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Thermodynamic approach to deterministic diffusion of mixed enhanced-dispersive type
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The thermodynamic approach is applied to diffusion generated by an intermittent map on a grid of
unit cells. The associated reduced map has two types of intermittent fixed points, one responsible for
enhancing the diffusion, the other responsible for dispersing the diffusion. The dependence of the global
characterization of the diffusion is investigated as a function of a pair of intermittency exponents that de-

scribe the strength of the intermittencies.
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In order to arrive at quantitative overall statements on
the nature of the transport [1-4], traditionally the ap-
proach of the random walk is used [1,3,4]. For the prob-
lem of mixed enhanced-dispersive diffusion, however,
only few results have been obtained so far. Apart from a
random walk approach [5], we are only aware of results
obtained by an application of fractional Fokker-Planck
equations [6]. We show that the thermodynamic ap-
proach [7-10] in its bivariate variant [11-15] yields a
straightforward solution of the problem [16-19].

While the mathematical properties of the thermo-
dynamic approach of hyperbolic systems are well known
[7], the extension of this approach to nonhyperbolic sys-
tems poses some problems of a mathematical nature that
are connected with the phenomenon of phase transitions
[12-15,20-22]. Recently, it has been shown that the
diffusional behavior of one-dimensional maps can be cast
in all essential aspects by means of a diffusion-related free
energy [16—19] or by the associated entropy function
[23-25]. While this description furnishes in principle the
transport coefficients of all orders [17], often one is only
interested in an overall characterization of the transport.
Under the absence of a possible drift (we will consider
only this case), this characterization is furnished by the
diffusion coefficient D. In an expansion of the diffusion
t—x(t) into moments, D appears as the second-order
coefficient and we have

(xX(t))=Dt*"! (1)

(in the case of a discrete iterative map we may replace ¢
by k). As has been shown earlier [16,26], this rather
rough characterization of diffusion can be obtained from
the more refined description by means of a diffusion-
related free energy F, by taking derivatives as follows
[16—19,26]:
2
=%%Fd(q,ﬁ)|q=0ﬁ=1 : @
Alternatively, the diffusion-related entropy function can
be used [24]. Equation (2), of course, applies only if the
derivatives yield finite values. This is always true if the
associated free energy is analytic (i.e., if we have ‘“nor-
mal”’ diffusion) or if the free energy is not analytic, but D
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is nonzero and finite (“regular” diffusive behavior). For
the so-called enhanced diffusional behavior, due to a
nonanalyticity of the free energy, D diverges if evaluated
according to Eq. (2) [17,19]. Therefore, the mean-
squared average is then described by higher powers of ¢
and we have (r2(t))~t% where now a>1. For the
dispersive diffusional behavior, on the contrary, the
diffusion coefficient vanishes (in this case, a higher-order
transport coefficient diverges).

From first sight, as a topic of interest the combined
enhanced-dispersive diffusional behavior may appear as a
little bit exotic. However, already the standard example
for anomalous diffusion, the two-dimensional Chirikov-
Taylor standard map [27-30], shows this feature. Here,
the “stickiness” of Kol’'mogorov-Arnol’d-Moser tori as-
sociated with transport or absence of transport may lead
to enhanced or dispersive diffusion [31,32]. Furthermore,
recent experiments on fluid dynamics [33] indicate that
such a behavior is indeed relevant for experimental situa-
tions. A one-dimensional example of such a system that
is able to generate diffusion of mixed enhanced-dispersive
type is shown in Fig. 1(a). From a neighborhood of the
fixed points of the associated reduced map [see Fig. 1(b)],
the trajectories are driven away according to different in-
termittency exponents u,v, respectively. The two ex-
ponents give rise to a two-parameter family of diffusive
maps. With the help of this family one may explore the
whole range of possible diffusional behavior that can be
induced via classical intermittency (for a more general
definition of intermittency compare [9]).

As the starting point for the thermodynamic investiga-
tion of such systems, the bivariate diffusion-related parti-
tion function of the system is needed (see, e.g., [14,18]).
In this partition function, in addition to the length scales
of the usual thermodynamic formalism, which measure
the dynamical instability of pieces of orbits, a second
measure is used to count the number of identical unit
cells the orbit has passed (counting jumps to the right as
positive and jumps to the left as negative). While usually
in the partition function all possible pieces of orbits of a
fixed length appear, a glance at Fig. 1 shows that in the
examples we are interested in, typically pieces of orbits
labeled by the same symbols E, e.g., with decreasing in-
dices, appear. This suggests the use of a grand-
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FIG. 1. (a) One-dimensional map f on a grid of unit cells.
Note that there are two points per unit cell at which the map
has a marginal slope. These points account for the intermittent
dynamical behavior of the map. The exponents u,v, which de-
scribe the departure of the branches from the marginal stabili-
ties [here fi(u,x)=(1+e€)x+a,x* for 0<x=<1l and
frv,x)=(1+€)x —a,(;—x)" for 1 <x=1, where a,,a, are
constants and € is small], determine the diffusive behavior of the
map. Depending on the value of the “intermittency exponents”
u and v, respectively, the map is able to generate regular,
enhanced, and dispersive diffusion, respectively (see the text).
(b) Reduced map associated with (a). In the reduced map, the
partition of the interval generated by the map is indicated by
horizontal lines. Each partition element is labeled by the in-
dexed symbols 4, B, C, and E, respectively. Whereas the capi-
tal letter describes on which of the four “‘channels” the partition
element is situated, the index indicates how many iterations are
needed to leave the channel. A piece of orbit can then be de-
scribed in a unique way by the associated sequence of symbols
E;,E,,E,, A5, A,, ..., A, for example (“symbolic encoding of
the orbit”). Through Eq. (3) a simplified model equipped with a
complete grammar is described (see the text).

