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The Lagrangians of physics arise out of a mathematical game between a “smart” measurer and nature
(personified by a demon). Each contestant wants to maximize his level of Fisher information I. The
game is zero sum, by conservation of information in the closed system. The payoff of the game intro-
duces a variational principle—extreme physical information (EPI)—which fixes both the Lagrangian
and the physical constant of each scenario. The EPI approach provides an understanding of the rela-
tionship between measurement and physical law. EPI also defines a prescription for constructing La-
grangians. The prior knowledge required for this purpose is a rule of symmetry or conservation that im-
plies a unitary transformation for which I remains invariant. As an example, when applied to the smart
measurement of the space-time coordinate of a particle, the symmetry used is that between position-time
space and momentum-energy space. Then the unitary transformation is the Fourier one, and EPI
derives the following: the equivalence of energy, momentum, and mass; the constancy of Planck’s pa-
rameter h; and the Lagrangian that implies both the Klein-Gordon equation and the Dirac equation of
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quantum mechanics.

PACS number(s): 05.40.+j, 03.65.Bz, 12.10.Kt, 89.70.+c

INTRODUCTION

The Lagrangian approach [1] to physics has been uti-
lized now for over 200 years. It is one of the most potent
and convenient tools of theory ever invented. However,
an enigma of physics is the question of where its La-
grangians come from. It would be nice to justify and
derive them from a prior principle, but none seems to ex-
ist. Indeed, when a Lagrangian is presented in the litera-
ture, it is often with a disclaimer, such as [2] “It usually
happens that the differential equations for a given
phenomenon are known first, and only later is the
Lagrange function found, from which the differential
equations can be obtained.” Even in a case where the
differential equations are not known, often candidate La-
grangians are first constructed, to see if ‘‘reasonable”
differential equations result.

Hence the Lagrange function has been principally a
contrivance for getting the correct answer. It is the
means to an end—a differential equation—but with no
significance in its own right. One of the aims of this arti-
cle is to show, in fact, that Lagrangians do have prior
significance. A second aim is to present a systematic ap-
proach to deriving Lagrangians. A third is to clarify the
role of the observer in a measurement. These aims will be
achieved through use of the concept of Fisher informa-
tion.

R. A. Fisher (1890-1962) was a researcher whose work
is not well known to physicists. He is renowned in the
fields of genetics, statistics, and eugenics. Among his
pivotal contributions to these fields [3] are the maximum
likelihood estimate, the analysis of variance, and a mea-
sure of indeterminacy now called “Fisher information.”
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(He also deduced that the famous geneticist G. Mendel
had fabricated his famous experimental results with pea
plants. They were too regular to be true, statistically.) It
will become apparent that his form of information has
great utility in physics as well.

Table I shows a list of Lagrangians [2], emphasizing
the common presence of a squared-gradient term. In
quantum mechanics, this term represents mean Kkinetic
energy, but why mean kinetic energy should be present
remains a mystery (Schrodinger called it “incomprehensi-
ble” [4]). Moreover, in other fields of physics the term no
longer has this meaning. What we will show is that, in
general, the squared gradient represents a phenomenon
that is natural to all fields, i.e., information.

THE ERROR IN A SMART MEASUREMENT,
AND DISORDER

The “smart” measurement

Consider the basic problem of estimating a parameter
of value 6. The estimate follows from an imperfect obser-
vation y =6+x of 6, in the presence of random noise x.
See Fig. 1. For brevity, this measurement-estimation
procedure will be called a “smart measurement” of 6. It
results in an estimate & which is a function 8(y).

The system comprising quantities y, 8, and x is a closed
one. No other input effects (such as additional noise
sources) are assumed present. It will become apparent
that the closed nature of the measurement system implies
an isolated physical system as well.
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FIG. 1. A smart measurement. Based upon observation y,
form an estimate of parameter 6.

Fisher information

This information arises as a measure of the expected
error in a smart measurement. Consider the class of “un-
biased” estimates, obeying {8(y))=6; these are correct
“on average.” Then, as shown in Appendix A, the
mean-square error e’ in the estimate § obeys a relation

(5]

e’r>1, (1
where I is called the Fisher information

I= [dx p'*x)/p(x) . 2)

The prime denotes a derivative d /dx and the integra-
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tion limits are infinite. The quantity p(x) denotes the
probability density function for x. Equation (1) is called
the Cramer-Rao inequality. It expresses reciprocity be-
tween the error e and the Fisher information I. The
quantity I is thereby a quality metric of the estimation
procedure. Since quality increases (e decreases) as I in-
creases, I is called an “information.”

A related quantity to I is the Shannon entropy [6]
(called Shannon “information” in this paper). Historical-
ly, I predates the Shannon form by about 25 years (1922
vs 1948). There are some known relations connecting the
two information concepts [7-9] but these are not ger-
mane to our purposes.

The analytic properties of the two information mea-
sures are quite different. Thus, whereas Shannon’s is a
global measure [of smoothness in p (x)], Fisher’s is a local
measure. Hence, when extermized through variation of
p(x), Fisher’s form gives a differential equation while
Shannon’s always gives directly the same form of solu-
tion, an exponential function. See Appendix A.

Despite these differences, it is shown in Appendix B
that I is approximated by a cross-entropy quantity. This
implies that I and the Boltzmann entropy are, to an ex-
tent, related quantities.

TABLE 1. Lagrangians for various physical phenomena. Where do these come from, and in particu-
lar, why do they all contain a squared gradient term? (WE indicates the wave equation.)

Phenomenon Lagrangian
2
Classical Mech. —l-m 9q -V
2 ot
2
Flexible string or compressible fluid %p %‘f—] —c?Vq-Vgq
Diffusion eq. —Vi-Vyp*— - -
2
Schrodinger WE —a%v,p.v,/,*_ c
ﬁZ
Klein-Gordon Eq. —_{rz_vtp.v,/,*_ Ce
Elastic WE %pqz_. C.
4
Electromagnetic egs. 43 Og,-Og,— -+ *
n=1
Dirac egs _ﬁ_zv¢.v¢*_ ... =0
s 2m
4 9g,, 9
General relativity (eqs. of motion) > g,,.,,(q(T))—aqTi aq: ,
m,n=1

Boltzmann law

Maxwell-Boltzmann law

Lorentz transformation (special relativity)

Helmholtz WE

g the metric tensor

aqE |°

48E

, P(E)=q*E)

9g(v) ?

