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Calculation by scaling of highly excited states of billiards
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We propose a method which directly gives all eigenvalues and eigenfunctions of a two-dimt'. nsional bil-
liard in a narrow energy range by solving a generalized eigenvalue problem. This is possible through the
use of scaling which allows us to write the boundary norm as a function of energy. The dimension of the
problem is of the order of the number of wavelengths in the perimeter, and the number of states obtained
is a fraction (0.05 or 0.1 depending on the accuracy required) of it. The method can be applied to general
star-shaped domains and is illustrated for the 2 X4 Bunimovich stadium where we obtain states around
the 568000th state with the precision of 10 of the mean level spacing.

PACS number(s): 05.45.+b, 02.70.—c, 03.65.Ge, 03.65.Sq

There is increasing interest in the precise and efficient
calculation of highly excited states of chaotic billiards.
In the context of semiclassical mechanics, the asymptotic
approximation of the energy levels and the precise distri-
bution of the level spacing is a major unsolved problem.
Recently, high order corrections to the semiclassical
trace formula [1] have been calculated inviting precise
comparisons with exact results. The precise calculation
of high single eigenfunctions is also important for the ob-
servation and understanding of scarring phenomena [2].

A method typically used consists in searching a given
energy range for the zeros of some determinant [3,4].
This is a difficult task due to the complicated behavior of
the determinant function. Moreover, the considered
quadratic form has a numerically null subspace which
corrupts the true zero eigenvalues and decreases the at-
tainable precision. Another method consists in searching
the minimum of the boundary norm [5]; this method re-
quires not only the calculation of boundary overlaps but
domain overlaps too, because the basis used is nonortho-
gonal over the domain (disregarding nonorthogonality, it
is possible to minimize the boundary norm by the least-
squares method [6]).

In this paper we propose a method which calculates
directly all eigenvalues and eigenfunctions in a narrow
energy range by solving a generalized eigenvalue problem
in terms of quantities over the boundary. This is possible
by the use of scaling which allows us to write the bound-
ary norm explicitly as a function of the energy. The di-
mension of the generalized eigenvalue problem is of the
order of the number of wavelengths in the perimeter.

Let P(r) be a function which satisfies the Helmholtz
equation b,P(r)= —kog(r), with ko) 0. We associate to
P the scaling function P(k, r)—:P(kr/ko). This family of
functions depending on the scaling parameter k verifies
b,P(k, r) = —k P(k, r). Let C be a closed curve defining a
star-shaped domain 2); this means that r„=n.r )0,
't('r&C (n is the unit outgoing normal to C). Then, we
say that a scaling function P„is a scaling eigenfunction of
the billiard defined by C, if k„exists such that
P„(k„,r) =0, Vr& C; that is, P„(k„,r) is an eigenfunction

of the billiard with Dirichlet boundary conditions.
We define the boundary norm as f(&)(k)=f P (k, r)dl /r„The.exact behavior off as a function

C
of k depends on P; however, for normalized scaling eigen
functions it satisfies a P„independent expansion up to
third order around kz [see (A4)]. Then, evaluating the
norm and its derivative at ko =k„+5„,we obtain

dF
(ko) —

A,„F(ko) p'=0, (2)

where F is the positive definite quadratic form associated
to f. For the numerical calculation it is evaluated in
some finite basis of scaling functions
[y, (k, r);i=1, . . . , N),

F, (ko)= f qr;(ko, r)y, (ko, r) dl
(3)

The scaling eigenfunctions are found as
P (k, r)=++ ig",. tp;(k, r), and the eigenvalues up to
second order as k„=ko—2/A,„.More precise eigenval-
ues are obtained by expanding explicitly f(& )

around ko

(up to fourth order or more) and finding its minimum.
This is possible because higher order terms in (2) are al-
most diagonal in the basis defined by the P's as a conse-
quence of the quasiorthogonality of the scaling eigenfunc-
tions over the boundary [8] (see Appendix).

The norm over the domain is —,'d2f(& )/dk2(k„) [see

(A2) and (A3)]. Then, with a unit domain norm the
boundary norm (which is not strictly zero because we
work with a finite basis) provides an estimate of the accu-
racy of P„;moreover, we observe numerically that it pro-

f(~ )(ko) — " " (ko)+O(5„)=0.
2

Dropping terms of 0 (5„)[7],we propose Eq. (1) as a con-
dition leading to quantization. Using (1), we calculate all
the scaling eigenfunctions with eigenvalues close to ko by
solving the following generalized eigenvalue problem:
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TABLE I. Eigenvalues of the 2X4 stadium computed using
scaling for kp = 1000.3848 and kp = 1000.4446 (N =920).
Moreover we give the norm over the boundary (multiplied by
10 ) of each eigenfunction. The arrows indicate in each case the
position of kp in the spectrum.

