
PHYSICAL REVIEW E VQLUME 52, NUMBER 2 AUCrUST 1995

High-efFiciency beam-wave interaction in quasiperiodic structures
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A semianalytical method for the design and analysis of high-efficienty ( & 50%) generation of radiation
in traveling output structures is presented. No a priori assumption about the functional form of the elec-
tromagnetic field is required. The concept of scalar interaction impedance used in periodic structures is
generalized to a matrix in the case of a nonperiodic system. Its eigenvalue is shown to be directly related
to the beam-wave interaction efficiency. The method is demonstrated with the design and analysis of a
70% efficiency system.
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INTR@0UCTIQN

A substantial effort in the investigation of high power
radiation sources has been directed towards improving
the efficiency. Traveling wave output sections [1—4] play
an important role in these devices due to the distributed
interaction, which permits high efFiciency with low gra-
dients on the metallic surface, and consequently, lower
probability of rf breakdown. In the context of high
power devices, a traveling wave output section consists of
a set of coupled cavities with one or more output arms,
and it is driven by an initially bunched beam generated
by either a klystron or a traveling wave tube.

The beam-wave interaction in periodic traveling wave
tubes relies on synchronism of the average velocity of the
electrons with the phase velocity of the interacting wave.
Systems with uniform structures can generate rf at power
levels that may correspond to 5 —12% efIiciency in a sin-
gle stage amplifier [5] or 40% in a two stage system
[6—8]. The efficiency of a uniform structure is higher as
the electrons are more relativistic; however, the volume
and cost of electron generators limit the output energies
to less than 1 MeV, and in many cases even below 500
keV. If we consider the latter case, the initial velocity is
V=0.86c; thus for an 80% efficiency system, the synch-
ronism condition at the output would require a phase ve-
locity of 0.55c; this corresponds to a 36% change in the
phase velocity. In order to achieve this variation, a simi-
lar relative change in the geometry will be required, and
consequently, the system is no longer periodic. The
geometry variations mentioned above should not affect
the transmission or reAection characteristics of the struc-
ture', otherwise, sidebands occur, the interaction satu-
rates, and not less severe, the system is prompt to oscil-
late [9].

Spatial variations of periodic structures are used in ac-
celeration modules in order to adapt the interaction im-
pedance to the local power that Aows in the system. The
interaction impedance is a measure of the longitudinal
electric field, which acts on the electron (E) at a total
electromagnetic power (I') fiowing in the waveguide,
Z;„,~ ~E

~
/P. Perturbation from periodicity in accelera-

tion modules occurs over many periods of the structure,

and it is designed for minimum reAections. In a regular
periodic structure, at a given frequency and single mode
operation, the electromagnetic wave is characterized by a
single wave number k, and quantities such as phase veloc-
ity, group velocity, and iteration impedance are well
defined. In principle, once the structure is no longer
periodic the field cannot be represented by a single wave
number. However, in the case of adiabatic variations
these characteristics of the structure (phase velocity,
group velocity, and interaction impedance) are assumed
to be determined entirely by the geometry of the local
cell.

This is not the case in traveling wave output sections,
where variations typically occur in one wavelength of the
radiation field. This nonadiabatic change of geometry
dictates a wide spatial spectrum in which case the formu-
lation of the interaction in terms of a single wave with a
varying amplitude and phase is inadequate; in fact, the
electromagnetic field cannot be expressed in a simple (an-
alytic) form if substantial geometric variations occur
from one cell to another. To be more specific, in a uni-
form or weakly tapered disk loaded waveguide, the
beam-wave interaction is analyzed assuming that the gen-
eral functional form of the electromagnetic wave is
known, i.e., A (z)cos[cot —kz —P(z)] and the beam affects
[10] only the amplitude A(z) and the phase, P(z). Fur-
thermore, it is assumed that the variation due to the in-
teraction is small on the scale of one wavelength of the
radiation. Both assumptions are not acceptable in the
case of a structure designed for high-efFiciency interac-
tion.

