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Fluctuations and decoherence in classical chaos: A model study of a Kubo oscillator generated
by a chaotic system
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We consider a Kubo oscillator whose stochasticity in frequency is generated by a 1.5-degree-of-
freedom chaotic system. Based on the theory of multiplicative noise we show how fluctuation and
decoherence and their relationship, which is analogous to the fluctuation-dissipation relation in many-
body physics, can be realized in classical chaos. We numerically verify the basic theoretical proposi-

tions.
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I. INTRODUCTION

A key theme in nonlinear physics today is chaos in
dynamical systems [1]. Recent experimental and theoret-
ical research on few-degree-of-freedom systems has led to
the discovery of new generic features in classical motion;
regular and chaotic flows in phase space are, of course,
the key notions. The chaotic motion is not associated
with any random parameter or forces but is due to the
unstable character of the trajectories in phase space.

The chaos in dynamical systems, although determinis-
tic, is stochastic in nature in the statistical sense. It is
therefore expected that statistical mechanical formalism
[2-9] might be useful for description of classical chaos.
For specific discrete systems such a formalism was con-
sidered by Kai and Tomita [2] and Oono and Takahashi
[3]. Kadanoff and co-workers [4] have introduced a
powerful method for characterizing multifractals based
on certain partition functions. Widom et al. [5] dis-
cussed the example of Julia sets. The method of statisti-
cal mechanics was also followed by Kohmoto [6] to intro-
duce entropy function and free energy function for mul-
tifractals which are a prerequisite for the existence of
thermodynamics. These functions are related to
Kolmogorov-Sinai entropy and Lyapunov exponents in
the case of dynamical systems. For continuous low-
dimensional chaotic systems, such as the Henon-Heiles
Hamiltonian, the method of equilibrium statistical
mechanics has recently been employed [7] to define tem-
perature and entropy analogous to thermodynamics.

Apart from implementation of the methods of equilib-
rium  statistical mechanics, kinetic description
[9-14,16,17] has also been used over the years. Ever
since the early numerical study of Chirikov mapping re-
vealed that [10] the motion of a phase variable can be
characterized by a simple random walk diffusion equa-
tion, attempts have been made to describe chaotic motion
in terms of the Langevin or equivalently Fokker-Planck
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equation. It has now been realized that deterministic
maps can result in long time diffusional processes and
methods have been developed to predict successfully the
corresponding diffusion coefficients [1]. While these stud-
ies are based on maps, identification of a noise term in the
Lorenz equations after recasting it to an approximate
Langevin form has been achieved by Nicolis and Nicolis
[12] by successfully separating the distinct time scales in-
volved in the dynamics using a center manifold method.
Based on a strategy of separation of time scales Bianucci,
West, and Grigolini [13] have considered a closed Hamil-
tonian system and shown that the system of interest fol-
lowing a slower dynamics obeys a Fokker-Planck equa-
tion having a canonical distribution which defines a tem-
perature like quantity. Very recently we have proposed a
general fluctuation-diffusion relation [14] (a Kubo rela-
tion in chaotic dynamics) for Hamiltonian systems which
relates the largest Lyapunov exponent to the Fourier
transform of the curvature-curvature (curvature of the
potential) correlation function and shown that the theory
of multiplicative noise can be a good natural description
for classical chaos on several occasions.