No.
kp = 1000.444

kv —1000 f[4 1

kp= 1000.3848
k& 1000 f[y ]

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

0.3526 0546
0.3532 8248
0.3543 3137
0.3615 1870
0.3623 3423
0.3641 6747
0.3678 4862
0.3751 7669
0.3762 6453
0.3787 2382
0.3807 3937
0.3908 4998
0.3937 9236
0.3965 2540
0.3987 2502
0.4019 9517
0.4050 9341
0.4082 4168
0.4111 3959
0.4164 8365
0.4179 6140
0.4219 2258
0.4288 7515
0.4317 2625
0.4344 4466
0.4396 1987
0.4419 7909
0.4478 3881
0.4512 8229
0.4523 4251
0.4587 3014
0.4606 5467
0.4674 7615
0.4699 5195
0.4716 0621
0.4761 0049
0.4769 2259

51
29
21
27

2
44
14
72
14
29
15
27

7
1

20
40

1

93
30

3
6

18
112

1

13
9

~6
&4
42
48
52
26

1

8
140

11
4

0.3526 0538
0.3532 8258
0.3543 3128
0.3615 1858
0.3623 3417
0.3641 6752
0.3678 4878
0.3751 7715
0.3762 6456
0.3787 2387
0.3807 3930
0.3908 4988
0.3937 9232
0.3965 2540
0.3987 2491
0.4019 9497
0.4050 9340
0.4082 4126
0.4111 3950
0.4164 8363
0.4179 6137
0.4219 2251
0.4288 7453
0.4317 2625
0.4344 4461
0.4396 1988
0.4419 7902
0.4478 3881
0.4512 8209
0.4523 4314
0.4587 3037
0.4606 5491
0.4674 7633
0.4699 5186
0.4716 0687
0.4761 0105
0.4769 2227

35
10
7

18
1

36
8

69
11
26

~13
&26

7
1

20
39

1

91
30

3
7

18
112

1

14
10
7
6

46
50
56
30
10
18

150
20
19

vides a good estimate of the error in k„.Equation (1) is
valid as long as f(& )(ku) is large compared to f(& )(k„)
[to derive (A4) we have assumed f(& )(k ) =0]. Thep
method becomes undetermined if ko coincides with an ei-
genvalue; then it is convenient to choose ko far away
from an eigenvalue of the billiard. A satisfactory cri-
terion is to require that f(& )

(k„)/f (& ) ( ko ) ( 10
P P

We have applied this method to the 2X4 Bunimovich
stadium (circle radius 1 and straight section length 2).
For odd-odd states we used the following set of scal-
ing functions: y;(k, x,y)=sin(xk cos8;)sin(yk sinO; ),
with 8; =(~/8N)(i —1/2)(5 i/N— )i = 1, . . . , N and
N=0. 9ko+20 [9]. To solve the generalized eigenvalue
problem we first diagonalized the overlap matrix F (a real

symmetric matrix), and to discard the numerically null
subspace we selected the eigenfunctions g whose eigen-
values y satisfy y/y, „)10 ' /2 (in double precision),
where y „

is the largest eigenvalue. In the basis
[fr/&y], Eis the identity matrix. Then, dF/dk is diag-
onalized in this truncated basis. To obtain eigenvalues
with higher precision, we expanded f(& )(ko+5) up to
8th order in 6.

In Table I we present the calculations for
ko=1000.3848 and k0=1000.4446 with N=920. They
provide two independent calculations of each eigenvalue
in this energy range and the difference between them
gives an estimate of the precision achieved. Notice that
in most cases the computed value of f(& )

provides a

bound to this difference. We show a range of 37 consecu-
tive eigenvalues with an average precision of 10 " of the
mean level spacing. A wider range could be obtained if
less precision can be tolerated, but the errors tend to in-
crease as 5 . The program ran on an IBM RISC/6000
work station requiring 90 min of CPU time.

