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Crystallization patterns of monomers with a nearest-neighbor interaction
on a multilayered semi-infinite square lattice
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The absorption of an external monomer gas in a square lattice of L layers, infinite in one direction and

finite (M sites) in the other, is studied with a finite nearest-neighbor repulsion energy V» & 0. In a physi-

cal system, the monomer chemical potential p& is determined by the external gas pressure. For a temper-

ature below ( —V» /5k&)log&oe the curves of entropy S versus lattice coverage 0& exhibit two cusps for

L =1 and 2, and three cusps for L =3, at S =0. Crystallization pattern analysis at the cusps leads, in

terms of M and L, to exact expressions of 0& and the number 02 of nearest neighbors per site which are
linear in 1/M. Setting M= 00 yields, for L =1 and 2, one cusp at (0&= —,02=0), and for L =3, two

cusps at (0& = 2, 02=0) and at (0& = 6, 02=
3 ). The change in p& required to unlock the structural order-

ing is shown to be proportional to V». Other features of the system below the critical temperature re-

ported above are also discussed.

PACS number(s): 02.50.—r, 05.50.+q, 05.70.—a

I. INTRODUCTION

Lattice models have been investigated for seven de-
cades with one of the most cited early models being the
Lenz and Ising model of ferromagnetism [1]. The devel-
opment of statistical thermodynamics has greatly
benefited from the study of these models [2]. Here, we
study the equilibrium adsorption of nonoverlapping
monomer species on a surface having N sections of M
equally spaced sites, in the thermodynamic limit N = ~,
with nearest-neighbor interaction. The study also in-
cludes absorption of monomers in two and three layers
(L=2 and 3) of MXN arrays of sites. For a lattice
infinite in both directions (N=~, M=~) and with
I.= 1, 2, and 3, the behavior of the system is obtained us-
ing the method of Fowler and Rushbrooke [3], that is, by
extrapolation of the results for increasing values of M.
For example, Kramers and Wannier [4] used this method
to investigate the thermal properties of the Ising model
with no external field, and simi1ar extrapolations were
also made in the case of the infinite nearest-neighbor
monomer repulsion (nearest-neighbor exclusion), referred
to as the hard square model [5]. -Our model goes beyond
the hard-square model in that we a11ow for finite nearest-
neighbor interactions, as in the study of physical adsorp-
tion isotherms for planar and cylindrical M XX lattices
done by Hock and McQuistan [6]. These authors com-
pared results for the two types of lattices, and observed
anomalous particle densities along the free edges of the
planar lattice, in a certain range of nearest-neighbor
particle-particle interaction energies, and for various
values of M. Our analysis considers planar lattices
beyond the energy range investigated in Ref. [6], and fur-
ther includes the study of absorption in two and three
layers of planar lattices.

The monomers in the lattice (lattice gas) come from an
external gas. At equilibrium, the external gas pressure

determines each monomer's chemical potential p &.

Monomers in the lattice do not interact with the mono-
mers in the external gas; but each one has an interaction
energy V&0 with the lattice, and an interaction energy V»
with a monomer occupying a nearest-neighbor site. The
absolute temperature T of the system is maintained con-
stant, while p, is varied by adjusting the external gas
pressure. Thus, the model is a lattice gas with an exter-
nally produced chemical potential, which is similar to the
Ising model in an external magnetic field [7]. Our system
is a two-state system, that is, a lattice site may be either
occupied or unoccupied, and we have interactions only
between nearest-neighbor occupied sites. The two abso-
lute activities of the lattice gas related to the monomer
lattice and to the monomer-monomer nearest-neighbor
interactions are

Vi+ V~o p,
x& =exp =10 ', x2 =exp

k, T ' ' k, T
= &0"'

respectively. Here k~ is Boltzmann's constant, and p,
and pz are dimensionless parameters conveniently chosen
for conducting numerical calculations. In the thermo-
dynamic limit, and for difFerent lattice widths M, we ob-
tain the entropy of the lattice gas with adsorption taking
place on one layer (L= 1), and absorption taking place in
two (L=2) or three (L=3) layers. Extrapolations of the
result to M = ~ follow as indicated above. For a given
species of monomers, interaction energies V&0 and V»
are fixed. With the system held at a constant tempera-
ture T, x2 is fixed and so is p2. Changes in the external
gas pressure produce changes in the chemical potential p,
and, therefore, changes in p&. Thus, an entropy isotherm
curve is generated by varying p& keeping p2 fixed. Entro-

py curves for di6'erent values of p2 correspond to either
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different isothermal curves for the same monomer species
(given values of V&0 and V» ), or to different species of
monomers at the same temperature, or both.

