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Transition to nonchaotic behavior in a Brownian-type motion
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A theoretical and numerical analysis of the transition from chaotic to nonchaotic behavior in an
ensemble of particles with difFerent initial conditions which move according to Newton's equations
in a bounding potential and are driven by an identical sequence of random forces [see S. Fahy and D.
R. Hamann, Phys. Rev. Lett. BQ, 761 (1992)] is presented. The threshold values of the parameters
for transition from chaotic to nonchaotic behavior are defined on the basis of the map for distances
between the particles and difFerences of velocity. Numerical analysis is ful6lled for one-dimensional
Duffing V(x) = x —x and V(x) = x potentials.

PACS number(s): 05.40.+j, 05.45.+b, 02.50.—r

Recently an interesting transition from chaotic to non-
chaotic behavior in randomly driven systems has been
discovered [1]. When an ensemble of particles with dif-
ferent initial conditions which are bounded in a fixed ex-
ternal potential are driven by an identical sequence of
random forces, the ensemble of trajectories may become
identical at long times. Fahy and Hamann [1] considered
a particle of mass m moving according to Newton's equa-
tions in a potential V(x), except that at regular time in-
tervals w the particle is stopped and its velocity is reset to
a random value chosen from a Maxwell distribution with
temperature T. It should be stressed that for every par-
ticle of the ensemble it was given an identical, randomly
chosen velocity at the start of each step of time length ~.
This motion is in many respects similar to Brownian mo-
tion of the particles at a temperature T and. is frequently
used in Monte Carlo simulations [2]. However, if the time
interval w between stops is lower than a threshold value
w, the final trajectories of the particles are independent
of the initial conditions; all trajectories become point by
point identical in time. Although the trajectory is highly
erratic and random, the system is not chaotic.

A similar effect may also be observed in a more gen-
eral and realistic (from the physical point of view) case,
i.e., when mixing at time intervals w some part o. of the
old velocity v " with random velocity v" to get a new
starting velocity v = nv "+v" [3]. Here a thresh-
old value w depends on o..

Note that the observed effect resembles a phase tran-
sition but does not depend crucially on the dimension of
the space in which the particles move. Besides its intrin-
sic interest, this phenomenon has some importance for
Monte Carlo simulations [1] and, probably, can influence
some processes, e.g. , clustering of particles.

In Ref. [1], except for the discovery in the computer
simulations of the transition from chaotic to nonchaotic
behavior, the analytical estimation of the average rate
of contraction of the distance between initially close to-
gether identically driven particles (for a one-dimensional
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potential, very short time intervals ~ between stops and
n = 0) is given. See Ref. [4], in which a similar problem
was analyzed and it was found that trajectories of a noisy
logistic map for various initial conditions may become
point by point identical in time if the noise is sufficiently
strong and independent of the initial condition. More-
over, using the Langevin equation, it was shown quite
generally that nonlinear systems coupled through iden-
tical strong noises may have the same trajectory in the
long time limit. However, the derivation of dependence
of the threshold noise on the parameters of the system
[1] is absent.

It is the purpose of this paper to present a theoretical
and numerical analysis of the transition from chaotic to
nonchaotic behavior in randomly driven one-dimensional
systems, i.e. , the dependencies of the threshold value w

on the parameters of the problem, including o. , and con-
vergence rates of the trajectories. Generalization of the
method for two- and three-dimensional systems is rather
straightforward (see below). It should be noted that in
the numerical calculations of the mean-square distance
between particles we observe the intermittency route to
chaos when w —+ w: mean-square distance as a func-
tion of time alternates randomly between almost clus-
tered phases and irregular bursts of the dispersed par-
ticles. Moreover, we And a transition from chaotic to
nonchaotic behavior not only for the regular time inter-
vals w but for the randomly changing intervals between
stops, i.e. , for random r; (where i is the number of the
step) as well. Our theoretical analysis is based on the
mapping form of the equations of motion for the distance
between the particles and the difference of the velocity
of the particles.

Let us consider a particle of mass m, moving in a one-
dimensional potential V(x) which confines particles to a
finite region. At time intervals ~, the particle is partially
stopped. and its velocity is reset to a new starting velocity
v, = o.v,. "+v,"- . Between the stops the particle moves
according to Newton's equations

dx d2x 1 dV
dt dt2 rn dx

When two particles initially at points xo and xo are
started with velocities vo and vo and are driven by an
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Note that a similar method of investigation is used in the
theory of transition to chaos in classical systems [5,6].
However, the motion in the form (2) and (3) is repre-
sented as the non-area-preserving tangent map, while
classical dynamics of the conservative systems may be
represented by the area-preserving maps.