4 v

, p(v)=q%v)

9,;9,9;q, (invariance of integral)
——VtP'Viﬁ*— -
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Relation to Heisenberg uncertainty principle

In form, Eq. (1) resembles the Heisenberg principle.
This is no mere coincidence. In application of Eq. (1) to
estimating the classical position 0 of a particle [10], I be-
comes 4{u?) /#%, where u denotes momentum and # is
the Planck constant/27. [Equation (22) derived below is
a four-dimensional generalization of this I.] Substitution
into (1) directly gives the Heisenberg principle.

Actually, a stronger, “smart” version of the usual prin-
ciple so results. Our quantity e is the error in any func-
tion &(p) of the data value. This includes the possibility
of an optimum function, representing a best estimate of
6. By contrast, in the usual statement of Heisenberg e
represents the error in the direct observable y, i.e.,
without the processing step B(y). Thus, our result is that
the spread in any function of the observable position y
obeys reciprocity with the spread in momentum. (Analo-
gously, reciprocity follows between any function of
momentum and the coordinate y if momentum, instead,
is measured.) See also related work [11].

Amplitude form of 7

Equation (2) defines the Fisher information I in terms
of the probability law p (x). Fisher found that it is often
more convenient to work instead with a real “amplitude”
function g (x), where

p(x)=qx) . (3)

(Parenthetically, it is intriguing that Fisher used proba-
bility amplitudes [12] independently of their use in quan-
tum mechanics. The purpose was to discriminate among
population classes.) Using form (3) in (2) immediately
gives

I1=4{dx q'%(x), @)

of a simpler form than (2) and showing that I simply mea-
sures the gradient content in g (x) [and hence in p (x)].
This is the origin of the squared gradients in the Table I
of Lagrangians, as will become apparent.

I as an entropy

I is actually a measure of the degree of disorder of a
system. Strong disorder means a lack of predictability of
values of x over its range, i.e., a uniform or “unbiased”
probability density function p (x). Such a curve is shown
in Fig. 2(b). The curve has small gradient content (if it is
physically meaningful, i.e., is piecewise continuous).
Then by (4) the Fisher information I is small. Converse-
ly, if a curve p (x) shows bias to particular x values then
it exhibits low disorder. See Fig. 2(a). Analytically, the
curve will be steeply sloped about these x values, and so
the value of I becomes (now) large. The net effect is that
I measures the degree of disorder of the system. In other
words, I is a form of entropy.
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FIG. 2. (a) High gradients, therefore high I. Narrow
effective range in x, therefore small disorder. (b) Low gradients,
therefore low I. Wide effective range in x, therefore strong dis-
order. The upshot is that I varies inversely with disorder.

A MEASUREMENT-INDUCED DEFINITION
OF PHYSICS?

We found above that a smart measurement of particle
position gives rise to one law of physics—the Heisenberg
principle. Is there, in fact, a general reaction by nature to
a smart measurement? Does each law of physics follow
from a particular smart measurement? Related specula-
tions have been made by Wigner [13] and by Wheeler
[14]. Physics has been aptly called the ‘“‘science of mea-
surement” [15]. We show in the following sections that
physics arises out of measurement, literally.

Fisher information in a vector measurement

A generalization [Eq. (13) below] of the Fisher I of Eq.
(2) has many physically useful attributes [16]: additivity
to data, independence of the unknown 6, invariance to
general coordinate shift or rotation, coordinate covari-
ance, and gauge invariance. The latter means that it con-
tains space and time derivatives so that the usual substi-
tutions

V—>V—ieA/cti, 3/0t—3/0t+tied/fi, i=

v—1
(5)

can be made. A and ¢ are the usual electromagnetic po-
tentials and e is the particle charge.

The generalized information arises when a vector 0 is
to be estimated on the basis of a vector of measurements
p=0+r. Now the information (4) takes the more general
form

1=4[drvg-Vgq . (6)
Also, the probability p (x) of Eq. (3) becomes
p(r)=gXr). (7N

The amplitude g (r) may also be expressed in terms of a
basis set of “mode functions” g, (1),

N
g(r)= 3 q,(r). (8)

n=1

Any specific choice for the mode functions will depend
upon the specific physical scenario. An ultimate aim of
this paper is to develop a general procedure for forming
the Lagrangian appropriate to these modes.
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Paradigm of the broken urn

We next show that, for a particular isolated system, I
tends to be minimal with time [17]. Consider a scenario
where many particles fill a small urn. Imagine these to be
ideal, point masses that collide elastically and that are
not in an exterior force field. We want a smart measure-
ment of their mean horizontal position 6. Accordingly, a
particle at horizontal position y is observed, y =6+x,
where x is a random fluctuation from 6. Define the
mean-square error e’ 2t)=([60—8(y)]*) due to repeatedly
forming estimates 6(y) of 6 within a small time interval
(t,t +dt). How should e vary with #?

Initially, at ¢ =0, the particles are within the small urn.
Hence, any observed value y should be near to 6; then,
any good estimate 9(y) will likewise be close to 6, and as
a result e%(0) will be small. Next, the walls of the con-
tainer are broken, so that the particles are free to ran-
domly move away. They will follow, of course, the ran-
dom walk process which is called Brownian motion [18].

Consider a later time interval (¢,¢ +dt). For Brownian
motion, p (x) is Gaussian with a variance o>« t. By Eq.
(2), then I=1/0%x1/t, or I decreases with t. Conse-
quently, as ¢ — o, I —minimum.

This point is further clarified in the case when p(x) is
Gaussian. We had, then, I =1/02. But also the entropy
H [see Eq. (A1)] obeys H=1+InV 2702 Eliminating
the common parameter o2 in the last two expressions
gives I =2mexp(1—2H). Clearly, then, as H increases I
decreases.

An arrow of time

For the preceding problem involving classical particles,
we found that Fisher information I decreases with time
after a measurement is made. In fact, in general, I de-
creases with time after each measurement, as is found
below. Hence, Fisher information defines an arrow of
time. It points in the direction of decreasing ability to es-
timate. Interestingly, this arrow usually agrees with that
of thermodynamic entropy, since it is known [19,20] that
measurement is an irreversible process which, according-
ly, increases local entropy monotonically. Hence, each
arrow points in the direction of increased disorder, if
“disorder” is appropriately defined by I or H. Of course,
other arrows of time exist as well; see Zeh [36].

We showed above that, for one scenario, I decreases
with time. This result is generalized below using a mech-
anism we call the “information demon” (not to be con-
fused with the Maxwell demon).

THE INFORMATION DEMON

The variational problem under consideration is, so far,
I =extremum, information I given by Eq. (6). But I is
specifically the formal information received in the mea-
surement. I therefore does not describe a specific physical
scenario. So far, the theory has no room for one. Hence
the approach cannot yet be used to derive specific physi-
cal laws.