We observe the existence of cusps in the entropy
curves, as was reported to be the case with dimer species
[8]. The information obtained is crucial for the investiga-
tion of a mixture of monomers and dimers [9] which is a
first step in developing a model of chemical reactions on a
surface (heterogeneous catalysis) [10]. As an example, we
could think of carbon monoxide adsorbed on Ni(100)
which is the preferred catalyst for methanation (Fischer-
Tropsch hydrocarbon synthesis). At low coverages of
carbon monoxide, two upright species exist, assigned to
on-top (monomer) and bridge positions (dimer) [10].

II. TRANSFER MATRIX

Computing time is greatly reduced when the transfer
matrix is recursively constructed, and a slightly different
technique than the one used in Ref. [6] is required. In
Ref. [8], we showed how it is possible to obtain the recur-
sive construction of the transfer matrix for a system of
nonoverlapping dimers on a planar MXN lattice, with
nearest-neighbor interaction. This technique is easily ex-
tended to species of different shapes and to other types of
lattices as well. In the following, any matrix with upper
index L and lower index M is of rank 2 and refers to a
semi-infinite lattice of L planar layers of width M, and we
follow the same procedure for the recursive construction
of the transfer matrix, T~, for nonoverlapping monomers
on L layers of planar M XN lattices. For a given number
L of layers, the construction is based on a diagrammatic
short-cut, as demonstrated in Ref. [8].

Figure 1 shows the diagrams needed for a one-layer lat-
tice. Two kinds of block matrices have to be considered,
TM and PM, and the diagrammatic recursive construc-
tions of TM and PM are shown in Figs. 1(a) and 1(b), re-
spectively. Each matrix is divided into four block ma-
trices, expressed as the product of activities and TM and
P~. The entries of the block matrices are occupational
configurations of a section of the lattice having M sites,
with each site represented by a square cell. When the oc-
cupation of a cell is arbitrary it is left blank, when it is
constrained to be vacant it is marked by a circle, and
when it is constrained to be occupied by a monomer it is
marked by a filled circle. The horizontal and vertical en-
tries are associated with the occupational configurations
of the erst and second of the N sections of M cells making
up the M XN lattice, respectively. In Fig. 1(a), the hor-
izontal entries are the configurations of the erst section
corresponding to the two possible occupations of the cell
at the right edge of the lattice, leaving the remaining cells
with arbitrary occupation. Similarly, the vertical entries
of Fig. 1(a) are the configurations of the second section of
M cells, with the cell at the right edge being either vacant
or occupied, leaving the remaining cells with arbitrary
occupation. Thus, as shown in Ref. [8], the block ma-
trices are obtained by considering the matching of the oc-
cupational configurations of the horizontal and vertical
entries. The (11) and (21) block matrices correspond to
having a vacancy (activity equal to 1) in the cell at the
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FIG. 1. Recursive construction of the transfer matrix T~ for
one layer of M XN lattice sites.

right edge of the second section of the lattice, thus creat-
ing either a vacancy-vacancy or a vacancy-monomer
nearest neighbor with the cell at the right edge of the first
section. No interaction energies are associated with these
types of nearest neighbors, and, in both cases, the abso-
lute activity is 1. Following Ref. [8], the corresponding
(11) and (21) block matrices are both TM &. On the other
hand, the (12) and (22) block matrices of Fig. 1(a) corre-
spond to having a monomer in the cell at the right edge
of the second section (activity equal to x