According to Eqs. (1) and (3) matrix elements T and
T „satisfy the equation

d2T 1 d2V

dt2 m dx2
x=x(x, ,v, ,t)

while T„=T, T„=T, and the initial conditions
at t = 0 are

identical sequence of random velocities v," at the same
time intervals wi, coordinates and their velocities may ac-
cidentally draw closer to one another. The convergence
of the two trajectories to the single 6nal trajectory will
depend on the evolution with time of the small variances
of the distance Lx; = x',- —x, and velocity Avi = v,' —vi.
Moreover, we investigate a transition from chaotic to
nonchaotic behavior. Generally, such a transition may
be detected from analysis of behavior of the neighboring
trajectories and it is described by the Lyapunov charac-
teristic exponents and KS metric entropy of the Gow of
trajectories in a given region of phase space [5—9]. We
will follow this method. Comparisons of the results of
such analysis with investigations by the direct numeri-
cal simulations conGrm the suitability of our theoretical
approach.

From formal solutions x = x(x;, v;, t) and v

v(x;, v;, t) of Eqs. (1) with initial conditions x = x; and
v = v; at t = 0 there follows an equation for Ax(t) and
Av(t) at a time moment t:

(
~x(t) ) &~x; l
Av(t)y

' *' "
qAv, )

where the matrix T is of the form

Further analysis of the model may be based on the
general theory of the dynamics of classical systems rep-
resented as maps [5—9]. Thus for n = 0 the Lyapunov
exponent is defined as

which yields

1
PI, 2 = —[T» + iI+» + g(Tvv + iITvv) —4n]. (9)

So the eigenvalues come in a reciprocal pair, p1p2 ——o..
For (T +o.T„„) 4o. ( 0—the eigenvalues form a complex
conjugate pair with ~pI~ = ~p2~ = ~n, otherwise the
eigenvalues are real.

Among the randomly driven systems only dynamics
of the harmonic oscillator with regular time intervals w

for the reset of velocity may be described exactly. In
this case the T matrix is independent of the starting
coordinate x, and velocity v;, i.e.,

COS Lgf7

MSIII M7—
(d Sln M7

A Cos (d7 ) (1o)

If n ( 1 and cosmic g gl modules of both eigenvalues
of the T matrix are

~ pI 2
~

( 1. So there is a contraction
of the distance in the phase space between the particles
in each step. The transition matrix for n steps T = T
may be calculated by means of diagonalization of the
matrix (10). The eigenvalues of the T matrix are pI 2

and the Lyapunov exponents are simply AI 2 ———ln
~

p, I 2 ~.

Generally, the mapping T(n; x, , v, , w;) in

(6) depends on the starting coordinates x;
and v;. Therefore calculation of the mapping
for A Steps&l Tn T(Ai xi+n I & vi+n —1&17i+n 1)— —
T(~I'i xi+n 2) vi+n —2) 'ri+n 2) ' ' ——T(iII xi ) vi i 'ri) 9

the corresponding eigenvalues are complicated problems.
So we will evaluate the averaged quantities

1 . 1
lim —) —1n ~T (x, , v, , 7;.)~N~~g i=1

and may be easily evaluated numerically.
For o. = 1 the map (6) is area-preserving and

det T(1;x;, v;, ~;) = 1, while in general det T = a,
TrT=T + nT, and the eigenvalues p1 2 of the T ma-
trix are given by the equation

p —pTrT+ det T = 0,

T..(x;, v, , O) =T„„=1,
T (x;, v;, 0) =T „=0,

1dV
m d

T =T„=O,
T =1 (5)

1—» I~i.~l)1

1 . 1
lim —Q —ln

~ pI 2 (x, , v;, v;. ) ~,N —+oo N 7ii=1

Therefore the dynamics of the distance between the
particles Ax and the difference of the velocity Av may
be represented by the non-area-preserving mapping form
of the equations of motion

(6)

In general, the intervals between the resets of the velocity
~i may be depending on the number of step i.

which are analogous to the averaged Lyapunov exponent
(7), characterize the rate of the exponential increase of
the separation of the two initially adjacent points, and are
related with the KS entropy of the system [5,6]. Cornpar-
isons of the threshold values w from the direct numerical
simulations with those from the criterion

(12)

indicate the usefulness of the quantities (11) for analysis



52 BRIEF REPORTS 2093

dV2 v, dV3T» ——1 — -t — ' t +
2m dx2 6m dx

1 dV2 v; dVST = 1 — t — t +
2m dx,. 3m dx,.

(13)

of transition from nonchaotic to chaotic behavior of the
systems.

In Fig. 1 we show typical results of the direct numerical
calculations of the mean-square distance between pairs
of identically driven particles in the DuKng potential
V(x) = x —x vs number of steps for difFerent time in-
tervals 7 between stops and n = 0. The averaged charac-
teristic exponents as functions of time between stops, 7,
calculated according to Eq. (7) for Duffing and V(x) = x
potentials are shown in Fig. 2. Regions of ~ with the posi-
tive and negative characteristic exponents correspond, re-
spectively, to the chaotic and nonchaotic behaviors. Such
a conclusion coincides with the conclusions from the di-
rect numerical investigation of the systems. In Fig. 3 we
show dependencies of the threshold values for transition
from chaotic to nonchaotic behavior of the time ~ be-
tween resets of the velocity to v; ' = o,v, "+v,". on
the parameter n calculated according to criterion (11)
and (12).

