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Periodic trajectories in right-triangle billiards

Barry Cipra, * Robert M. Hanson, and Amy Kolan~
Saint Olaf College, 1520 Saint Olaf Auenue, Northfield, Minnesota 55057-1098

(Received 8 March 1995)

Billiard problems are simple examples of Harniltonian dynamical systems. These problems have been
used as model systems to study the link betwen classical and quantum chaos. The heart of this linkage is
provided by the periodic orbits in the classical system. In this article we will show that for an arbitrary
right triangle, almost all trajectories that begin perpendicular to a side are periodic, that is, the set of
points on the sides of a right triangle from which nonperiodic (perpendicular) trajectories begin is a set
of measure zero. Our proof incorporates the previous result for rational right triangles (where the angles
are rational multiples of ~), while extending the result to nonrational right triangles.

PACS number(s): 03.20.+ i

The game of billiards provides a profusion of interest-
ing questions in classical mechanics. Coriolis [I] and
Sommerfeld [2] were intrigued by questions concerning
high and low shots, the causes and eFects of "English, "
and the beautiful curved paths resulting from friction
with the billiard cloth.

Recently there has been a resurgence of interest in bil-
liard problems, but of quite a diFerent type. In this new
type of problem, the billiard balls are point particles,
which travel in straight lines and bounce elastically oF
the sides of the table. The table, though, has lost its fa-
miliar rectangular shape; it may now be a more general
polygon, ellipse, or stadium (a rectangle capped by two
semicircles). This species of billiards is a particularly
simple example of a chaotic dynamical system. As such,
it has been used as a model system to study the link be-
tween classical and quantum chaos [3].

The heart of this linkage is provided by the periodic or-
bits in the classical system, which provide information on
the density of states in the quantum system. In addition,
the beguiling simplicity of these periodic orbits lends
them an intrinsic mathematical appeal. The study of
periodic orbits in a simple polygon or other geometric
shape is, after all, a problem that Euclid could have pon-
der ed.

Consider, for example, a trajectory on a right-
triangular billiard table that starts out at right angles to
one of the two sides of the right angle. After 14 bounces,
the trajectory shown in Fig. 1 hits the same side again at
right angles, at which point it simply retraces its path.
The trajectory is periodic.

For right triangles whose other angles are rational mul-
tiples of ~ it is known that all trajectories that start out at
right angles to one of the two sides are periodic, except
for those that hit one of the vertices of the triangle [4,5].

We shall show that for an arbitrary right triangle, al-

most all trajectories that begin perpendicular to a side are
periodic, that is, the set of points on the sides of a right
triangle from which nonperiodic (perpendicular) trajec-
tories begin is a set of measure zero. Our proof will also
give the previously known result for rational right trian-
gles.

The problem of right-triangle trajectories is intimately
related to another problem, that of two elastic point par-
ticles colliding with each other in the unit interval [6].
The point particles have masses m

&
and m2, and there

are walls at 0 and 1. In mapping from one problem to the
other, the positions of the two particles in the interval,
weighted by the square roots of their masses, correspond
to the x and y coordinates of a point in a right triangle
where one angle is arctan(m, /m2).

We begin with the standard representation of a trajec-
tory as a sequence of flips of the triangle along a straight
line [6,7], as shown in Fig. 2. Notice that the same se-
quence of flips applies to all trajectories in a band about
the chosen trajectory. The upper and lower limits of the
band are determined by where the vertices of the flipped
triangles land: The upper limit is determined by the
lowest vertex above the chosen trajectory, the lower limit
by the highest vertex below.

Notice also that one of these vertices (in this case the
one above) is the right-angle vertex. If we look at a tra-
jectory which is as much above this vertex as the original
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FIG. 1. A Mteen-segment periodic trajectory within a right
triangle starting perpendicular to the short leg. In this case the
ratio of the short to long leg is 1:1.42.
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FIG. 2. A representation of the trajectory of Fig. 1 as a se-
quence of Aips of the triangle.

FIG. 3. The trajectory of Fig. 1 along with its equivalent

around the point of symmetry, suggesting a rhombus represen-

tation.