& ), thus creating
either a vacancy-monomer (activity equal to 1), or a
monomer-monomer (activity equal to x2) nearest neigh-
bor with the cell at the right edge of the first section. A
new matrix P~, is exhibited and the corresponding
block matrices are of the form x,P~, and x,x2P~
Matrix PM, occurs when requiring a vacancy-monomer
or a monomer-monomer occupation in the cells at the
right edge of the first and second sections, leaving the
remaining M —1 cells with an arbitrary occupation.
Thus, either of these configurations can be used to gen-
erate the recursive construction of PM &. Figure 1(b) ex-
hibits this construction with the choice of the vacancy-
monomer combination. Thus, the block matrix entries of
Fig. 1(b) restrict the occupation of the cell second from
the right edge of either the first or second section of the
lattice, leaving the occupation of the remaining M —2
cells arbitrary. The block matrices of Fig. 1(b) are ob-
tained in a manner similar to that considered in Fig. 1(a),
and show that P~, is recursively related to TM 2 and
to PM 2

1

The same technique applies to any number L of layers.
The block matrix entries involve the first and second of
the N sections of the lattice with L layers, each contain-
ing M cells. In each of these two sections, we consider all
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possible occupations of the L cells at the right edge, leav-
ing the occupation of the remaining cells arbitrary.
Thus, the transfer matrix TM is divided into 4 block ma-
trices. For two layers, Fig. 2 shows the necessity of in-
troducing three additional matrices, PM, Q~, and U~.
The transfer matrix T~ is related to PM „QM „UM

and T~ &. The constructions of PM, Q~, and U~ are
similar to that of PM and are not presented. The addi-
tional matrices may also be shown to be related recursive-
ly to T only, so that, in the final analysis, T is recursively
related to itself. We report the final results for one and
two layers, namely:

T1
M

1 1 1
TM —1 X1 TM —1CXM —1

1 1 1
TM 1 X1X2TM 1AM —1

1 0
1 1M 0 IM —1X2

(2a)

T2-
M

TM —1
2

TM —1
2

TM —1
2

TM —1
2

~2 2X1'M —1&M —1

~2 2X1X2' M —1&M —1

~2 2
X1 TM —1+M —1

~2 2
X1X2 M —1&M —1

x i TM &pM—
2 2

2 2x 1 TM —11M —1

2 2x lx2 TM —1~M —1

2 2x1x2 TM —lf M —I

2 ~2 2X 1X2 s M —17M —1

2 2~2 2X 1X2x M —1 VM —1

2 2~2 2X 1X 2c M —17M —1

2 3~2 2X 1X2x M —13 M —1

(2b)

with

1 0 1 0
0 1 0 ~M —1

1 0 1 0
I M O x O l IM —1 (2c)

2
XM

1 0 1 0
0 0 IM1

X2 X2

Here I refers to the identity matrix whose rank is
specified by its indices, and the operation is the
Kronecker product of matrices. The initial conditions
are

LM
2 3LM L M 2

ae, (ao /ao )

ln[x&xz ']=0 .
BX1

(6a)

All the numerical calculations were done on the Cray
C90 computer at the Pittsburgh Supercomputing Center.
For given values of p2, we varied p1, and evaluated 0, , 02,
and S for M=1 to 8 with L=1, M=1 to 5 with L=2,
and M=1 to 4 with L=3. An extremum of the entropy
curve is obtained when its partial derivative with respect
to x, at that point is zero, i.e.,

as
lnx1 — lnx2

BX1 ()X1 ()X 1

Tl- =~L=Pl.=yL = l (2d) This occurs when, at that point, either the coverage of
the lattice is an extremum, or

It should be noted that the transfer matrix must satisfy
the symmetry property, TM= TL, a property which has
been used to check the validity of our numerical calcula-
tions.

~ao, zao, ). 802
P2. (6b)

III. THERMODYNAMIC QUANTITIES

In the thermodynamic limit, the partition function is
given by TM's largest eigenvalue [8], R (x „xz ), raised to
the power 1/LM. In turn, the fraction 8, of lattice sites
occupied by monomers, and 02, the number of nearest
neighbors per site, are given as

0, = BR X2 M02=
LMR Bx, ' LMR Bx

The entropy per site divided by Boltzmann's constant
(hereafter referred to as entropy) is

1S = lnR —01lnx1 —02lnx2 .