In order to emphasize the difFiculty even further, we re-
call that a nonadiabatic local perturbation of geometry
affects global electromagnetic characteristics; that is to
say that a change in a given cell affects the interaction
impedance or the group velocity several cells before and
after the point where the geometry was altered. For com-
parison, in a free electron laser, a local change in the pon-
deromotive force aff'ects locally the interaction [11].

In order to optimize these conflicting requirements we
have developed an analytical technique that permits us to
design a quasiperiodic structure. It relies on a model that
consists of a cylindrical waveguide to which a set of pill-
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box cavities and a radial arm are attached. In principle
the number of cavities and arms is arbitrary. The bound-
ary condition problem is formulated in terms of the am-
plitudes of the electromagnetic field in the cavities and
arms. The elements of the matrix that relate these ampli-
tudes to the source term are analytic functions; thus, no a
priori knowledge of the functional behavior of the elec-
tromagnetic field is necessary. In previous studies [12,13]
we examined the homogeneous electromagnetic charac-
teristic of quasiperiodic structures; the technique was fur-
ther developed to include Green's function and the
beam-wave interaction within the framework of the linear
hydrodynamic approximation for the beam dynamics. It
was shown that the method [13]combines the features of
beam-gap (local) interaction, as in a klystron, with those
of beam-wave (distributed) interaction in a traveling wave
structure. The linearity of the model above is a serious
limitation for a high-eKciency interaction, since it is valid
only for a small variations from the initial average veloci-
ty. For this reason, the tools developed previously are
used in the present study to formulate the beam-wave in-
teraction within the framework of a macroparticle dy-
namics, which permits a description of large deviation
from average velocity. It is shown that the interaction is
controlled by a matrix interaction impedance, which can
be conceived as a generalization of the scalar interaction
impedance concept, introduced for uniform structures.
Its definition is possible after instead of using a k-space
decomposition (e.g. , Floquet harmonics for periodic
structure), we chose to represent the interaction in terms
of z-space functions. The number of functions is deter-
mined by the number of apertures and number of modes
that represent, at the required accuracy, the electromag-
netic field in the grooves and arms. Each function has its
peak at a di8'erent aperture; however, the functions are
not orthogonal. The matrix interaction impedance is
closely related to Green's function of the system in the
representation of this set of functions. After we establish
the basic formalism we illustrate the design and analysis
of a high-efficiency (70%) traveling wave section, includ-
ing space-charge effects.

DEFINITION OF THE MODEL

A schematic of the system is presented in Fig. 1. It
consists of a cylindrical waveguide of radius R;„, to
which an arbitrary number of pill-box cavities and an
output arm are attached; the width of each one is denoted
by d„, where n =1,2, ...,1V and X is the total number of
cells and arms. The external radius (R,„,„) may vary
from one cavity to another but the internal radius (R;„,)
has to be constant. The system is driven by a modulated
beam that is guided by a very strong ("infinite") magnetic
field; thus the motion of the electrons is confined to the z
direction. Consequently, in the inner cylinder
(0(r (R;„,) the current density distribution is entirely in
this direction; i.e., J(r,z; t) =J,(r, z; t)1, and

J,(r, z;t ) = —eg V (t)5[z —z, (t)] 5(r r,(t));—1

2&r

—e is the charge of one electron. In this expression r,(t).

ext, 2

Rint

FIG. 1. Schematic of the system under consideration. The
external radius R,„„the groove and arm width d, and the sepa-
ration between any two cavities can be arbitrary; however, the
internal radius R;„, has to be maintained the same. The system
is driven by a bunched beam.

and z, (t) are .the location of the ith particle at time t, sub-
ject to the assumptions above r, (t) =r, (0).