FIG. 4. The rhombus corresponding to the triangle of Figs.
1—3. tana= 1/1.42.

trajectory was below it, we see that the sequence of Hips is
essentially the same (see Fig. 3). In fact, as billiard trajec-
tories inside the triangle, these two are identical. The
right-angle vertex is a point of rotational symmetry in
Fig. 3. (We shall comment further on this near the end of
the paper. )

This suggests that the right-angle vertex is a "remov-
able singularity. " We can remove it by using as our basic
shape not the right triangle, but a rhombus consisting of
four copies of the triangle, as shown in Fig. 4. We shall
henceforth work with rhombi, and consider trajectories
which begin perpendicular to one of the diagonals of the
rhombus.

As we follow the Aips of the rhombus along a straight-
line trajectory, we see that each Rip in e6'ect rotates the
rhombus by an amount equal to one of the two interior
angles of the rhombus. It is convenient to describe the
rotations in terms of one angle only. (A clockwise rota-
tion by one interior angle is equivalent to a counterclock-
wise rotation by the other. ) If u is one of the angles of
the right triangle, then as the rhombus Hips along a tra-
jectory, its orientation increases or decreases by 2a with
each Hip. We can thus label the rhombi with integers, ac-
cording to the total number of, say clockwise, rotations
by 2o, for each, as shown in Fig. 5.

This suggests a new representation of a trajectory, as a
sequence of line segments in a set of labeled rhombi. An
example is shown in Fig. 6. The segments of the trajecto-
ry are numbered as they enter each rhombus from the
left. When a segment exits a rhombus on the right, it ei-
ther advances to the next rhombus, or goes back to the
previous one, reentering at the corresponding point on
the edge parallel to the edge it has just left.

FIG. 5. The trajectory of Fig.
1 as a sequence of rhombus Hips.
Numbers 0—2 refer to unique
rhombus orientations.

FIG. 6. The three unique
rhombus orientations of Fig. 5
with sequential line segments of
the trajectory indicated.

rhombus 0 rhombus 1 rhombus 2
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FIG. 7. A generic "nth" rhombus.

Figure 7 shows a generic "nth" rhombus. The two
sides through which a horizontal, right-moving trajectory
can exit are labeled "forward" and "back, *' according to
whether the trajectory is to go forward to the next
rhombus or back to the previous one. In the convention
we have adopted, the forward edge is always the leading
(clockwise) ray for the angle 2a, and the backward edge
is the trailing (counterclockwise) ray. (It may help to
point out that when the trajectory goes forward, it enters
the next rhombus on the unlabeled edge adjacent to that
rhombus's forward edge, and likewise, when it goes back-
wards, it enters on the unlabeled edge adjacent to the
backward edge. )

When a is a rational multiple of ~, there are only
finitely many distinct orientations for the labeled rhombi,
while for "irrational" angles a, there are infinitely many
orientations. Note that the forward edge in Fig. 7 is
nearly horizontal. Since the forward edge of rhombus 0
is set at angle a with respect to the x axis, and each sub-
sequent forward edge is a clockwise rotation by 2e, the
vertical width of the forward edge of rhombus n is
~sin[(2n +1)a]~ (we take the rhombus to have sides of
unit length). An elementary result in number theory
guarantees that when a is an irrational multiple of m,

~sin[(2n+1)a]~ is never equal to 0, but takes values that
are arbitrarily close to 0 as n ranges over the positive in-
tegers. (The number-theoretic result is that the set of
fractional parts of the integer multiples of any irrational
number is dense in the unit interval [8].) The fact that
the vertical width of the forward edge of the nth rhombus
is arbitrarily small for certain values of n is one of the
keys to proving that almost all trajectories are periodic.

Recall now that each periodic trajectory actually be-
longs to a band of trajectories that follow the same pat-
tern of fa.ips. This carries over to the new representation,

FIG. 9. The rhombi of Fig. 8 arranged in "pinwheel"
configuration.

as shown in Fig. 8. The width of the band is determined
by the vertices P, and I'2, which separate the forward
and backward edges of rhombus 1 and rhombus 2, re-
spectively. It is clear that any periodic trajectory can be
widened into such a band.