A normalized quantity, Oz, representing the fraction of
the maximum number of nearest neighbors is
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FIG. 2. Recursive construction of the transfer matrix T~ for
two layers of M XN lattice sites.
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IV. COMPARISON BETWEEN THK FEATURES
IN ONK DIMENSION AND THOSE

OF ONE, TWO, AND THREE LAYERS
OF PLANAR LATTICES

8,(1—8, )
x) =

(1 —28, )

S = —O, lnO, +(1—8, )ln(1 —8, )

—(1—28, )ln(1 —28, ) .

(9)

(10)

Furthermore, the entropy maximizes at x, = 1 with

&S—1
8,=, S =ln

2&S '
1+&5

2

and the maximum possible coverage is 1/2 with zero en-
tropy.

For x2 positive but very small compared to 1 (finite
nearest-neighbor repulsion at low temperature), we con-
sider the range of values of x

&
for which x &x z is first very

large and then very small compared to 1. In the first
case, we set x&xz n and find

[a++4+a ], 82 =
2 +4+a

a+ +4+a
2+4+a

(12)

(13)

The minimum possible coverage is —,', with 0z=O, o,'=0,
and the entropy is zero. Otherwise, the entropy is given
in terms of a as

a++4+a
2

a inn
&4+a' ' (14a)

and in terms of the coverage 0, as

S = 8&lnO& —(1—
8& )ln(1 —

8& ) —(28& —1)ln(28& —1) .

It maximizes at

(14b)

The one-dimensional problem (M= 1, L= 1) has been
solved [1,2] and is recovered using the general matrix for-
mulation presented above. The transfer matrix is of rank
2, and its largest eigenvalue is

R =
—,'(1+x)x,+~4), b, =4x, +(1—x,x, )',

from which 0, and 0z follow:

x( x)xz
8, = —[1+x2(R —1)], 82=8~= —(R —1) . (8)R&h R&b,

We consider the behavior of the entropy at sufBciently
low temperature with repulsive nearest-neighbor interac-
tion.

A limiting case is that of the hard-square model with
nearest-neighbor exclusion and for which 0z=0 and
xz =0, for which x

&
and S are obtained in terms of 0& as

a =x]x~=1, S=ln

1+v'5, 1

2v'S ' ' v'S

1+&S
2

(15)

V. CUSPS AND MAXIMA OF THE ENTROPY

Monomer and dimer [8] lattice gases share common
features. Excluding 0&=0 and 1, a cusp in the entropy
curve always occurs when the entropy is zero. However,
for a dimer lattice gas, we have observed cases where

In the second case, x&xz is negligible compared to 1, and
the discussion is equivalent to setting xz =0. The entro-

py is given by Eq. (10) and is valid in the region
0~8&~ —,'. Making the substitution 8&~1—8&, Eq. (14b)
becomes Eq. (10), proving that, for repulsive nearest-
neighbor interaction and at relatively low temperature,
the entropy as a function of the coverage is made of two
arches, symmetric with respect to the axis 0&= —,', and

forming a cusp at this point, where the entropy is zero.
The apices of the arches occur at coordinates given by
Eqs. (11) and (15). The plot of 82 versus 8, is made of two
segments, 82=0(0~ 8, ~

—,
'

) and 82=28, —1 ( —,
' ~ 8, ~ 1),

which meet at 0, =—,'. Many of these features are also
found in the infinite two-dimensional lattice gas with one
and two layers.

The general problem does not have a closed form ana-
lytic solution and is investigated numerically. The con-
stant pz curves of 0z versus 0, and of S versus 0, are simi-
lar to those obtained for the system of nearest-neighbor
interacting dimers [g]. Figure 3 provides data for L= 1,
M=3 and 5; Fig. 4 provides data for L=2, M=3, and
L=3, M=3. Data for several values of pz are shown
only in the case L = 1, M= 3 (Fig. 3) to exhibit the general
features in a wide range of the energy parameter. The
other graphs refer to the nearest-neighbor repulsion at
sufficiently low temperature (limiting curves).