In spite of a great deal of effort to derive the stochastic
processes (for example, Brownian motion) from a purely
deterministic dynamical model the problem has largely
remained unsolved. From a theoretical standpoint it is
worthwhile to distinguish two different situations. In the
first case one is considered with the derivation of Browni-
an motion from a well-known system heat-bath model
[15] comprised of 1+ N linear oscillators (1 system oscil-
lator and N bath oscillators. N— o) In the second case
[16,17] one is concerned with the derivation of a similar
kind of stochastic process from a system-chaotic-bath
model where the N-oscillator bath is replaced by a low-
dimensional chaotic system. In the later context we
specifically mention the work of Bianucci and co-workers
[16,17] who, based on a simple two-dimensional (2D)
map, have given a derivation of Fokker-Planck equation
for the system of interest using only dynamical argu-
ments where both the friction and diffusion terms are de-
rived from the dynamical properties of the chaotic bath.
In this paper we have addressed a related issue. We con-
sider a Kubo oscillator, i.e., a harmonic oscillator with
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stochastic frequency where the stochasticity is generated
by a 1.5-degree-of-freedom chaotic system which mimics
a “thermal bath.” Based on the theory of multiplicative
noise [18] we analyze this system—chaotic-bath model to
derive a stochastic process for the system oscillator for
which damping of oscillation amplitude and diffusion
coefficients are explicitly derived from the properties of
the bath. The present formulation illustrates how both
fluctuations and decoherence (which results in dissipation
of oscillation amplitude) and their relationship in terms
of a fluctuation-dissipation—type relation in many-body
physics can be realized in classical chaos without taking
into consideration any phenomenological drift terms. We
emphasize here that the process of dissipation of oscilla-
tion amplitude in the sense implied in this paper and in
that of van Kampen [18] is related to the relaxation of
correlation function but is not the dissipation of energy
implied in the traditional fluctuation-dissipation theorem.
We have carried out numerical computations for
verification of the basic propositions which are valid for
short but finite correlation time but are exact in the limit
of vanishing correlation time.

The layout of the paper is as follows. In Sec. IT we in-
troduce the system—chaotic-bath model which consists of
a Kubo oscillator whose stochasticity in frequency is gen-
erated from a 1.5-degree-of-freedom chaotic system
(bath). Based on the theory of multiplicative noise we an-
alyze this model in Sec. III to illustrate how diffusion and
decoherence arise in classical chaos. Theoretical proposi-
tions are verified numerically in Sec. IV. The paper is
concluded in Sec. V.

II. AKUBO OSCILLATOR GENERATED
BY A 1.5-DEGREE-OF-FREEDOM CHAOTIC BATH

To start with we consider a harmonic oscillator with
frequency o described by a coordinate x as follows:

X +o*x =0, (1
where
o’=1+aq(t)

is the sum of a constant part unity and a fluctuating part,
ag(t). ais a measure of the strength of fluctuation; g ()
represents the coordinate of the bath oscillator. The sto-
chasticity in g (¢) is generated by the chaotic motion of a
double-well oscillator driven by a time-dependent field as
follows:

§g+V'ig=0, (2)
where
V(g)=aq*—bg*+gq cos(wt) .

Here a, b, and g refer to the parameters of the double-
well potential and the classical field, respectively.

The system-chaotic bath is thus composed of two
parts. The first part described by Eq. (1) is the system of
interest unperturbed part of which executes a simple har-
monic motion with a constant frequency. The second
part Eq. (2) plays the role of a “thermal bath.” Note that
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in the present model we have not taken into account any
feedback from the system of interest to the bath. The
feedback of the system of interest to the bath is an essen-
tial requirement for realization of damping force respon-
sible for dissipation of energy in a fluctuating system im-
plied in the traditional fluctuation-dissipation relation-
ship. The absence of feedback in the present model is
therefore an important point of departure from the usual
approach. The system of interest here acts as a probe for
the noise and the noise embedded in Eq. (1) is multiplica-
tive in nature. Thus although Egs. (1) and (2) comprise a
deterministic dynamical system, in principle, Eq. (1) may
be interpreted as a stochastic differential equation with
multiplicative noise [18].

Before proceeding further we would like to emphasize
some relevant points at this stage. First, we consider a
fully developed chaotic regime, i.e., the measure of a reg-
ular region is overwhelmingly small so that g (¢) may be
treated as a stochastic process.

Second, in our theoretical and numerical considera-
tions that follow we do not make any a priori approxima-
tion on the nature of the stochastic process g (¢). The
special cases where ¢ (¢) is a Gaussian, or a 8-function-
correlated process, etc. have received so much attention
in the recent literature that it is necessary to note that no
such ad hoc approximations have been made.