The operation of the system as an amplifier dictates
single frequency operation; thus the time dependence of
all electromagnetic field components is assumed to be
sinusoidal (ei '); this tacitly implies that all of the tran-
sients associated with the front of the beam have de-
cayed, and for a particular phase-space distribution of
electrons, the system can reach the steady state. Accord-
ing to the assumptions above, the time Fourier transform
of the current density is

(2)

T =2m/co is the period of the wave. This expression can
be simplified if no electrons are rejected. For this pur-
pose we denote by r;(z) the time it takes the ith particle
to reach the point z in the interaction region and by V, (z)
the velocity of the ith particle at z; the two are related
through

r, (z) =r,.(0)+I d g
o V,

(3)

r;(0) is the time the ith particle reaches the z =0 point
chosen to be in the center of the first aperture. Using
these definitions the integral in Eq. (2) can be evaluated
analytically, and the result is

No

(Jr, z;co) = ge ' 5[r —r;(0)] .
277r T (4)

The summation is over all electrons (No) present in one
(time) period of the wave, and I=eNO/T is the average
current. It is convenient to average over the transverse
direction; thus, by denoting with Rb the beam radius and
assuming that the electrons are uniformly distributed on
the beam cross section we find that

J(z) =— I dr rJ, (r, z;co) = — (e
Rb 0
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where ( ) =No 'g, ' . . Finally, subject to the previ-
ous assumptions, the current density distribution reads

J,(r,z;co)= — (e ' )hlR„—r),
7T b

(6)

d 1 e jcov,.(z)
y, (z) = —— [E(z)e ' +c.c. ];

dz 2 pyzc
2 (8)

m is the rest mass of the electron. In the next section we
shall determine the relation between the longitudinal
electric field [averaged over the beam cross section, Eq.
(7)] and the current density [Eq. (6)].

ELECTROMAGNETIC PROBLEM

The current distribution introduced above excites the
longitudinal component of the magnetic vector potential,
which satisfies

with h (x) the Heaviside step function; in what follows we—j co7, (,z)
shall refer to ( e ' ) as the normalized current densi-
ty.

The longitudinal electric field averaged over the beam
cross section, i.e.,

2 Rb
E(z)=

2
dr rE, (r, z;co),

Rb

determines the dynamics of the particles via the single
particle equation of motion, which in our case coincides
with the single particle energy conservation

azimuthal symmetry of the current distribution and the
metallic structure, only symmetric transverse magnetic
(TM) modes have been considered.

In the grooves the electromagnetic field should be
represented by a superposition of modes that satisfy the
boundary conditions on the metallic walls. In principle
an infinite number of such modes is required. However,
as long as the vacuum wavelength is about 5 times larger
than the aperture width, the first mode [transverse elec-
tric and magnetic (TEM)] is sufficient for most practical
purposes. This assumption is by no means critical for the
present analysis and the calculation is similar when a
larger number of modes is required; however, we use it
since it makes the presentation simpler. In order to
quantify this statement let us give a simple example of a
periodic disk loaded structure: consider the case when
R,x, =15.9 mm, R;„,=9.0 mm, the period of the system
is 10.0 mm, and the disk is 5 mm wide. For this
geometry it is required that the phase advance per cell be
120' at 9 6Hz. With 39 spatial (longitudinal) Floquet
harmonics, the lower cutoff frequency (kL=0), using
three modes (TEM, TMoi and TMO2) in the grooves, was
calculated to be 8.206 CxHz, with two modes (TEM and
TMO, ) 8.192 and 8.192 GHz when only the TEM mode
was used. For the higher cutoff (kL =n. ) the calculated
frequencies were 9.270, 9.229, and 9.229 GHz corre-
spondingly. Thus in the regime of interest the typical er-
ror associated with the neglection of the higher modes in
the grooves is expected to be of the order of 1% or less.
Within the framework of this approximation we can
write, for the magnetic vector potential in the grooves,