We need to supplement the approach with a term that
contains information about the specific physical scenario.
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How can such a term arise? Whereas Eq. (6) represents
information received by the user, we have yet to consider
an information payout. This will be provided by the
physical scenario. A clue is provided by the theory of
Brillouin [20], according to which thermodynamic entro-
py and Shannon information are equivalent. By this
equivalence, the total entropy plus information for a
closed system remains fixed. The information gain (in
“bits”’) by an observer is exactly balanced by the natural
entropy change (in cal/K) of the physical system. We
now extend this idea to Fisher information I and its phys-
ical form J (defined below) taken in a given physical
scenario.

Information transfer game

Imagine a contest between an information user called
the ‘“observer” and an information giver called the
“demon.” The observer is the intelligent measure. His
aim is to acquire high information I in the measurement,
so as to minimize e [see Eq. (1)]. By contrast, the demon
represents a physical effect that gives rise to the informa-
tion. It represents nature’s response to the observer.
Since the observer and the demon comprise a closed sys-
tem, information is conserved (as in the previous ap-
proach of Brillouin [20]). Consequently, whatever infor-
mation is gained by the observer is at the expense of the
demon. The contest is a zero-sum game [21]. Symmetric
with the observer’s aims and to preserve the second law
[20], the demon’s aim is to minimize his information loss.
(This symmetry constitutes an aspect of ‘“dualism,” as
discussed later.)

The game consists of a tactic i by the observer, whose
aim is to maximize his acquired information I, and a tac-
tic j by the demon, whose aim is to minimize his payout
of information. Although tactics / and j are generally
continuous, it is useful to first consider a discrete case.
This can be illustrated by a payoff matrix, as in the simple
2X2 game of Table II with i =1,2 and j=1,2. Each
item I (7,j) represents both a payoff to the observer and a
payout from the demon. Assume that both players know
these payoffs. What tactic should each take?

The demon is to choose the column j that minimizes
his loss. If he chooses a column j =1, the most he can
lose is 5, while if he chooses j =2, the most he can lose is
4. Hence he chooses j ==2. Denote the largest number in
column j by max;I(i,j). Then his optimum payoff is

I=min;max;I (i,j)=min;(5,4) =4 )

in this example. These information quantities I and (i, j)
of course denote, as well, corresponding gains of informa-
tion by the observer.

It is important now to give a distinct notation to the
payouts of the demon. Call these J and J(i,j), where

TABLE II. A 2X2 payoff matrix I(i,j).

j 1 2
i

1 1.5 2.0
5.0 4.0
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J=Iand J(i,j)=1I(i,j). Hence, (9) may be recast as
J =min;max,J(i,j)=min;(5,4)=4 . (10)

That is, the value 4 is both the optimized payoff to the
observer and the optimized payout of the demon. This is
for an optimum strategy for the demon, as defined above.

System net information change

Regard the observer and demon as a system. Then
AI=I—J is the net information change in the system
due to the game. Then from Egs. (9) and (10)

AI=min;max;I(i, j)—min;max;J (i, j)
=min;[max;I(i, /) —max;J(i,j)]=0 . an

The middle equality trivially follows since all elements
I(i,j)=J(i,j) identically. The zero in (11) follows from
the zero-sum nature of the game.

Designate the maximized I (i,j) over i as I, (j), and
likewise for J (i, j). Then (11) is equivalent to

AT =1, (j))—J pax(j)=min=0 . (12)

where the minimum is over j.

PRINCIPLE OF EXTREME PHYSICAL INFORMATION

All that remains is to assign roles for i and j in our in-
formation game. These will now be continuous rather
than discrete, but the preceding game results still hold.
See Fig. 3.

Choice j, of the demon, is to govern the amount of in-
formation I to be doled out. This he wants to minimize.
But, by the form of Eq. (6), I is minimal when the curves
q,(r) have small gradient content, defining broad and
smooth functions. This also represents a situation of high
disorder [see Fig. 2(b)]. Hence the minimization in prin-

A

INCREASING BLUR j -

n
=
w2
<
=

1(ij) o
Z
=
~

SADDLEPOINT *

SOLUTION

<4 INCREASING MODE SEPARATION i

N

1(j) DECREASES —»

FIG. 3. The information game. The observer bets on a state
of mode separation i (a row value). The demon bets on a state of
blur j (a column value). The information payoff from the demon
to the user is indicated by the item I(i,j) on the playboard.
Each player wants to maximize his information. The resulting
bets (i, j) will always be at the indicated saddle point.
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ciple (12) is through the shapes of the modes g, (r). These
the demon wants to maximally broaden and smooth out.
An ordinary variational problem in the g, (r) results.

Characteristic information state

Choice i, of the observer, governs the amount of infor-
mation to be gained, which he wants to maximize. It is
known that, in a situation (8) of multiple modes, I in-
creases as the modes are separated [23]. Hence i is
chosen to define a variable mode spacing, which the ob-
server wants to increase until the modes no longer over-
lap. See Fig. 3. In this mode geometry, information (6)
becomes

N
1=4'3 [drvg,Vq, . (13)

n=1

This is the trace of the Fisher information matrix [5].
Also probability law (7) becomes

N
p(n)=3 gXr). (14)

n=1

In summary, I, and J,, in (12) correspond to a con-
dition of completely separated modes. A system with
such modes is said to be in its “characteristic information
state.” This defines the ability of the system to convey in-
formation over all possible mode positions, and is analo-
gous to the concept of channel capacity (i.e., maximized
information) in Shannon information theory. It also has
a counterpart in statistical mechanics as an “unmixed”
state, for which the entropy H is minimized. Thus by ei-
ther measure H or I, the disorder is minimized in this
state.

By Eq. (13) and the preceding, the continuous version
of principle (12) is

N
AT=4 3 [drVq,-Vq,— [drFlq(r),r)
n=1
=extremum=0 , (15)

through variation of the g,, where
fdrF[q(r),r]EJ , q=(qy, ...

The functional F is defined below. Since the minimum in
principle (12) might sometimes be a point of inflection,
we replaced it with an extremum requirement. Equation
(15) is called the principle of extreme physical informa-
tion (EPI), as discussed below.

»qn) - (16)

EPI principle as a consequence of the game

We constructed principle (15) only by analogy, i.e., as a
continuous version of the discrete principle (12). It is
more important to show that (15) directly follows from
the play of the information transfer game. As we dis-
cussed, the game index j has the physical significance of
being the mode functions q. Then information I and J
are functionals I(q) of q [obeying Eqgs. (13) and (16)].
During the play of the game, the observer maximizes 1
and J (since equal) by separating the modes q.
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Meanwhile, the demon functionally minimizes I and J
through variation of the shapes of the q. Then by the
latter operations, 81(q)=~8J(q)=0. This implies as well
that 8(I(q)—J(q))=0; or, equivalently, that Eq. (15) is
satisfied.