A more compact, picturesque form of Fig. 8 is shown
in Fig. 9. This "pinwheel" configuration of the rhombi
makes it easier to see the progression of the band. How-
ever, the analysis is based on considering each rhombus
separately.

Note that the width of the band remains constant.
This is clear, since the rule that ties trajectories from one
rhombus to another simply amounts to an affine transla-
tion.

Note also that the segments of the band, such as seg-
ments 3 and 5 in rhombus 1, do not overlap. This is easy
to prove: If segments h and k overlapped in one
rhombus, with h & k, then segments h —1 and k —1

would have overlapped in the preceding rhombus. (This
argument would fail if h were 0, since there is no "—1"
segment, but since segment 0 starts in rhombus 0, which
is the one that is symmetrically oriented, there can be no
segment that overlaps with it: Any segment that reenters
rhombus 0 does so in its lower half, and stops at right an-
gles at the diagonal from which segment 0 began. )

This nonoverlapping of segments holds between bands
as well, for the same reason. That is, let 8, and 82 be
two bands of trajectories, each starting at right angles to
the vertical diagonal of rhombus 0. Then no segment of
band B

&
overlaps with any segment of band 82.

The nonoverlapping of bands and the constancy of
their width are two more keys to proving that almost all

P,

FIG. 8. The band of.trajec-
tories containing the trajectory
of Fig. 6 and bounded by points
P& and P2.

rhombus 0 rhombus I rhombus 2
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FIG. 10. The two bands of trajectories involving only the
first three rhombus orientations and accounting for approxi-
mately 87% of all trajectories beginning perpendicular to the
short leg.

trajectories are periodic. %'e are now in position to prove
our main result.

Consider what happens to a "beam" consisting of all
trajectories perpendicular to the vertical diagonal in the
top half of rhombus 0. It is transmitted as a whole to
rhombus 1, as shown in Fig. 10. In that example, the
beam is again transmitted as a whole to rhombus 2, but
that rhombus splits the beam, sending the lower part of it
on to rhombus 3, and the higher part back to rhombus 1.
We observe that the latter subbeam is "trapped" in rhom-
bi 1, 2, and 0: The only entrance to rhombus 3 is through
the forward edge of rhombus 2, but that edge is fully
filled, and beams, like bands, cannot overlap. The
trapped subbeam is split again, this time by the vertex in
rhombus 1, but both of these subbeams finally wind up in
rhombus 0, where they terminate.

The situation just described, in which the top part of
the initial beam is trapped in the first few rhombi while
the bottom part goes further, happens whenever there is
an integer m (depending on a) for which
0&sin[(2m+ l)a] &sin(a) but sin(a) &sin[(2k+1)a]

for 0(k (m: The initial beam advances as a whole to
rhombus m, where it is split [9]. The bottom, "transmit-
ted" subbeam fills up the forward edge leading to
rhombus m+1, while the top subbeam is trapped in
rhombi 0—m. The trapped subbeam may be split again
by the vertices of rhombi 1,2, . . . , m —1, but all sub-
beams eventually wind up in rhombus 0, where they ter-
minate. Why? Because beams of constant width cannot
continue indefi nitely in a fi nite region without ouerIapping.

For emphasis, we note that, due to the nonoverlapping
condition, each vertex separating the forward and back-
ward edges of a rhombus can act as a "beam splitter" at
most once. Thus the "trapped" beam we have just been
describing splits (if at all) into at most m subbeams.

Figure 11 shows the continuation of the transmitted
beams in rhombi 3, 4, and 5. Only a very thin sliver (less
than 2.5%%uo) of the original beam is sent on to rhombus 6;
the rest, consisting of three subbeams (two "trapped"
beams and most of the "transmitted" beam), is confined
to rhombi 0—5. Figure 12 shows the same picture in the
pinwheel configuration.

As noted above, if a right triangle has angles that are
rational multiples of m, then there are only a finite num-
ber of rhombi. Therefore, the beam, which is split at
most a finite number of times, cannot contain a subbeam
that continues indefinitely. This su%ces to prove the
known result, that all trajectories perpendicular to a side
(except those that hit a vertex) are periodic.