V + A, (r, z;co) = —poJ, (r, z;co)
C

(9) A,"(r,z;co) =D„TD„—rCO

c
(14)

in the cylindrical waveguide and

CO
V + A(r, z;co)=0

C

D„ is the amplitude of the magnetic vector potential and

CO CO COT —r =J —r Y0 —R0 n 0 0 ext n

in the grooves and output arm; in both cases the Lorentz
gauge was tacitly assumed. The solution of the magnetic
vector potential in the first region (0 & r & R;„,) reads

CO CO—Y —r J —R0 0 ext n (1S)

A, (r, z;co)
Rb

=2npo f dr'r' f dz'G„(r, z tr', z')J, (r', z', co)
0 QO

+ f dk A(k)e J"'Io(l r), (11)

where r =k —(cole), G„(r,z~r', z') is the vacuum
Green's function:

this specific functional form is dictated by the condition
that the longitudinal electric field should vanish on the
external wall (r =R,„,„). Later we shall also use the first
derivative of this function

CO CO COT —r =J —r Y —R1,n 1 0 ext n
C

I

and

G (r, z~r', z')= f dk e ~"' ''g k(r~r') (12) CO CO—Y —r J —R1 0 ext n (16)

Io(I „)Ko(l r') for 0& r &r',

Eo(l r )Io(l r') for r' & r & oog (r r')= X'

(13)

Io(z) and Ko(x) are the zero order modified Bessel func-
tion of the first and second kind, respectively. Due to the

where Jo(x), J,(x), Yo(x), and F, (x) are the zero and
first order Bessel functions of the first and second kind.
In the output arm, the magnetic vector potential reads

A, (r, z;co) =DzHz ' r— (17)
C

L

where Ho '(x) is the zero order Hankel function of the
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second kind. Again, the functional form is dictated by
the boundary conditions, which in this case assume no
rejected wave along the output arm.

In order to determine the various amplitudes we next
impose the boundary conditions following a method that
resembles the one used in periodic structures. The main
difference is that we no longer consider a single cell to
characterize the entire system, but rather, examine each
individual region. From the condition of continuity of
the longitudinal electric field we can conclude that

~2 1V

A(k)I0(b, )+B(k)K0(b, ) = — g D„P0 „d„L„(k),fl 0, fl fl Il

In these expressions

B(k)= f dr'r'I0(I r') f dz'e~"' J,(r', z', co) (22)
2'7T 0 OO

is the spatial Fourier transform of the current density
averaged over the transverse direction with a weighting
function that is proportional to the longitudinal electric
field.

It is now convenient to substitute Eq. (18) in Eq. (21) in
order to represent the entire electromagnetic problem in
terms of the amplitudes of the mode in the grooves and
output arm, i.e.,

(18)

where a=(ru/c )R;„, is the normalized angular frequency,
h=j. R;„, is the normalized wave number in the radial
direction, and

D =S„.
m=1

The source term

z +d„/2
L„(k)= f dz le'"'

n

(19)
pS„=— a„
2m.a (24)

is the normalized spatial Fourier transform of the first
mode amplitude (whose amplitude is constant) in the
domain of the nth aperture. The function

H',"(a) for n=X,
4v, n

=
T (1Z) fOi (20)

D„Q, „=——f dk[A(k)I, (b, )—oo

—B(k)K, (b, )]bL„*(k) . (21)

is the generalized (radial) modal function evaluated at the
internal radius and nth aperture; v( =0, 1) is the order of
the function. In addition, z„ is the location of the center
of the nth groove or arm and d„ is the corresponding
width.