For the relatively short time intervals one can expand
the position and velocity of the particles in the powers of
time t. Using equations oF motion (1) and relations (3)
we have expansions for the matrix elements T and T„„:
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We can use expressions (13) for the analytical evalu-
ation of the average rate of contraction of the distance
between trajectories for small w. So, the result of ex-
pansion of Eq. (7) according to Eq. (13) in powers of w

1S

1 d V

FIG. 2. Averaged characteristic exponents (Lyapunov ex-
ponents multiplied by r) vs the time 7. between stops accord-
ing to Eq. (7) for (a) Dufling potential and (b) V(x) = x
potential.

where the angle brackets denote the average with respect
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FIG. 1. The mean-square distance (Ax ) between pairs

of identically driven particles in the Duffing potential V(x) =
x —x vs number of steps for difFerent time intervals
between stops. Five hundred independent simulations with
initial conditions from the Gaussian distribution of variance
o = 1 are averaged. The time v between stops was 7- = 1.75
for the 6rst 300 steps and v = 1.3 for the next steps.
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FIG. 3. Dependencies of the threshold value for transition

to chaotic behavior of the time w between resets of the ve-
locity to v, = o.v,. " + v," on the parameter n according
to criterion (11) and (12) and according to the analytical lim-
iting expressions (16) and (17) for (a) Duffing potential and
(b) V(x) = x potential.



BRIEF REPORTS

to x, . After the average according to the Boltzmann dis-
tribution with k~T = m, = 1 (instead of the average
with respect to x, from random trajectories) we have
A~ —2.2~ and Aw —2.0~ for the DufBng poten-
tial and V(x) =—x potential, respectively. For r ( 0.5
these evaluations of the rate coincide with the numerical
calculations in Fig. 2.

Moreover, expressions (13) may be used for the de-
scription of the systems with o. ~ 1 and for short time
intervals r. Introducing the notation o. = 1 —2e (e' ~ 0)
one can have from Eqs. (9) and (ll) the approximate
expressions

pi 2 = 1 —e+ QT .+T..—2+e'+ (14)

[ e ~ ((T + T 2+ 2)1/2)]
7

(16)

~. = (1 —c )'i', 0.01 & 1 —a « I (17)

for the DuKng and V(x) = x4 potentials, respectively.

E = (I —c )/2 « I,
The angle brackets in Eq. (15) denote the average with
respect to x; and v, only if T +T —2+E: & 0, otherwise
p, i 2 are complex and oi 2 —e/w. The threshold value

of time interval between stops for transition &om non-
chaotic to chaotic behavior may be evaluated from the
criterion (12).

Using the average according to the Boltzmann and
Maxwell distributions (instead of the average with re-
spect to x, and v; from random trajectories) one can
investigate the behavior of the system according to Eqs.
(12)—(15). This yields the expressions of the threshold
time intervals,

Here and in the numerical simulations we set k~T = m =
l. It should be noted that the "e8ective temperature" of
the system in such simulations is T/(1 —n ).

In Fig. 3 the dependencies (16) and (17) are compared
with those obtained from the numerical calculations ac-
cording to Eqs. (4), (9), (ll), and (12). Note the depen-
dence of the law of the approach ~ ~ 0 as o. ~ 1 on the
shape of potential.

All such numerical analysis and comparisons with the
theoretical results indicate the usefulness and itness of
the present theory for the investigation of transition from
chaotic to nonchaotic behavior in randomly driven sys-
tems. Generalization of the theory to more degrees of
freedom is straightforward: for two- or three-dimensional
systems Eqs. (1)—(4) and initial conditions (5) for the
T matrix are essentially the same, only instead of one
equation (4) we have the systems of two or three coupled
equations and the dimension of the T matrix is 4 or 6,
respectively. Further analysis is rather similar to that
according to Eqs. (6)—(12). The only additional compli-
cation is the diagonalization of the multidimensional T
matrix.

In summary, we have developed a theory for transition
to nonchaotic behavior in a Brownian-type motion. The-
oretical analysis based on the mapping form of equations
of motion for the distance between the particles and the
di8'erence of the velocity allows us to simplify the prob-
lem of investigation of transition to nonchaotic behavior
and results in the expressions for the criteria of the non-
chaotic motion. Theoretical results agree well with the
direct numerical simulations and indicate the possibili-
ties of generalization of the model, e.g. , to more degrees
of freedom, for random values of the time intervals be-
tween the resets of the velocity, and for systems driven
by the random forces.
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