canonical-like partition function [18,19], where the stra-
tegy is to piece together orbits from so-called fundamen-
tal orbits of smaller lengths [34]. In this way, a much
higher level of the partition function can be investigated.
As a consequence, let us therefore start from the funda-
mental orbits of a typical system. In this case, the parti-
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tion sum is composed from all fundamental orbits of
lengths k in the following way (compare, e.g., Refs.
[18,19,24,25]):
1= 3 zMw(A4,,)Pe 7+ w (B, ,)Pe ]

k=1

+ 3 zMw(C Ptk TVt w (B, Pe 9k 1]
k=1

(3)

In the formula, u,v are the exponents of the branches of
the map that lead to the enhancement and to the disper-
sion of the diffusive motion, respectively (cf. Fig. 1). A
symmetric map that excludes a possible drift is obtained
if we require w(4; ,)=w(By,) and w(C, ,)=w(E; ).
In accordance with the example presented in Fig. 1, the
elements w(E,,) are chosen to scale as
w(E , )~ [k =D —(k +1)"*~D] and analogously for
the other symbols. Note that this power-law dependence
of the partition elements on index k is used to generate
the intermittent behavior. Furthermore, as can be de-
rived from Fig. 1, for such a system the length scale (or
“the dynamical weight” [34] or the k-step Lyapunov ex-
ponent) associated with a periodic orbit of symbolic en-
coding E. . .E (k times, starting at E;, ending at E,) is
determined directly by the width w(E, ,). We use this
property to arrive at the particularly simple structure of
Eq. (3). Another property that we assume in order
to keep our model as simple as possible concerns the
grammar [34] of the system: Eq. (3) assumes a trivial
grammar, i.e., chains of symbols Sj...S;, where
S€{A4,B,C,E}, are allowed to combine freely, without
restrictions. Note that our prototype shown in Fig. 1
does not satisfy this property (the transition from 4 to B
is not allowed). While such a modification of the gram-
mar does indeed change measures such as the value of the
diffusion coefficient (where it exists) and the value of the
topological entropy, for the more robust diffusion ex-
ponent this fact is without influence [26]. However, our
focus of interest is the analysis of the generic situation,
which is not restricted to one-dimensional phenomena,
and not the analysis of a specific one-dimensional map.
Equation (3) generally admits different solutions. From
the largest solution z(g,3) follows the diffusion-related
free energy F,; as F;(q,8)=In[z(q,B)] [14,15]. Using Eq.
(2), our result is

From this equation, we may derive the diffusional
behavior of a system, depending on the values of the in-
termittency exponents u,v. Let us first observe that for
each summand in the denominator, the interpretation of
an average staying time can be given. As long as this
time is finite for v, the enhancing aspect alone determines
whether the diffusion is regular or anomalous. As it is
easy to see from the corresponding expressions of the un-
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FIG. 2. Behavior of D(k) for six pairs of exponents, accord-
ing to Eq. (4) (solid lines) and asymptotically (broken lines).

mixed cases, the mean staying time in the dispersive case
diverges if v =2 (corresponding to an unnormalizable
measure). In the plots of Fig. 2, the behavior of Eq. (4)
for increasing times k is shown as solid lines. These re-
sults have been calculated numerically for different pairs
of intermittency exponents in the different characteristic
regions of the (u,v) quadrant. Asymptotic results can be
obtained analytically by observing that for large k

k
zklwk’u~(1+];)—l/(u—l)+2 . (5)
k=1

From this observation the following overall behavior is
obtained: forv <2,

t foru<3
((x (1))~ 371D for <y <2 (6)
t2 foru>2,
and for v > 2 the behavior
t!/0=D for u <2

((x (1)) ~ {2/ =01/ =1 for 3 <y <2
t2+min{l/(u~1),1/(v-1)]~—1/(u-—1) for u>2
(N
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FIG. 3. Dependence of the diffusion exponent a on the inter-
mittency exponents v and u. The plateau at the level a=1 cor-
responds to regular diffusive behavior, a<1 to dispersive
behavior and a > 1 to enhanced diffusive behavior.

arises. In Fig. 2, the convergence of Eq. (4) towards the
asymptotic behavior can be estimated from a comparison
of the solid lines [Eq. (4)] with the broken lines indicating
the asymptotic prediction. Furthermore, a direct simula-
tion of the map agrees very well with the predicted
behavior. In view of the high partition levels k attainable
for our model, from a thermodynamic point of view a
good degree of agreement can be expected. In Fig. 3, the
results of Egs. (6) and (7) are summarized, where the plot
shows the value of the diffusion exponent a as a function
of the intermittency exponents v and wu. Results
equivalent to Egs. (6) and (7) have recently been derived
from a random walk approach [5]. In the latter ap-
proach, however, the information about the relationship
between the dynamical and the diffusive aspect of the sys-
tem is lost. In addition to a correct prediction of the
behavior of the second moment, the thermodynamic ap-
proach offers therefore a more specific characterization of
the generating process. This information is contained in
the diffusion-related free energy or the associated entropy
function, which allows a distinction between individual
systems, even if they fall into the same class if seen from
Egs. (6) and (7) [35].
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