Imposing the continuity of the tangential magnetic
field at each aperture (grooves and arm) we find

is proportional to the average current and the Fourier
transform of the normalized current density,

a„= f" dzf ( )(ze
' "'}. (25)

The Fourier transform is, with respect to a function,

f„(z)=g o., „(z),
s=1 s 1 Ps

(26)

which is associated with the nth aperture. In particular if
all the modes in the inner cylinder (index s) are below
cutoA; this function peaks in the center of the aperture, '

p, are the zeros of the zero order Bessel function of the
first kind, i.e., J0(p, ) =0. The function f„(z) is the prod-
uct of two components,

+d /

o, „(z)—= f „dge
n n

—r, Jz —z„J .
e ' " sinhc( l,d„ /2) for ~z

—z„~ )d„/2

2I1 —e ' " cosh[1",(z —z„)]]/I',d„ for ~z
—z„~ (d„/2, (27)

F, =2J, (p, R1, /R;„, )/(—p, Rb/R;„, ) . (28)

is the projection of Green's function (s mode) on the nth
aperture; sinhc(x) =sinh(x)/x and b,, =p, —a . The oth-
er component is the discrete spectrum filling factor

In this expression

d a I, (A)f dk L„*(k)L (k),
2n —m b,I0 b,

(30)

rn, m Pl, n~n, m 40, mXn, m (29)

To determine the amplitudes in Eq. (23) one has to multi-
ply the source term by the inverse of the matrix w deIIined
by

the integral over k can be evaluated exactly by substitut-
ing the explicit expressions for L„(k) an using the Cau-
chy residue theorem [12,13]. This quantity represents the
projection of Careen's function (of a uniform waveguide)
on two apertures:
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s=1

1 z+d/2 1
dX1

zm+dm /2 r I&
X dx2e

z —d /2

(31)

[E(z)] as defined in Eq. (7). In this section we shall use
Eq. (23) to simplify the relation between the normalized
current density and E(z). The longitudinal component of
the electric field is related to the magnetic vector poten-
tial by

n=m,
CX Yx.

e * " sinhc(I d /2)I, s n

X sinhc( I,d /2) otherwise,

Its exact evaluation reads

2 -r'd. /2 .
[1—e ' " sinhc(I d/d„/2)]p2

C COE,(r, z;co) = + A, (r,z;co),
J~ C2 gZ2

which after substituting Eq. (9) reads

1 8
pcI—,(r, z;co) —— r A, (r, z;co)

r Br Br

(33)

(34)

(32)

and I, =(p, /R;„, ) —(co/c ) . The electromagnetic prob-
lem has now been simplified to the inversion of a matrix
whose components are analytic functions without a priori
assumption on the form of the electromagnetic Geld.

EFFECTIVE ELECTRIC FIELD

The motion of the electrons is determined by the longi-
tudinal electric field averaged over the beam cross section

I

Thus according to the definition of the effective electric
field in Eq. (7), we have

CE(z)= .
JCO

—
poJ (z)— 2

A, (r, z;co)
Rb Br

I

(35)

At this stage, we substitute the explicit expression for the
magnetic vector potential in Eq. (11). The result has two
contributions: the space-charge term

Il(~b )
Esc(z) = —. I dz'J(z') f dk e J"' ' ' 1 —2 [Io(b )K, (hb )+Ko(b, )I&(hb)]JCt)E'p —oo 2& Io(&)

and the "pure" electromagnetic term

EEM(z) = I dk e J"' F(k)
277 Io b.

N
X g D„d„L„(k)go„,

n=1
(37)

N

EFM(z) = g f„(z) g T„a
int n =1 m=1

(4O)

where

I

for L,„(k) and using the Cauchy residue theorem; the re-
sult reads

where +(k)—:2I, (hb)/bb is the (continuous spectrum)
filling factor and 5b = I Rb.

It can be seen that the grooves have no explicit effect
on the space-charge term; in the Appendix we take ad-
vantage of this fact to show that

1
Esc(z '~) = —. ksP«)

JGATE'p

(41)

and it can be considered as a "discrete" Green function
of the system since a is the Fourier transform of the
normalized current density with respect to the function

f (g).