Interpretation of J and F

Recall that J is the payoff of information by nature.
Hence, J is an expression of I in terms of the physics of
the scenario. Or, J is the expression of I as an invariant
quantity under an appropriate transformation. In fact,
by the form of Eq. (13) as an inner product, I remains in-
variant to a general unitary transformation on q. To en-
sure that J has physical meaning (as required), the uni-
tary transformation to be chosen must be one that defines
transform coordinates that have physical meaning.

For example, in the quantum mechanics scenario these
are the momentum-energy coordinates that characterize
a Fourier (unitary) transformation. Then J has the physi-
cal significance of being essentially the mean-square parti-
cle momentum (see below).

In any scenario, the particular unitary transformation
is suggested by a symmetry, invariance, or conservation
property of the scenario. This is an attractive aspect of
the approach, since such a property is usually basic to a
given scenario. For example, in quantum mechanics that
property is the symmetry between position-time space
and momentum-energy space. Quantity F, in Eq. (16),
then becomes the conjugate to the inner product
3..Vq, Vg, in measurement space. This is generally true
as well.

Information exchange processes

Principle (15) states that a physical law q(r) arises dur-
ing an exchange of information between nature and a
smart measurer. The exchange process is initiated by the
measurer, so that the physical law that fixes the measure-
ment arises in reaction to the measurement.

There are, of course, other exchange processes in na-
ture. In each, a physical effect results from the exchange
of a theoretical “substance.” Thus the exchange of energy
(say, potential to kinetic) for a particle gives rise to a
change in motion. Or, the exchange of mesons gives rise
to a force law. Now we find that the exchange of infor-
mation gives rise to probability laws and their modes, as
well as the constancy of many (all?) fundamental physical
constants, and even some deterministic laws [16] (e.g.,
Maxwell’s equations and the Einstein gravitational equa-
tions of motion).

The information exchange takes place within a closed,
or isolated, physical system. This follows, since the infor-
mation game is solely between the observer and nature.
Our previous assumption that information is conserved is
based upon this premise.

Principle of extreme physical information

Principle (15) is, specifically one of extreme exchange of
Fisher information. For brevity, we call quantity
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AI=I—J “physical information,” and the principle (15)
“extreme physical information” (EPI). Operationally,
the principle requires probability modes g,(r) to be
varied, in the usual manner of a problem in the calculus
of variations. Thus the extremum so obtained is a varia-
tional extremum, i.e., one whose first variation is zero.

Quantity A as an information distance

The form of the EPI principle (15) requires a solution
g, (r) to simultaneously extremize and zero it. How can
this be? These are the properties of an ordinary distance
measure. That is, the extreme value of the distance be-
tween two points in ordinary (x,y,z) space is zero when it
is a minimum. Analogously, here the distance is between
quantities I and J in the space of functions g, (r). Dis-
tance measurements of this sort are studied in the field of
mathematics called differential geometry, and are called
“information distance measures” when applied to proba-
bility laws. Hence the physical information AI is
equivalently an information distance.

Let us now examine the two components I and J of Af
in this light. It is shown in Appendix B that the Fisher I
part of Al is, approximately, a cross-entropy form of in-
formation. Now, information entropy (in “bits”) and
thermodynamic entropy in (cal/K) are equivalent phe-
nomena [20] in a closed system (as here). In this regard,
note that the other part J of AI must equal I, and by hy-
pothesis is of physical origin. Then it must approximate-
ly represent thermodynamic entropy (as well as Fisher in-
formation). Hence, by these correspondences, principle
(15) becomes, approximately, a principle of extreme ex-
change of cross entropy, or a principle of extreme cross-
entropy distance. Clearly, this principle relates to the
second law in some sense.

Origin of universal constants: Corollary 1

It is important to emphasize the difference in the roles
of I and J. I is always of the general form (6) or its
mathematical equivalent. On the other hand, J is the ex-
tremized value of I for the particular scenario considered.
An extremized value is a constant, and we regard each
such as a universal physical constant in particular. In
this way, each EPI scenario leads to a value of J that fixes
a different universal physical constant. We give an exam-
ple below.

Origin of invariance principles: Corollary 2

The preceding has an interesting consequence. Since
the extremized value for J is to be a universal constant, it
must be so regardless of reference frame, choice of gauge,
choice of curvilinear coordinate system, etc. These are
the usual demands on Lagrangian formulations, and we
now see how they naturally arise out of the information
approach.

Symmetry of the game

We developed the principle from the standpoint of an
optimum strategy for the demon. It is interesting to con-
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sider it instead from the standpoint of the observer-
measure (with whom we tend to identify). Although his
aim is diametrically the opposite of the demon’s, it turns
out that his optimum payoff I is exactly the same as that
defined above for the demon [21]. For example, both ar-
rive at the point i =2, j =2 in the matrix game of Table
II. The reason is that this point is a saddle point in the
matrix (minimum in row 2 and maximum in column 2).
Likewise, with the designated roles for i and j in our
smart measurement game of Fig. 3, the payoff point is
another saddle point. The upshot is that the same princi-
ple (15) again results.

EPI AS A PROCEDURE FOR FORMING LAGRANGIANS

The foregoing suggests an information-based pro-
cedure for forming Lagrangians. First select the coordi-
nates r. These are suggested by the nature of the
phenomenon, and should comprise a four-vector (al-
though use of smaller dimensionality is permissible, if less
efficient to use; see example below). The choice r should
also be such that, in the absence of fields, a probability
distribution function (PDF) p(r) obeying form (14) is
physically observable. Then the Fisher information I
obeys Eq. (13), its form in measurement space. Next, a
property of symmetry or conservation F is used to define
an appropriate unitary transformation of I from r (mea-
surement) space to a physical space. I is now in a form J,
which contains appropriate parameters (such as the speed
of light ¢, Planck’s constant 4, etc.) of the physical space.
The Lagrangian is then formed as (I —J). An example of
this procedure is given later.