The data points in the plot 0z versus 0& fall inside a po-
lygon. For p,z) 0, the curve rapidly approaches 0z=0„
the upper boundary of the polygon. For pz& —5, the
curve rapidly approaches the lower boundary which is
made of several segments meeting at vertices correspond-
ing to cusps in the entropy curves.

For S versus 0„the upper boundary is the pz=0 curve,
an arch with an apex occurring at p, =0. For pz) 0, the
apex of the arch rapidly approaches zero as pz increases.
In Fig. 3, only a few points are shown with pz) 0. For
pz&0, there is a progressive deformation of the arch.
For pz & —5, the curves become hardly distinguishable
and approach a boundary made of several arches meeting
at cusps where the entropy is zero. In that limit, and for
L= 1 and 2 (Figs. 3 and 4), the first maximum (state a) is
followed by the first cusp (state b), a second maximum
(state c), a second cusp (state d), and a third maximum
(state e). For three layers (Fig. 4), the third maximum
(state e) is followed by a third cusp (state f) and a fourth
maximum (state g). The thermodynamic quantities asso-
ciated with states a through g will be labeled accordingly.
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cusps occur for nonzero entropy [8]. We also note that,
at a given coverage, the entropy of the lattice gas is a
minimum when the number of nearest neighbors per site
is also a minimum, corresponding to a point on the lower
boundary, in the plot O2 versus O&, and in the plot of S
versus O&. Thus, at a given coverage, we search for those
configurations having the minimum number of nearest
neighbors; if their number is finite, the corresponding en-
tropy of the system must be zero, and we have a cusp.

The analysis of cusp configurations for one, two, and
three layers is presented in Figs. 5, 6, and 7, respectively.
In these figures, each drawing represents one possible
configuration for a given lattice width M and a given set
of values of coverage O, and nearest neighbor per site O2.
As explained in the captions, a drawing gives the occupa-
tional configuration in any two consecutive sections of
the lattice. The only other possible occupational
configurations for the given values of M, O&, and O2 are
obtained by symmetry, and, since they are finite in num-
ber, the entropy of the system is zero. There are two sets
of configurations with zero entropy for one and two lay-
ers, and three sets in the case of three layers, correspond-
ing to definite crystallization patterns of the lattice gas.

In all cases, the first set corresponds to O, =—,
' and O2=0.

For a lattice width M, the second set of zero entropy
configurations occurs at

L =1: Oi =—+, O2=3
1 1 1

M

L=2. O =—+1 1 1

2 M ' M
O

1 2 1 8 1L=3: O= —+- O =—
2 3 M '

3 M

A third set exists only for three layers of width M given
by

5 1 1 5 1L=3: O= —+- 0 =—+
6 3 M 2 3 M

L

This analysis is exact, and the crystallization patterns at
finite nearest-neighbor repulsion and low temperature are
exactly obtained for any value of M, and L=1, 2, and 3.
Therefore their limits at M = ~ (infinite two-dimensional

0.8

0.7—

0.6—

~at + ~
0

0.3 ~

0.5

1

M=3
1.0

0.8

0.5—

0.4 — ~' 8
~I ~

0.3 —,&

0.2—

0.1

00 I

0.0 0.2

0.5

0.4—

~ ~

g ~

O~

h

—20 ~

04
e,

0.6 0.8 1.0

M=5
L= 1

~ ~ ~
~ ~

g2 ~ '~

~J p y $ ~

~.r .

:I' $ ed%

0.6

0.4

0.2

0.0
0.0

1.0

0.8

0.2 0.4 0.6
1

0.8 1.0 FIG. 3. Labeled constant p2 curves of en-

tropy S, and fraction of the maximum number
of nearest neighbors t9z vs the coverage 0&, for
L=1 and M=3, 5. For M=5, we only plot
the data at the lower boundary.