Third, the strength of fluctuation a in Eq. (1) is as-
sumed to be small, i.e., we restrict ourselves to the
system-bath weak coupling regime. For calculation of
relevant quantities we take care of fluctuation which is
second order in a.

Fourth, the only assumption we make on the stochastic
process g (¢) is that its correlation time is short but finite.
This is a basic requirement for systematic separation of
the time scales involved in the dynamics.

III. THEORETICAL CONSIDERATIONS

Over many years numerous authors [18] have studied
the problem of a harmonic oscillator with fluctuating fre-
quency in connection with wave propagation, mechanical
systems, line broadening, lasers, etc. A classic
comprehensive treatment has been given by van Kampen.
What follows next is that we use some of its relevant
standard results to the system-—chaotic-bath model and
show that it is possible to derive a Fokker-Planck equa-
tion whose drift and diffusion coefficients are derived ex-
plicitly from the properties of the chaotic bath. Taking
into consideration the points noted in the preceding sec-
tion we construct [18] the equations of motion (second
order in a) for the first and second moments for the sys-
tem of interest from Eq. (1). These are

()+T(x)+{1+ac—(a?/2)c;}{x)=0 (3)

with
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(x?) 0 0 2
— [(x?)|= a’c,

(xx)

—a%, —2—2ac

2

—1—ac +ac, 1 —a‘c,

respectively. Here c;’s are expressed as the Fourier trans-
forms of the correlation functions of the bath as follows:

cl=fow«q(t)q(t—t')»sin(Zt')dt' ,
c2=fo""«q(t)q(t—t’)))(1~cos2t’)dt’ , (5)
cs=fow«q(t)q(t—t’)))(1+cos2t’)dt' ,

c=(g(2)) and (q;q; ) =(q;q;) —(q;){q;) .

Equations (3) and (4) suggest that in principle we have
effectively incorporated the properties of the chaotic bath
into the evolution of the system of interest through ap-
propriate correlation functions.

A few pertinent points are to be noted here. First, Eq.
(3) reveals that chaos of the bath causes a damping of the
average amplitude of the system oscillator. However,
this damping term I' may be negative, i.e., it may behave
as a gain term when the fluctuations are particularly
strong at twice the unperturbed frequency. The relation-
ship

r=1la’, (6)

which connects the dissipation of amplitude (but not en-
ergy) with fluctuations is reminiscent of (not identical to)
the famous fluctuation-dissipation theorem in many-body
physics. It should also be noted that in addition there is
a shifting term associated with the frequency of the har-
monic oscillator.

Second, on examining the eigenvalues of the matrix in
Eq. (4) [which up to second order in a are
—La®(3cy+c3)+2i{1—1a’c,} and ta’(c;—c,)] it can
be shown that zero frequency of the unperturbed case
corresponding to the conservation of %(x2+x2) now be-
comes

7L0=%a2(c3 —CZ)
or
ho=4a? [ " gq(n)g(t —1') Neos(2t)dt’ . (7)

This implies that owing to fluctuations in the force that
have twice the characteristic frequency of the system os-
cillator the average energy grows at a rate A, and the sys-
tem becomes unstable.

Third, one obtains the dispersion in the coordinates of
the system oscillator from Egs. (3) and (4). The evolution
of average amplitude is given by
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(x?)
%% 1, 4)

(xx)

s1x(0)+{y(0)—rx(0)
(x(1))= 1 {y } 5yt
$175,
5,x(0)+{y(0)—rx(0)
+[ 2 {y } es2 , (8)
Sz_sl
where
r=—%a2c2 ,
5 172
. 1.2 . a
s;=—za’c,+i 1+ac—*2—~cll ,
172
s2=—}a2c2-—i 1+ac—92—cl

Here x(0) and y(0) refer to average initial coordinate
and momentum of the Kubo oscillator, respectively.
Again solution of Eq. (4) yields

S () Agt
25y — 0
(x%(2)) oA =7 )¢
f(}H—) ek+t
(A — Al A, —A)
f(A_) At
(A_—Ag)A_—2,)° ©)
where

f()=x,(0)d+a’c,d+ak,)
—(2—2ac)x,(0)+2x,(0)
+2x5(0)(¢+a’c,)

and x,(0), x,(0), and x4(0) refer to the initial second mo-
ments as follows:

x1(0)=(x2), x,(0)=(x?), x30)=(xxk) .

