some hydrodynamic Bow arising in the system,
and deformations of the shape of the reference pulse.
These disturbing effects are difficult to take into account.
Experimental difficulties do not allow us to obtain enough
probes to use statistical methods to evaluate the errors.
One possible solution is the use of computer simulations
to study the effects. The computer results have small
scatter of the data and are rather close to the experimen-
tally observed results. Thus we cannot avoid large
scattering of experimental data, but can use computation-
al results to predict the dynamics in the system.

Another experimental technique was used in Refs.
[7,8]. The researchers observed a narrow band of bidirec-
tional propagation (circular waves) between the regions
of decaying and unidirectional propagation (spiral

waves). The authors gave a different explanation for the
effect, but we believe the effects described in Refs. [7,8]
can be understand in terms of wave splitting. However, a
much better experimental technique is required if wave
splitting in the BZ reaction is to be investigated experi-
mentally.

In this paper we compare the results of 2D experi-
ments and 1D numerical simulations. To make this
reasonable, we used planar 2D waves in the experiments
as reference waves. We referred to the resemblance of
2D and 1D vulnerability effects (e.g., see Ref. [5]). Actu-
ally, the 2D and 1D effects are not the same, but have
some quantitative discrepancies (Fig. 2).

Recent computational studies of similar problems
[6—8] have failed to discover wave splitting because in
these papers damped waves were always regarded as de-
caying waves. As a rule, Euller's explicit scheme of in-
tegration was used to study the dynamics, which imposed
substantial restrictions on space and time steps. Small
space steps are essential to observe the wave splitting.

It is possible to evaluate the critical value of the space
step. Actually, the shortest time and space scales are
connected with the increase of HBrOz smeared by a La-
placian. According to the FKN scheme of the BZ reac-
tion [24] this is an exponential process. This process is
accounted for in Eq. (1). Actually, the growth of HBr02
can be described as dx/dr=x/e [see Eq. (1)] with the
characteristic time t,h„=e. Expressed in seconds, the
shortest time scale t,h„=2s. The space scale can be
evaluated as I,„„=Ut,h„. For ordinary propagating
waves l,h„=0.01 cm. To observe wave splitting, we
should simulate waves whose velocity v is ten times lower
[Fig. 7(b)]. This results in the ten times finer grid re-
quired. The space step h„is usually chosen to place 5 to
20 lattice points on /,h„.The value of h thus evaluated
should be lower than 0.0002 cm.

The mechanism of the wave splitting which is based on
the transition of damped pulses to stationary propagated
ones seems to be of a general nature and is likely to occur
in other excitable systems. The window where the wave
splitting occurs is narrow in the BZ reaction medium
used, but it can be wider in other excitable media, e.g., in
heart tissue, where the study of vulnerability is of practi-
cal importance.
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