0.3—
/'

~

0.6

0.2— —20. 0.4

0.1
~ ~

~ ~
~ ~
~ 0 0.2

0.0 "

0.0 0.2 0.4 0.6 0.8
e,

1.0 0.0 0.2 0.4 0.6 0.8 1.0



52 CRYSTALLIZATION PAL j.'ERNS OF MONOMERS WITH A. . . 2241

lattice, up to three layers) are also exact, and we predict
one crystallization at 8, = —,

' and 8z=0 for all three layers,
as in one dimension, and another at 81=—', and Oz= —', for
the infinite three-layer lattice.

To verify that no crystallization patterns are present
other than those obtained theoretically, numerical calcu-
lations were performed with three distinct computer pro-
grams to treat one, two, and three layers. Since a lattice
with I. layers and width M is topologically the same as
that with M layers and width I., we were able to numeri-
cally check our results by comparing the overlapping
cases. Calculations were carried out with an accuracy
exceeding 12 significant figures (Figs. 3 and 4), and
confirmed the existence of no other cusps than those
presented in Figs. 5, 6, and 7. To be sure that this contin-
ues to be the case for values of M exceeding the
computer's capability, we conducted the following
analysis.

To obtain an extrapolation of the data for the infinitely
wide lattice of one, two, and three layers, we plot the
values of S, 8i, and 82 versus 1/M, states a through g.
Linearity at the cusps (states b, d, f) for 8, and 82 as
functions of 1/M is exact (see the equations in Figs. 5, 6,

and 7) and was verified numerically. At all other states,
linearity is achieved with great accuracy.

Figure 8 shows the entropy for one, two, and three lay-
ers at a, e, and g versus 1/M (g exists only for L=3).
Linearity is achieved with correlation coefficients better
than 0.99997. Linear extrapolation of the data leads to
the results presented in Table I, for the infinite lattice
with one, two, and three layers. The configurations of
Figs. 5, 6, and 7 show that, as width M becomes infinite,
the first and second cusps, states b and d, merge at —,

' cov-

erage. Thus, the entropy at c, which is the maximum be-
tween these two cusps, should reach zero in that limit.
Figure 9 is the plot of the entropy at c versus 1/M.
Linear regression for S on the infinite lattice using the
data for X=1 and 2, which match perfectly, yields the
value of —3.3X10 . Linear extrapolation of the only
two data points available for I.=3 gives for S the value of
—3.0X 10 . This confirms our theoretical prediction
and, at the same time, gives an order of magnitude of the
accuracy involved in the linear extrapolation. Figure 10
presents the plots of the coverage of the lattice at a, c, e,
and g versus 1/M, for one, two, and three layers. The re-
sults of the linear extrapolation to the infinite lattice are

1.0 0.8

0.8— L=2
0.7-

S
0.6-

0.6-

0.4-

0.5—

0.4-
0.3—

0.2—

00 ===

0.0 0.2

1.0

I I

0.4 0.6
1

0.8 1.0

0.2 —:

0.1

o.o i

0.0

0.5

-2(7.

0.2 0.4 0.6 0.8

e-

1.0 FIG. 4. Constant p2 curves of entropy 5,
and fraction of the maximum number of
nearest neighbors 82 vs the coverage 8&, for
L=2, M=3 and for L=3, M=3.

0.8— L=3 0.4—
M=

L=3

0.6— 0.3—

0.4— 0.2 —. —10

0.2— C
E

0.1

,W ~

~ ~

,J'
~

00~ \/

0.0 0.2 0.4
e,

0.6 0.8 1.0
0.0 "

0.0 0.2 0.4 0,6 0.8 1.0



2242 ALAIN J. PHARES AND FRANCIS J. %UNDERLICH 52

found in Table I. In particular, it is not surprising to find
that the coverage at c reaches —,

' (0.500000064 for L= 1,
2, and 0.499999997 for L=3) in the limit of an infinite
two-dimensional lattice for all three layers cases. In turn,
this justifies the other linear extrapolations. The rnax-
imum at a occurs when there are no nearest neighbors,
and the maximum at c merges with the two cusps b and d
at —,

' coverage and no nearest neighbors. Figure 11 ana-

lyzes the fraction Oz of the maximum number of nearest
neighbors at the remaining maxima, e and g, and the re-
sults of the linear extrapolations are listed in Table I.