From Eqgs. (8) and (9) we readily obtain the expression of
dispersion

Ax =[{x2(1))—[{x())]*]'2 .

It is thus apparent that an interpretation of Eq. (1) as a
stochastic differential equation with multiplicative noise
whose source is the chaotic bath described by Eq. (2) sim-
ply illustrates how the correlation functuation relaxes as
a result of the irreversible process of decoherence and
thereby implying a dissipation of oscillation amplitude
and how decoherence and fluctuations are formally relat-
ed through a fluctuation-dissipation—type relation. We
verify numerically the basic propositions in the next sec-
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tion. This readily allows us to describe the stochastic
evolution of the system oscillator in terms of the follow-
ing Fokker-Planck equation which incorporates parame-
trically the properties of the chaotic bath (we follow the
prescription of Ref. [18]):

%__, % %, .0 o Oup
ar Cou “ov M Yo
+a’c —a—z—u2 +a?c i u?
4av2 P Savau P
2
—alcs—uvp, (10)

dv?
where we use the notations
u=x, v=x, {q(t))=c.
Also note that
ce= [ "Kqgt—m)Ndr,
cs=f0wr«q(t)q(t—¢)>)d¢.

We now point out an essential difference between the
present system—chaotic-bath model and the conventional
system— N-oscillator-bath model. In the latter model the
process of dissipation implies that the energy can be lost
by the system of interest and absorbed by the N-oscillator
bath and the conventional fluctuation-dissipation process
means that the energy absorbed by the system of interest
through the process of fluctuation is balanced by that ab-
sorbed by the bath through the action that the system of
interest exerts on the bath. Because of the structure of
coupling between the system and the chaotic bath (which
implies that no energy can be transferred by the system of
interest to the chaotic system) no balance of this kind is
implied in the present relationship [Eq. (6)]. The I" term
[a second order term in the equation for the average; see
Ref. [21] (p. 386) for a detailed discussion] in Eq. (3) is
due to fluctuations and is usually dissipative (if the fluc-
tuations at twice the frequency are not strong). This rela-
tionship between dissipation of oscillation amplitude and
the autocorrelation function of fluctuation is analogous to
the Green-Kubo relation in the many-body system (fol-
lowing van Kampen) but not identical with it because
there the fluctuations are internal rather than added as a
separate coupling term as in Eq. (1) itself.

To give a fair perspective of the crucial issue of dissipa-
tion (of coherence) implied in relation (6) and in the tradi-
tional fluctuation-dissipation (of energy) theorem it is
pertinent to make the following two comments.

(i) The dissipation of energy is the phenomenon of
waste of mechanical energy due to the interaction be-
tween the system of interest and the bath. The damping
force responsible for this process implies a feedback of
the system on the bath. The work of Bianucci and co-
workers [16,17] is essentially devoted to a totally dynami-
cal derivation of this process of fluctuation and dissipa-
tion by using only the dynamical properties of the chaotic
systems. Dissipation takes place as a result of two key
steps: the first is the action of the system of interest on
the bath and the second is the regression of the bath to
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FIG. 1. Correlation function (g (t)g(z —7))) is plotted as a
function of time for parameters mentioned in the text. (Both
the units are arbitrary.)

the invariant distribution corresponding to the given
state of the system of interest. The process of fluctuation
on the contrary depends on the chaotic properties of the
bath.