But what about the irrational case? In general, when a
beam enters rhombus n, one of three things happens: It
can exit entirely through the forward edge and go on to
rhombus n + 1, it can exit entirely through the backward
edge and be sent back to rhombus n —1, or it can be split
in two. But, as we established earlier, there are integers n
for which the vertical width of the forward edge of the
nth rhombus is arbitrarily small. Consequently, for such
an n, an arbitrarily large fraction of the initial beam will
be trapped in rhombi 0, 1, , n, in the form of at most n

12

3

rhombus 0 rhombus 1 rhombus 2

FIG. 11. The three bands of trajectories in-
volving only the first six rhombus orientations
and accounting for approximately 97.7% of all
trajectories beginning perpendicular to the
short leg.

rhombus 3 rhombus 4 rhombus 5



2070 BARRY CIPRA, ROBERT M. HANSON, AND ANY KOLAN 52

15

33

303

5129

20823

1.(XX'(R .-.

0.801995 ".

0.128079 ""
0.022740 ""

0.007863 .".
0.004031 .";

0.003990 "..
0.003803

3969

3753
0.003258 " ., "..=-",

0.002070 " .. '':-
857

0.000000 " -""-"

FIG. 12. The pinwheel configuration of Fig. 11.

FICx. 13. Approximate boundaries of all bands of trajectories
that we have been able to identify in the triangle of Fig. 1, ac-
counting for 99.98% of all trajectories beginning perpendicular
to the short leg. On the left is given the number of line seg-
ments composing the trajectories of each of the nine identified
bands.

subbeams. The trajectories comprising these beams (ex-
cluding those that hit vertices) are necessarily periodic.
The nonperiodic trajectories, if any, are contained in
beams of increasingly narrow width, and hence constitute
a set of measure zero. The result is proved: Almost all
trajectories perpendicular to a side of a right triangle
with irrational angles are periodic.

Our analysis leaves open several questions worthy of
further study. First and foremost, are there really any
nonperiodic trajectories emanating at right angles from
the side of an arbitrary right triangle, and if so, how
many' Is the number finite, countable, or uncountable
(yet still, like a Cantor set, of measure zero)?

Computational evidence suggests the number may be
either 0 or 1. Figure 13, for example, shows what we
know about the trajectories in the triangle of Figs. 1 —12,
which we take to have height 1 and base 1.42. The de-
cimal numbers on the left identify the upper and lower
boundaries of the beams; the integers specify the number
of segments constituting the trajectory in the triangle.
Note that there is a "mystery" interval between 0.003 803
and 0.003 990, where the number of segments is undeter-
mined. This represents the limit of the computation: Al-
most all of the trajectories in this beam are periodic, but
their periods exceed our program's ability to compute the
trajectories with sufhcient accuracy.

The fact that all triangles we have looked at to date
have only one such "mystery" interval is what inclines us
to speculate that there may be at most one nonperiodic
trajectory left over. However, more detailed computa-
tion may well show the mystery interval splitting into
myriad mystery intervals separated by well-behaved
beams of periodic trajectories. A more detailed analysis

of the way beams are split by rhombi may also resolve the
question one way or the other.

One positive feature of nonperiodic trajectories is
worth noting: Our proof shows that any such trajectory
is a limit of periodic trajectories of longer and longer
period.

Our computational evidence also suggests that the tra-
jectory at the middle of each beam hits the right-angle
vertex of the triangle. This recalls the situation depicted
in Fig. 3. When this happens, the trajectories above and
below the midpoint are identical: A trajectory in the
beam that leaves the side of the triangle at a distance d
above the midpoint returns at distance d below, and vice
versa. It is clear that every trajectory that hits the right-
angle vertex is at the middle of a beam of periodic trajec-
tories, but it is not clear (to us, at least) that every period-
ic beam has such a trajectory at its middle.

Finally, we note that our proof applies equally well to
trajectories that start at right angles to the base of an
isosceles triangle, but not to trajectories in a nonright,
scalene triangle. Indeed, it remains an open question
whether an arbitrary triangle with an obtuse angle neces-
sarily has any periodic trajectories at all [7]. Euclid left
us a lot of unfinished business.
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