EPI AS A PROCEDURE
FOR KNOWLEDGE FORMATION

EPI may be regarded as a gedanken procedure for the
synthesis of physical laws. Specifically, EPI is a pro-
cedure for codifying the laws that govern our measure-
ments. The human element, in the form of the observer,
plays the key role of initiating EPI. The observer makes
a smart measurement. This is to convey maximum
knowledge (information I) about the phenomenon being
measured. It is assumed that the appropriate symmetry
and/or conservation relation F preexists the gedanken
measurement. Next, the characteristic state of modes g,
is enforced by the observer as a kind of “prepared state,”
in the language of quantum mechanics. These ground
rules activate the information transfer game. The result
is the physical law systematizing and governing the smart
measurement in the given scenario.

But is one justified in defining physical laws through
the use of a purely mental construction of reality, such as
by use of the game? Would it not be preferable to show
that the laws follow instead from physical effects, i.e., in-
dependent of an observer and any of his mental process-
es? Now, by ‘“‘physical laws” we mean a collection of
mathematical relations, such as the Schrodinger wave
equation and Maxwell equations. These are to be dis-
tinguished from a class of observable variables r (mass,
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charge, length, time, etc.) which such laws functionally
connect. Hence the laws are actually mental construc-
tions, as distinguished from the direct observables that
they connect.

It is interesting to compare the variational EPI princi-
ple with the maximum entropy (ME) principle [22]. ME
has its physical roots in the second law, and has been
used (appropriately) to derive the laws of equilibrium sta-
tistical mechanics. By contrast, EPI has its roots in
smart measurement theory, and derives the laws of sta-
tistical mechanics as well, but also those of quantum
mechanics and (probably) every other measurable
phenomenon [23]. The reason for the overlap of the two
approaches in equilibrium statistical mechanics is, in fact,
that in this field EPI becomes ME. This is shown in Ap-
pendix C. Hence, EPI is the generally valid principle;
and becomes ME in a limiting case (equilibrium) of a spe-
cial scenario.

EPI addresses a long-standing problem of measure-
ment theory—the “‘participatory role” to be played by
the observer during the act of measurement. Such a role
has been much speculated about [14,24,25]. The usual
question addressed is how the act of measurement can be
made to fit within an existent quantum theory. By con-
trast, we show that the measurement procedure forms the
laws of quantum theory (see below). It also forms other
physical laws (see below), depending upon what quantity
is being measured. Finally, the ‘“participatory role” of
the observer is to make the smart measurement and to
play the ensuing game, as described previously.

PAST APPLICATIONS OF THE PRINCIPLE

Earlier versions of the EPI principle have been shown
[10,16,23,26,27] to derive a host of physical laws and con-
stants. (The present version of EPI preserves the formal-
ism for constructing Lagrangians that is given in the ear-
lier versions, but in addition provides a theoretical
basis—the ‘“game”—for the formalism.) The laws are
both statistical and deterministic in nature. Statistical
laws directly result from the use of the EPI principle (15).
Deterministic laws and the constants follow from the use
of corollaries 1 and 2, or, alternatively, from a known,
underlying statistical effect (e.g., the “cosmological prin-
ciple” in the derivation of general relativity [16,23].) Ex-
amples of derived statistical laws are the Dirac equation
of relativistic quantum mechanics [16,23] and the
Maxwell-Boltzmann velocity distribution [23]. Examples
of derived deterministic laws are the Lorentz transforma-
tion group of special relativity [16,23] and the Einstein
equations of motion of general relativity [16,23]. Con-
stants that have thus far been fixed by EPI are ¢,m (mass
of electron), e (charge of electron), and A [16]. Each such
law arises from the smart measurement of an appropriate
parameter 6. Examples of 0 are the ideal space-time po-
sition for a particle in the Dirac scenario, or the drift ve-
locity of an urn containing ideal gas particles in the
Maxwell-Boltzmann scenario. Again, each resulting
physical law arises as if in reaction to a smart measure-
ment in the characteristic state.
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Some predictions

The preceding applications to known physics may be
regarded as verifications of the EPI approach. But EPI is
a general prescription for establishing probability laws,
deterministic laws, and their associated parameters. EPI
has also derived additional laws, i.e., made verifiable pre-
dictions. So far, these are as follows.

(a) The rate of increase of Boltzmann entropy is bound-
ed from above, at each instant of time, by a number pro-
portional to the current value of the system Fisher infor-
mation I [27].

(b) The motion of a relativistic, classical particle gives
rise to a flow of information that is proportional to its
rest mass [16,23].

(c) Classical turbulence is describable by a probability
law on the four-vector (pu,ip) where p is the particle
density and u is the fluid velocity. This probability law
obeys a second-order partial different equation derived
from the Euler-Lagrange solution to EPI [28].

(d) A new fundamental particle is predicted [23].

DERIVATION OF RELATIVISTIC
QUANTUM MECHANICS

The EPI approach is perhaps best verified by its appli-
cation to quantum mechanics [16]. The Klein-Gordon
equation and Dirac equation will result, as well as the
equivalence of mass and energy, and the constancy of the
Planck constant A.

From the form of Eq. (6), Fisher information I is the
trace of a matrix, and as such is invariant to a rotation of
coordinates. Hence it is a relativistically covariant quan-
tity. It follows that all smart measurements must be of
four-dimensional quantities [16]. Therefore, let the ob-
server now attempt to estimate the space-time, ideal (clas-
sical) position 0=(6,,...,0,) of a particle of mass m.
The fluctuations from the classical value [29] 0 are desig-
nated

x| =ix, x,=iy, ,

(x1,%9,x3)=ir, i=vV —1.

X3=iz , X4=ct,
(17)

(The parameter ¢ is presumed fixed as a universal con-
stant, from a prior application of the EPI to the deriva-
tion of gravitational phenomena [16].) We seek the prob-
ability law p(r,t), and the modes g,(r,¢). It is con-
venient to pack the real modes g,(r,t) as new, complex
modes

v, =q,,-1tigy, , n=12,...,N/2. (18)

The ¢, =, (r,¢) are now the unknowns of the problem.
Note that, when expressed in terms of the ¥,, probabil-

ity law p and information I remain in the same form as

before. The use of quantities (17) and (18) given directly

N/2 N
S Unv,= 3 q,=p(r,t) (19a)
n=1 n=1

by Eq. (14), and
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N/2
ac 3 [ [drdt|—(vy,)* vy,
n=1
1] [8v. |" oy
n n | __
+'c2 Py S | =1 (ob)

by Eq. (13). Result (19a) in particular shows that the
modes ¥, are automatically probability amplitudes since
p is a probability. The Born assumption to this effect
does not have to be made.

By the general approach, we need to find what I equals
physically for this scenario. That is, we seek a transfor-
mation under which I remains invariant. Because of the
inner-product nature of form (19b), this transformation
will generally be a unitary transformation. According to
plan, in the transformed space I becomes J, the physical
manifestation of I. This requires the transform space
coordinates to have physical significance. Coordinates of
momentum and energy have such significance. They
characterize the particular unitary transformation called
the Fourier transformation.