(ii) As pointed out by van Kampen [18] there exists a
second form of ‘““dissipation” not implying absorption of
energy but concerning a process of decoherence which re-
sults in a damping of the oscillation amplitude of the os-
cillator. This is formally related as in the standard
Green-Kubo relation to the regression of equilibrium of a
correlation function. While in the case mentioned by van
Kampen this is caused by the action of an infinitely large
number of degrees of freedom, the present work refers to
the case where the process only depends on the chaotic
properties of a deterministic process. Thus in a sense we
realize the “dissipation” (or decoherence) process of van
Kampen within the same deterministic perspective as
that adopted by Bianucci and co-workers to deal with
dissipation of energy.
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FIG. 2. Average amplitude (x) of the Kubo oscillator is
plotted against time (oscillatory curve). Broken line is the
theoretical curve which takes into account of the decay part of
solution for {x ) in Eq. (3) only. (Both the units are arbitrary.)
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FIG. 3. Average energy of the Kubo oscillator is plotted
against time (full line, numerical; broken line, theoretical).
(Both the units are arbitrary.)

IV. NUMERICAL VERIFICATIONS

To verify the basic relations in Egs. (6) and (7) and the
relation for dispersion we have first solved Egs. (1) and (2)
by the fourth order Runge-Kutta method. The parame-
ters chosen [19] are as follows: a =0.5, b=10.0, and
©=6.07. The driving field amplitude g is set at 10 to
achieve well-developed global chaos. The strength of
fluctuation a is assumed to be 0.1. To calculate the aver-
age quantities from Egs. (1) and (2) the averaging is car-
ried out over 1000 trajectories for a given set. A typical
plot of decay of correlation function is shown in Fig. 1.
This decay is a well-known characteristic signature of
classical chaos [20,22].

In Fig. 2 we show how the average amplitude {x ) of
oscillation of the system oscillator decays with time. The
rate of damping of the oscillations is found to be in excel-
lent agreement with that calculated theoretically (broken
line) from Eq. (6) by making use of the correlation func-
tion and its Fourier transform. [Note that in the theoret-
ical curve we have not taken into consideration the oscil-
latory terms in Eq. (3).]

In Fig. 3 we show how the average energy of the sys-
tem oscillator calculated by direct numerical integration
of Egs. (1) and (2) and by subsequent trajectory averaging
diverges in time. The result is compared with that calcu-
lated theoretically (broken line) using the relation (7) with
the help of correlation function and its transform.

Figure 4 demonstrates a relative comparison between a
numerical and a theoretical plot (dotted) for dispersion of
coordinates of the system oscillator. It is apparent that
in the numerical curve the irregular oscillation persists
for a long time where the oscillations are smoothed out in
time in the theoretical curve. The rate of divergence in
the two cases are in very good agreement. It is apparent
that because of multiplicative noise with no feedback the
diffusive motion of the system oscillator driven by a
chaotic bath becomes strongly nonlinear.

To check the validity of relations (6) and (7) and the re-
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FIG. 4. Dispersion in x (coordinate of harmonic oscillator) is
plotted against time (full line, numerical; broken line, theoreti-
cal). (Both the units are arbitrary.)

lation for dispersion we have carried out further numeri-
cal computation by varying g. The plots qualitatively
remain the same. For the sake of brevity we have not
reproduced them here as a part of our discussion. Keep-
ing in mind the fact that our theoretical calculation is
correct up to second order (although it can be extended
to higher order) in a the order of magnitude agreement
demonstrates the qualitative validity of the proposed rela-
tionships in classical chaos.

V. CONCLUSIONS

The key point in the deterministic derivation of a sto-
chastic process on the basis of traditional system-—N-
oscillator heat-bath model rests on appropriate elimina-
tion of bath degrees of freedom and incorporation of the
effect of the bath on the evolution of the relevant part of
the system through bath correlation functions. It is in
this spirit the present approach illustrates how fluctua-
tion and decoherence (and their relationship in terms of a
Green-Kubo type relation) can be realized as fundamen-
tal process of a chaotic dynamics through a
system—chaotic-bath model (where the bath is a 1.5-
degree-of-freedom chaotic system) by considering the
evolution of the system of interest which takes into ac-
count the effect of chaos through appropriate bath corre-
lation functions. Although in the majority of the theoret-
ical treatments diffusion appears naturally, drift terms do
have some phenomenological bearing. However, both of
these processes actively participate in a multiplicative
process as considered in the present case in such a way
that both of them can be treated on a common theoretical
footing.
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