On the infinite two-dimensional lattice with one and
two layers, our study confirms the progressive merging of
the cusps into a single one occurring at 0& =

—,', t92=0 as is
the case in all Ising-type models. At su%ciently low tem-
perature and large nearest-neighbor repulsion, the sym-
metry observed in one dimension of S versus 0& about
8, = —,

' appears to be preserved to better than 0.5%%uo. This
observation follows from the data listed in Table I and by
comparing the properties at a and e for one and two lay-
ers. For the infinite lattice with three layers, no particu-
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FIG. 6. Zero entropy monomer crystallization patterns on a
semi-infinite two-layer lattice. The convention is the same as
that adopted in Fig. 5. Here a section is made of two rows of M
sites.

lar symmetry is observed and we predict the existence of
two cusps: at 0, = —,', Hz=0; and at 0&= —,', 02= —', . When
including second neighbor repulsion between monomers,

preliminary results show the existence of a cusp below —,
'

coverage [9].
Having established the accuracy of linear extrapola-

tions, Fig. 12 presents the coverage and entropy at a for
the infinite lattice with one, two, and three layers versus
the reciprocal of the number of layers (1/L). Linearity is
again observed with the same accuracy as noted earlier.
Linear extrapolation of the data to (1/L)=0 gives the
values of the coverage and entropy at a for the infinite
three-dimensional lattice gas to be 0.2015 and 0.3605, re-
spectively. This is in agreement with the series analysis
result obtained by Gaunt for the simple cubic lattice [11],
where his notation p, /pa=28, .

FICx. 5. Zero entropy monomer crystallization patterns on a
semi-infinite one-layer lattice of width M. A lattice site is
represented by a square cell, which has a circle when it is va-
cant, and a filled circle when it is occupied. Each set of dia-
grams represents the occupational configurations in any two
consecutive sections of the lattice having M sites.

VI. ENERGY ANALYSIS

As mentioned earlier, an entropy curve at fixed activity
xz is generated by varying the activity x, . Since Oz is ob-
served to be an increasing function of 0&, and since Eq.
(6b) must be satisfied at the maxima of the entropy, the
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FIG. 7. Zero entro rnpy monomer crystallization patterns on a
semi-infinite three-layer lattice. Thee convention is the same as
that adopted in Fig. 5.

energy parameters andp, p2 at these points must have
opposite signs, and this is numerically verified. The data
are for repulsive monom
suffici

orner-monomer interaction at

~ ~

su ciently low temperature d han t e correspondin
points in the plot 0 versus 8 f ll ho 2, a on t e lower boundary
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s on
o a polygon. The vertices of this lower b d
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wer oun ary corre-

ute t
y curve. us, we can com-
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nal boundary are given by thy e equations
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(17)
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where the label "before" refers to the slope of the b d-
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FIG. 9. Entro vspy the reciprocal of the lattice width at the
maximum c for one, two, and three layers
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TABLE I. Tabulation of the extrapolated entropy, coverage, and fraction of the maximum number of nearest neighbors, at points
a, e, and g (see Figs. 3 and 4), for infinite one, two, and three layers. Linear extrapolation to the infinite three-dimensional lattice is
possible for a only, and follows from Fig. 12. Note that, for the infinite one and two layers, the coverage at a and e are symmetrical
with respect to 2, and the respective entropies are within 0.5%.