Quantum Fourier symmetry

Define a momentum-energy space as the Fourier conju-
gate space to position-time,

(ir,ct)>(ip/H,E /ch) ,
with
¢n‘_’¢n

as Fourier transform mates ¢, and ¢,. As a result of
(20b),

(VY,,,00, /0t Y —ipd, /%, iEd, /7) .

(20a)

(20b)

(20c)

Note that quantities E and p are simply regarded as
“coordinates” of the Fourier space. They do not have
any prior physical significance. Indeed, any possible rela-
tion between “energy” coordinate E and ‘“momentum”
coordinates u is at this point undefined. It will be derived
later as the famous equivalence (26) of energy, mass, and
momentum.

Also, A is at first regarded as a parameter that is con-
stant in a particular problem, but which is not necessarily
a universal constant. EPI theory will later fix it as a
universal constant.

It is important that the symmetry relation not be so de-
tailed that, by itself, it implies the thing being sought
(here, the Klein-Gordon, and Dirac equations). In fact,
relations (20a), (20b) are merely the statement that %, has
a Fourier transform. Hence the relation is certainly not
overly detailed.

Use of Parseval’s theorem

According to this theorem, the integrated area (19b) in
position-time space equals a corresponding area in
Fourier space, or I remains invariant under Fourier (uni-
tary) transformation, as required by EPI. Specifically,
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(19b) becomes
I1=7=(4c/#) [ [dpdE P(u,EX—p*+E%/c?), (21a)

where we denote
N/2

3 416, =P(,E) .

n=1

(21b)

Terms in u? and E? in (21a) arise out of correspondences
(20c) applied twice by the theorem.

From its definition (21b), P >0. Also, integrating Eq.
(21b) over all (u, E) gives, by Parseval’s theorem, the area
under curve 3 Y%v,, which is unity by normalization of
p(r,t). Hence P may be regarded as a probability law in
momentum-energy space. Then the right hand side of
(21a) is simply an expectation

2
% ]<—u2+%> . (22)

This expression has many implications, as follows.

J=

Planck’s parameter as a constant

By corollary 1, J is to be a universal constant. Since the
two factors in (22) are independent, each must be a con-
stant. In the first factor, a parameter c is already fixed as
a universal constant, from the EPI general relativity
derivation [16]. Then parameter # must be a universal
constant as well.

Equivalence of matter and energy

Consider next the second factor. Now, the fluctuations
in E and p necessarily change from one set of boundary
conditions to another. This would make the factor a
variable, unless

E2
_u2+—2—=constEA2(m,C) ’ (23)
c

where A is some function of the rest mass m and the
speed of light ¢ (the only other constants of the free-field
scenario). Solving for E gives

E*=c’u?+ A% m,c)c? . (24)

By dimensional analysis, the function 4 (m,c) must obey
the relation

A=mc , (25)

where m is defined to be the mass of the particle. Equa-
tion (24) then becomes

E?=c%u’+m?%*. (26)

This is the familiar equivalence of mass, momentum, and
energy. We see that it is a consequence of EPI theory.

Klein-Gordon and Dirac equations

We can now proceed to form the physical information.
Putting (26) into (21a) gives
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N/2
J=(4m**/#) [ [dpdE '3 ¢34,
n=1

—mci /) [ [arar’s yp @7
n=1

by Parseval’s theorem. Then, by Egs. (19b) and (27), the
Fisher information transfer (15) is

N/2
AI=I—J=4c 3 ffdrdt[—(VdJ,,)"-Vl/;,,

n=1
1 a, |
+ l?] [ ot ]
(28)

According to the EPI principle (15), this is now to be
extremized through variation of the v¢,. The resulting
Euler-Lagrange equation is the Klein-Gordon equation of
relativistic quantum mechanics [20]. Or factoring the in-
tegrand and using a matrix-vector approach gives the
Dirac equation [16]. Finally, the electromagnetic poten-
tials A and ¢ are injected into the theory by invoking
corollary 2—in particular, invariance to gauge choice.
This is well known to be accomplished by the substitu-
tions (5). When these are made, the results become
correct for the particle in the presence of a general elec-
tromagnetic field.

_m%

ﬁZ

9,
dt

2
bnthn

Schrodinger wave equation

This may be shown, in the usual way [30], to be the
nonrelativistic limit of the Klein-Gordon equation, or of
the Dirac equation in the absence of a magnetic field. In
this way, the Schrodinger wave equation follows as well
from EPI. It cannot be derived directly because EPI is a
relativistically covariant theory, while the Schrodinger
formulation is not (since it treats space and time
differently).

This said, in fact, a noncovariant use of EPI does derive
the Schrodinger wave equation directly [17]. (EPI is a
robust theory.) This entails ignoring the time, using for
coordinates r only the space coordinates of a particle.
Then the time-independent Schrodinger equation, or the
Dirac equation, results. A further drawback of the non-
covariant approach is that the mass-energy relation (26)
then has to be assumed, rather than derived as here.
Also, the constancy of % is not proved. Hence, although
EPI can be used with noncovariant coordinates r to yield
a correct probability law p(r), only the full-fledged co-
variant approach gives the added benefits of a correct
time dependence ¥,(r,t), predicted connections among
the coordinates as in Eq. (26), and a predicted physical
constant, such as 4 in Eq. (22).

Synopsis

Quantum mechanics has been seen to arise from an in-
terplay between nature and an observer who intelligently
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measures the space-time coordinates of a particle. The
interplay takes the form of an information game. The
game is an exchange of information between coordinate-
time space (the observer’s domain) and momentum-
energy space (the demon’s). The latter space is defined by
the specific unitary transformation chosen, here the
Fourier one. The payoff of the game fixes the Klein-
Gordon or Dirac equation. These are expressions of
maximal width for the complex modes ,,. The result is a
maximally broadened p(r,t), and hence a maximally
disordered system.

PHILOSOPHICAL ASPECTS

EPI is an epistemology for eliciting those laws that de-
scribe the observed world. EPI also has an essential
“twoness” or ‘“dualism” about it. Thus there are two
protagonists in the information transfer game with, as a
result, two forms I and J of information. Each protagon-
ist aims to maximize his information state: the observer,
by placing modes q in the characteristic (nonoverlap)
state; and the demon, by maximally broadening the
modes. This amounts to two distinct tactics.