The method also provides very precise eigenfunctions.
To show the details that can be obtained we present in
Fig. 1 a very high (around the 142000th odd-odd state)
eigenfunction of the stadium. Several aspects of its mor-
phology are noticeable. Some "scars" are visible in the
large scale picture while the detail appears quite random;
this is true for most of the eigenfunctions that we have
looked at although we lack a precise criterion. The struc-
tures in the eigenfunctions are more easily detected in the
stellar representation (see Fig. 2) which has been recently
introduced in this context [10]. In it, the Husimi distri-
bution of the normal gradient on the boundary represents
the eigenfunctions in the phase space for the Birkhoff
coordinates (p=tangent unit velocity vector component
versus q =arclength). The high (black) regions are the
scars depicted as periodic points in the Birkhoff plane.
Moreover, the eigenfunction can be completely charac-
terized by the zeros (white) of the Husimi function and
hypothesis about their distribution can be checked with
greater statistical significance [11]. In general, the states
listed in Table I avoid the region with p and q lower than
0.1 (see Fig. 2). On the other hand the regular "bouncing
ball" type states appear concentrated in that region (e.g. ,
k =1000.36233417), thus confirming Percival's conjec-
ture [12]. Of course, as an equivalent regular region does
not exist classically, this quantum effect disappears in the
semiclassical limit (the white area goes to zero as k ' ).

In conclusion we have developed a method to compute
in an efFicient way the high eigenvalues and eigenfunc-
tions of quite general two-ditnensional billiards [13]. The
great advantage of the method is that alI eigenvalues and
eigenfunctions in a narrow k interval are computed
simultaneously with comparable accuracy, thus avoiding
time consuming searches and the possibility of missing
some state. The extreme accuracy achieved with this
method depends critically on the presence of the denomi-
nator r„in the boundary norm; as sketched in the Appen-
dix, this guarantees that the scaling eigenfunctions are al-
most orthogonal. Although this condition seems to be
very peculiar to billiards, we do not know at present if
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y= 0
x=O

q=t/4

x=2
FIG. 1 . (a) Linear density

plot for the square of the
odd-odd eigenfunction at k
= 1000.342 508 53 for the 2 X4
stadium. (b) Detail of the eigen-
function plotted in (a).

x= 1 x=1.4

the method can be adapted with the same degree of accu-
racy to more general scaling systems.

The availability of complete stretches of eigenvalues
and eigenfunctions at very high excitation is an invalu-
able asset for the study of the semiclassical limit of chaot-
ic systems [14]. Calculations of spectral fiuctuations,
scarring phenomena and various statistical properties be-
come now quite feasible and are presently under way.

APPENMX

In the following, the argument (k„,r&) is omitted,
where r& is a point over C, and we define r, =—r t (t is the
unit tangent to C). Using that bp„=oand Bp„/&r=0,
we expand P„asfollows:

BP„P„(k„+5,r )= r„k„"()n
5'

nest

P

then

f(~ }(k +5)= It) r„"dl
P

+ 53 8 B4'pr„r,
k 3 (p Qt Qn

8 8+ "(r'—r') " dt
812

+O(5 ) . (A2)

Using (A2) and the following important relation [15,16]
2

fr„"dl =2k„f P„(k„,r}dg
c Bn x

(A3)

we obtain

f(& }(k„+5)= [25 (1 5/k„)+—O(5')]f y2(k„,r)d~

(r, r„)B~„—
+ +O(5 ), (Al)

Bt

(A4)

The third order coefficient in 6 was obtained integrating
(A2) by parts, noting that (i) a/ar =d/dl, (ii)
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malized over the domain with associated eigenvalues k„
and k respectively. Then, expanding these functions as
in (Al),

kr .kr = " r„" dI. .
5„5, BQ„BQ„

(A5)

Working as in ([16])to obtain (A3), it is easy to derive the
following expression:

FIG. 2. Linear density plot of a reduced Husimi function in
the Birkhoff coordinates (p =tangent unit velocity vector com-
ponent vs arclength) for the eigenfunction plotted in Fig. 1.
The dark regions are the scars depicted as periodic points in the
Birkhoff plane. The white regions give (visually) the position of
the zeros.

(A6)

Then, using (A4), (A5), and (A6) we obtain the overlap
over the boundary which results independent of k at the
leading term,

d(r„r,)IBt=r„and (iii) if 6 has corner points, the in-
tegration is carried about by pieces between these points,
having in mind that the differential of (t„in a corner
point is zero.

Scaling eigenfunctions are quasiorthogonal over the
boundary. Let P„and P be scaling eigenfunctions nor-

(k&r)P&(k&1 ) I+f[y ](k)f(y )(k )
dl

=sgn(5„5,)8 ( k„—k, ) /4k„k

where 8 is the domain integral in (A6). 8 is of order uni-
ty if we assume that the functions are not correlated.
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