0.4075
0.3835
0.3765
0.3605

0.2266
0.2139
0.2099
0.2015

0.4051
0.3813
0.2310

e
0)

0.7743
0.7865

2
3

0.5517
0.5308
0.2808 0.1334 0.9255 0.8312

therefore, in that region, we have [8]

882
p2= 0!40,

BO)
(18)

namely,

BOq

ae after

882
p2= (~+0—) .

~~~ be..
where the label "after" refers to the slope of the bound-
ary after the cusp. Since the entropy is exactly zero at
the cusp, a departure from this value not exceeding, for
example, 0.0001 automatically fixes the values of a and P,
and the values of p& just after and just before the cusp, re-
spectively. Having made that choice, one obtains the
amount of chemical potential energy change (b,p&), and
the change in the external gas pressure, necessary to un-
lock the structural ordering for a given monomer species,

The slope before the first cusp is always zero. Table II
shows that the difference between the slopes after and be

fore the first cusp is 2, 3, or 4, depending on the width of
the lattice and the number of layers. The difference be-
tween the slopes after and before a second or third cusp is
one for all three layers. We use Eq. (1) and the numerical
observation that crystallizations occur for p, 2 & —5 to ob-
tain an estimate of the critical temperature T, :

( —V() )log)p(e}

5k.
(20)

1.0

0.9

For example, for a nearest-neighbor repulsion energy of 1

kcal/mole, the critical temperature is of the order of
44 K. With Eq. (1) and temperature T (T„Eq. (19}
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FIG. 10. Coverage of the lattice vs the reciprocal of the lat-
tice width at the maxima of the entropy a, c, e, and g for one,
two, and three layers.

FIG. 11. Fraction of the maximum number of nearest neigh-

bors vs the reciprocal of the lattice width at the maxima e and g
of the entropy, for one, two, and three layers.
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TABLE II. Equations of the polygonal boundary observed in the graph 8, vs 8, (see Figs. 3 and 4)
corresponding to low temperature with monomer nearest-neighbor repulsion.

Range (M&2)

1 & 0 & M +2
2 2M
M+2 &0

2M

0 =30 ——3
2 1

0 40 2M + 1
2 1

L=2

02 =40) —2

5M +2
2M

Range (M &2)

1( & 3M+4

3M+4 ( & 5M+2
6M 6M

5M +2 & 0
6M

L=3

0~=50)—

02 =60)—

0q =40(—2

15M +4
6M

10M+3
3M

yields VII. SUMMARY

Here C& is 1, 2, 3, or 4 depending on the values of I. and
M, as follows from the above analysis, and C2 is a posi-
tive number depending on the conditions set to obtain a
and P. Thus, at a temperature T (T„ the change in the
chemical potential necessary to unlock a structural order-
ing of the monomers is proportional to the nearest-
neighbor repulsion energy, as verified numerically.
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FIG. 12. Extrapolated coverage (top) and extrapolated entro-
py (bottom) at point (a) vs the reciprocal of the number L of
infinite two-dimensional layers.

The transfer matrix for the absorption of monomers on
I. layers of a MX1V square lattice, and with nearest-
neighbor interaction, has been constructed recursively,
and used to obtain the partition function. Some of the
general features of the one-dimensional lattice are also
found in the infinite two-dimensional lattice with one,
two, and three layers. A theoretical study of the mono-
mer structural ordering shows a series of zero entropy
crystallization patterns occurring at low temperature for
nearest-neighbor repulsion. The numerical computations
not only verified these results, but also showed no other
crystallization patterns, as opposed to the dimer lattice
gas [8], where such patterns occur at nonzero entropy.
At the crystallization points, as follows from Figs. 5, 6,
and 7, the coverage, and the number of nearest neighbors
per site are linear functions of 1/M. Linearity at other
points is accurate to better than five decimal places. The
results of such linear extrapolations are listed in Table I.
A second linear extrapolation of the numerical data plot-
ted versus I/L, the reciprocal of the number of layers,
appears to be possible only in the region Hz=0. This ex-
trapolation provides the entropy and the coverage for the
infinite three-dimensional lattice. These values were re-
ported at point a, the first maximum of the entropy
curve, to be 0.3605 and 0.2015, respectively.

The change in the chemical potential necessary to un-
lock the structural ordering below the estimated critical
temperature is shown to be proportional to the nearest
neighbor repulsion energy.

Work on the mixture of monomer and dimer species
with nearest-neighbor interaction is in progress [9] with
the intention of obtaining a model of chemical reactions
on a surface.
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