DYNAMICS

where

Now that the relation between the effective electric
field acting on the particles and the current density has
been established,

Ji (p, Rb /R;„, ) E(z) =Esc(z)+EFM(z), (42)

is the simplified plasma frequency reduction factor and
go=Qpo/eo. The electromagnetic term can also be
simplified [12,13] by substituting the explicit expression

I

we proceed to analyze of the beam-wave interaction.
Substituting this effective field in the single particle ener-

gy conservation, defining gsc =gsc(R;„,/Rb ) am and
I=r)oIe/mc, we obtain

d
Vl

2Rint

J.~~,.(z)
e jIgsc(e ) +—I g'T„a,f„(z) +c.c.

n, m =1
(43)
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This is an integro-difFerential equation that describes the
dynamics of the electrons, and in order to determine y,- at
any given location it is necessary to know the Fourier
transform of the normalized current density a„, which in
turn requires knowledge of the trajectories of all particles
over the entire interaction region; see Eq. (25).

Before we proceed to actually present a solution of this
set of equations it is important to make two comments
that are evident from Eq. (43) and our prior definitions:

(i) Global energy conservation implies

30

10

9.0

— 100

-80

40 o

20

—0
9.1

1[T +TO ]

n, m =1
(44)

(45)

FIG. 2. Largest eigenvalue of the interaction impedance ma-

trix as a function of the frequency. Overlayed is also the
efBciency calculated assuming all the electrons form a single
macroparticle.

is the interact~on impedance matrix. This expression
infers that in the case of nonadiabatic changes from
periodicity, namely, in quasiperiodic structures, we can
no longer refer to the interaction impedance as a scalar
(and local) quantity but rather as a matrix, and the in-
teraction at a given location is afFected by the geometry
elsewhere. Furthermore, since the left-hand side of the
global energy conservation [Eq. (44)] is proportional to
the overall e%ciency, it is evident that the latter is con-
trolled by the interaction impedance matrix. In the ex-
ample presented next, it will be shown that it is the larg-
est eigenvalue of this matrix that determines the
eKciency of the interaction.

(ii) the space-charge term has no explicit effect on the
global energy conservation. Furthermore, in the case of a
very peaked distribution (e.g., a single macroparticle) it
has no efFect on the equations of motion.

In order to solve the integro-difFerential equation in
Eq. (43) for a large number of macroparticles (more than
30000 were used), an iterative way was chosen. Typically
a simple distribution is assumed, enabling the calculation
of the zero interaction a„. With this quantity, the tra-
jectories of all particles are calculated, and in parallel, the
"new" a„'" is evaluated; at the end of the iteration the
two a„'s are compared. If the relative error is less than
1% the simulation is terminated. Otherwise we calculate
the equations of motion again but this time using a„'" to
determine the dynamics of the particles and calculate a„' '

in parallel. Typically if the energy spread of the electrons
at the input is not too large, then 3 —4 iterations are
sufticient for convergence.

Consider now a modulated beam that drives an output
structure. The initial energy of the electrons is 850 keV
and the structure should extract 70% of their kinetic en-
ergy; for the zero order design let us assume that in the
interaction region there is only a single macroparticle at a
time. Furthermore, the disk thickness is taken to be 1

mm in order to ensure maximum group velocity. For the
same reason the phase advance per cell is taken to be 90'.
In the design process, the total interaction length and
each aperture is determined assuming that the velocity of
a single macroparticle varies in space according to

V(z) = V(0)/(1+qz ); (46)

100

0
0 45 90 135 180

FIG. 3. EfFiciency as a function of the initial phase distribu-
tion at the input.

q and the total interaction length d„, are determined
from the required efficiency and the condition of a single
macrobunch in the interaction region. For simplicity, we
assume that the internal and external radius are the same
in all cells. Their value is determined by maximizing the
largest eigenualue of the interaction impedance matrix at 9
GHz, as illustrated in Fig. 2 where R;„,=9 mm and

R,„,=16.47 mm; the other geometrical parameters are
d) =6.5 mm, dq=6. 0 mm, d3=5. 7 mm, and d4=5. 4
mm. Overlayed is also the eKciency assuming a single
macroparticle injected into the system in one period of
the wave. The dynamics of the particle is calculated nu-
merically [Eq. (43)].