The two protagonists, each employing a distinct tactic,
successfully address a long-standing metaphysical ques-
tion about the relation between “mind” and ‘“‘matter”
(i.e., physical world). “Mind” is represented by the
gedanken observer, who makes a smart measurement and
demands a maximum of information in the data. He ac-
complishes this by increasing the mode separation, which
is choice i in the information game matrix I(i,j). This
constitutes one-half of the dualism, and of the game.

In the physical half of the game, the world responds to
measurement by maintaining the most disorder, i.e., re-
turning the least information. This response may be un-
derstood as another way of expressing the second law of
thermodynamics: Nature acts to maximize the disorder
in the data, through the Fisher measure J (not through
the usual entropy H). This takes the form of a maximal
broadening of the mode widths, corresponding to choice j
in the information matrix 7 (i,j). In this way, the choice
(i,j) is made, the game is played, and the dualism is at-
tained.

Two recent conjectures [14,31] touch on the problems
of dualism. These provide a suggestive, but nonquantita-
tive, discussion of the foundations of physical theory.
EPI theory, by contrast, quantifies the relationship be-
tween consciousness, information, and the understanding
of physics. We end this paper by describing these conjec-
tures and showing how EPI theory takes them out of the
realm of speculation.

The first conjecture is, “All things physical are
information-theoretic in origin and this is a participatory
universe ... . Observer participancy gives rise to infor-
mation; and information gives rise to physics” [14].

In the context of EPI theory “observer participancy” is
manifest as the smart measurement. This “gives rise to
information” I, whose ‘origin” 1is the physical
phenomenon as manifest in information J. The transfer
of information from form J to I takes place during a
game, and the net transfer (I —J) of “information gives
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rise to physics” through the resulting EPI principle (15).

The second conjecture is, “Matter and consciousness
are two realities in themselves, which are capable of mu-
tual interaction” [31].

In the context of EPI theory the observer “conscious-
ly” measures, obtaining data at information level I. Cor-
responding to I is the “matter” form J. These are dis-
tinct “realities in themselves” which “mutually interact”
during the information transfer game.

Thus, Fisher information and the EPI principle pro-
vide the missing mechanism for substantiating the two
conjectures. The creating mind, although separate from
the world it seeks to explain, engages it in a dynamic and
reciprocal relationship that gives rise to physical theory.

APPENDIX A: SOME COMPARISONS
OF FISHER’S AND SHANNON’S FORMS
OF INFORMATION

Derivation of Fisher information

Fisher information I, Eq. (2), derives readily. We fol-
low Van Trees [5]. Consider the class of estimators 6(y)
that are unbiased, obeying

(b(y)—0)=0= [dy[8(y)—06]p(yl®), (A1)

where p(y|0) is the probability density for a vector of
data values y in the presence of one parameter value 6.
Differentiate (A1) with respect to 6, giving

5—9) %2 _ =
Jayé-e)5— [dyp=o. (A2)
Use the identity
S _ olnp
36 P a0 (A3)

and the fact that p obeys normalization. Then (A2) be-
comes

fayo—0) 222 p=1 . (a%)
a6
Factoring the integrand gives
[ay %%Ev; [(6—01p1=1. (AS)

Square this equation. Then the Schwarz inequality gives

2
[ay |52 | p| [ [ay@-o0rp]=1. (A6)

This is Eq. (1) of the paper, called the Cramer-Rao in-
equality [S]. It links the mean-square error e of estima-
tion [second factor in (A6)] to the Fisher information I
(defined as the first factor). In the case y=y of one data
value obeying the additive form y =0-+x,I directly be-
comes Eq. (2) of the paper. [The additive data form im-
plies that p(y|@)=p(y —0). This means that p(y|9)
preserves the same shape irrespective of the size of 6.
This is a statement of shift invariance, and corresponds,
e.g., to Galilean invariance in nonrelativistic phenomena
or Lorentz invariance in relativistic phenomena.]
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Comparisons with Shannon’s form of entropy
The Shannon entropy H is

H=— [dx p(x)lnp(x) . (A7)

For our purposes, it is useful to work with the discrete
form

H=—Ax 3 p(x,)np(x,), (A8)

Ax being regarded as very small. The sum (A8) is simply
a sum of values of a function p(x, )Inp(x, ) over its pixels
x,. The pixels may be summed over in any order; the
same sum always results. Graphically, this means that if
the curve p(x,) undergoes a rearrangement of its points
(x,p(x,)), although the shape of the curve will drastical-
ly change, the value of H remains constant. H is then
said to be a global measure of the behavior of p (x,, ).
By comparison, the discrete form of Fisher information
I is, from Eq. (2),
I=Ax_12 [p(x, +1)—p(x,)]
" pix,)

(A9)

If the curve p(x,) undergoes a rearrangement of points
x, as above, now the local slope values [p(x, .,
—p(x,)]/Ax will change drastically, and so the sum (A3)
will also change strongly. Discontinuities in p(x,) will
now occur, and these have (in the continuous limit)
infinite slopes, so that I in fact will go toward infinitely.
Since I is thereby sensitive to local rearrangement of pix-
els, it is said to have a property of locality.

Thus H is a global measure, while I is a local measure,
of the behavior of the curve p (x,). These properties hold
in the limit Ax —0, and so apply to the continuous prob-
ability density p (x) as well.

This global vs local property has an interesting
ramification. Because the integrand of I contains a
squared derivative p'? or Vg, -Vg, [see Egs. (2) and (13)],
when the integrand is used as part of a Lagrangian the re-
sulting Euler-Lagrange equation will contain second-
order derivative terms p’’ or Vg, (see Refs. [16,17,23]).
That is, a second-order differential equation results. This
dovetails with nature, in that the fundamental differential
equations that define probability densities or amplitudes
in physics are second-order differential equations.
Indeed, the thesis of this paper is that the correct such
equations result when the EPI agenda is followed.

By contrast, the integrand of H in (A7) does not con-
tain a derivative. Therefore when this integrand is used as
part of a Lagrangian the resulting Euler-Lagrange equa-
tion will not contain any derivatives: it will be an alge-
braic equation, with the immediate solution that p(x) is
of an exponential form (see Ref. [22]). This is not, then, a
differential equation, and hence cannot represent a gen-
eral physical scenario. The exceptions are those physical
effects which happen to be of an exponential form, as in
statistical mechanics. (In these cases, I gives the correct
solutions anyhow; see Appendix C.)

It follows that, if one or the other of global measure H
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or local measure I is to be used in a variational principle
in order to derive the physical law p (x) describing a gen-
eral scenario, the preference is for the local measure I.

APPENDIX B: APPROXIMATION OF FISHER I
BY CROSS ENTROPY K

The accuracy with which an observer can know the
Fisher information I for a system is necessarily finite.
Since, by definition (2), I obeys

1= [dxp?/p(x), (B1)

to know I one must first know p (x). But an experimental
probability density p(x) can only be known through the
use of a finite “bin” size Ax, by counting the number of
events  within  discrete intervals (x,,x,+Ax),
n=1,...,N. The latter cover the domain of x. This
limits the accuracy with which p(x) is known since, in
effect, the average value of p over each finite interval
(x,x,+Ax) is computed instead of the instantaneous
value.

This would be of little importance if Ax could be made
arbitrarily small, but for any physical scenario there will
always be a smallest interval Ax permitted in practice.
For example, if x is a length, the smallest possible Ax that
one could use (in any scenario) is the smallest length, the
Planck length of value 10™3% cm.

By Eq. (B1), p'(x) must be known as well. With the
finite bin size Ax as above, values p (x,, ) are calculated, so
that each p'(x)=p'(x,),n=1,...,N, is conveniently
computed as a first difference

p'(x,)=[p(x,+Ax)—p(x,)]/Ax . (B2)

Hence the exact Eq. (B1) is necessarily replaced by a
finite approximation

N [p(x,+Ax)—p(x,)]

I= Ax (B3)
ngl (Ax )zp(xn )
This is reexpressed as
2
- plx, +Ax)
I=Ax %p(x,, ) —————p x.) (B4)

Now the quantity p(x,+Ax)/p(x,) is close to unity
since Ax is small. Therefore, the quantity in brackets in
(B4),

plx,+Ax)/p(x,)—1=v, (B5)
is small. Now for small v the expansion

In(1+v)=v—12/2 (B6)
holds, or equivalently,

v=2[v—In(1+v)] . (B7)
Then by Egs. (BS) and (B7), (B4) becomes

I=—2Ax"! }n‘,p(x,, )1np—(;"(~;:?—“

(B8)

+2Ax 'S plx, +Ax)—2Ax "' 3 p(x,) .
n n



52 LAGRANGIANS OF PHYSICS AND THE GAMEOF . ..

But each of the two far-right sums is Ax -1 by normali-
zation, so that their difference cancels, leaving

p(x,+Ax)
p(x,)

=—K(p(x,),p(x,+Ax)),

I=—2Ax"'3 p(x,)n
n

(B9)

the cross entropy between p (x,,) and p (x,, +Ax).

Thus to minimize [ is, approximately, to maximize K.
Each will give approximately the same solution p (x,, ).

In the preceding calculation, the fundamental quantity
was I, with K found as an approximation to it. But, of
course, the reverse viewpoint may instead be taken. That
is, assume instead that K is the fundamental quantity,
more specifically, the continuous integral version of (B9).
Again, this is to be calculated in the presence of a finite
bin size Ax. Then K turns out to be approximated by a
sum of terms whose quadratic (in Ax) term is proportion-
al to I [32]. (However, the lower-order terms do not drop
out, as they do here. The result is not as “clean.”) It fol-
lows that to maximize K is to minimize I, since the
lower-order terms do not contribute to the variational
problem.

So we come full circle. By this (second) viewpoint [33]
the fundamental quantity is K, and I exists only as an ap-
proximation to it.

Which of the two viewpoints is correct? In fact, if the
second viewpoint is taken, to solve the variational prob-
lem still requires minimizing I. This is because function
p(x +Ax) is dependent upon function p(x). Both must
be varied simultaneously, and the only way to do this is
to expand p (x +Ax) as a power series in Ax, bringing in
functions p’(x),p’’(x), etc. The result is a return to the
Fisher I problem (which was the first viewpoint). In
effect, it is only minimization of I that matters, by either
viewpoint.

APPENDIX C: TRANSITION FROM EPI TO ME
IN STATISTICAL MECHANICS

Represent a general p (x) as

p(x)=exp[g(x)] (Cn
in Egs. (A1) and (B1). These become
H=—fdxp(x)g(x) s I=fdxp(x)g’2(x) . (C2)

The coordinate x is, as yet, undefined. Later we give it
the physical significance of a velocity or an energy.
Regard each of H and I to be extremized subject to the
same constraints, including (of course) that of normaliza-
tion of p (x). (In the context of EPI, the constraints fix J
for the scenario.) The usual method of Lagrange multi-

2285

pliers is used to additively tack on the constraint terms.

We are interested in finding a class of solutions p (x)
that is common to the two extremization problems. This
will occur if H and I are proportional to within a normal-
ization integral,

=—AI—B [dx p(x). (C3)

Using Egs. (C2) in (C3) gives a requirement on g (x) that
g(x)=Ag'Y(x)+B . (C4)

This simple differential equation has a general solution
g(x)=(x—C)*/44 +B ,

where A, B, and C are arbitrary constants.

Hence by (C1) the common solution p (x) is generally
in the form of the exponential of a quadratic function.
Depending upon the size of A, this includes both the nor-
mal solution (for finite A4), and the linear exponential
solution (for 4 — — ). Physically, these respectively
define the Maxwell-Boltzmann velocity distribution law,
for the choice x =velocity; and the Boltzmann energy
distribution law, for x =energy. These PDF’s are the fa-
miliar solutions of equilibrium statistical mechanics.

What we have shown, then, is that equilibrium statisti-
cal mechanics is the common meeting ground of the EPI
and ME approaches to estimating PDF’s. Next, consider
the more general circumstance of temporally nonequili-
brium statistics. EPI generally seeks such solutions, since
EPI is a generally covariant theory, treating time like any
other coordinate. By contrast, ME extremization follows
from the Boltzmann H theorem result that dH /dt =0,
which implies that time must approach infinity in order
for H to be maximized. Hence, ME is restricted in scope
to temporal equilibrium solutions.

The distribution functions of nonequilibrium statistical
mechanics are known to obey the Boltzmann transport
differential equation. The solution to this is a general su-
perposition of Hermite-Gauss functions [34]. In fact,
EPI generates these solutions [35] as subsidiary minima
in AI, with the absolute minimum attained by the
Maxwell-Boltzmann solution. This is under the con-
straints of normalization and mean energy.

However, under the same constraint inputs, ME only
gives the equilibrium (as above), Maxwell-Boltzmann
answer [22]; it fails to produce any of the higher-order
Hermite-Gauss solutions. (Mathematically, this is be-
cause multiple solutions follow from differential equa-
tions, which ME cannot produce; also see Appendix A
and the second preceding paragraph.) Hence EPI and
ME only coincide at the most elemental level of statistical
mechanics, that of equilibrium statics. Beyond this level,
ME does not apply.
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