The eKciency of the electromagnetic energy conversion
is strongly dependent on the phase-space distribution at
the input, as indicated in Fig. 3; the phase here is defined
as y, (z)—=cur, .(z). For a perfectly bunched beam the
efliciency is as designed (for I=300 A). However, as the
initial phase distribution increases to —45' & y(0) & 45
the efficiency drops to 45% and to 25% for
—90' & y(0) & 90', it drops to virtually zero for a uniform
distribution.

An interesting feature is revealed in Fig. 4 where we



HIGH-EFFICIENCY BEAM-WAVE INTERACTION IN. . .

100— 100- 80— 0.6

80— 80—
0.5

40

O
20

C4

1

Q

o 40

C 20

C4

1 w

C

40

0.3

-x/20&X(0) &m/20

0.0 0.2 0.4 0.6 0.8 1.0
zid

0
-x/2&X(0) &x/2

-20 '~ -0
0.0 0.2 0.4 0.6 0.8 1.0

z/1
0
8.9 9.0

f (0Hz)

0.2
9.1
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SUMMARY

We have presented a semianalyti~ pp
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FIG. 6. Efficiency as a function of the f q yfre uenc for a phase
distribution of —15 (y I,

'0) (15' the resemblance to the single
in Fi . 2 is evident. Overlayed is the energy

spread at the output; up to a constant value it be aves i e e
derivative of the efficiency.

~ ~

The model consists of a set of pill-box cavities and one or
tt hed to a cylindrical waveguide.more output arms a ac

The electromagnetic problem is formurmulated in terms o
ction which can be calculated analytically.

With this function, the longitudinal fie t a ac s
d and therefore the beam-wave in-particles is evaluate, an - in-

t '
formulated in a self-consistent way q.

d' th f f thwithout a priori assumption regarding e
electromagnetic wave.

~ ~ ~

In the framewor o isk f th formulation the interaction
h' h

'
niform structure is a scalar func-im cdance, w ic in a uni

~ f
p

It as shown that the design otion, becomes a matrix. wa
eometric paramt arameters for a high-eKciency traveling wave

1' the optimization of the largest e'-output section re ies on e
1 f this matrix at the required frequency.genva ue o is ma

tion of E . (43) forThe beam-wave interaction is a so ution o q.
initial particle distribution (y). The performancea given ini i

ented and a similarof a 70% efficiency system was presented a
design is possi e or'bl f 80%. Above 90% efficiency, simu-

h th are always reflected electronslations indicate t at ere a
thisfor any practica p1 hase-space distribution and t is

violates our assumption associated with Eq. 3 .

0
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k'i/ ~a

0
-3
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APPENDIX

To evaluate the space-charger e term in a uniform
waveguide we start wi'th Green's function associated wit
TMO modes in a cylindrical waveguide,0 IIlo

FIG. 5. Phase space for a narrow, —9'&y, )(0) & 9', distribu-
'n the ri httion in t e ethe left frame and broad one in g

ns are de-(0) &90 ]. In the narrow case all electrons are[ —90'&y & . n
ectronscelerated, whereas in eh

'
th broader case a fraction of the e e

is lower, as alsoare accelerated and consequently, the efficiency is lower, as a so
indicated in Fig. 4.

6 (r, z)r', z')

s =1

Jo(p "/R iJo(p. r /R t)'
—,'Ri iJiVs

(Al)
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Using the same method as in Eqs. (31)—(33) we obtain

E(z)= . J(z) — I dz'J(z') g ejcomp R;„, —,, 26,
2J, (p, Rb /R, „,)

Ji(p, )
(A2)

E(z) = J, (p, R b /R, .„,)
J(z) 1 —gjcoeo, , b,,J, (p, )

(A3)

which can be simplified if all electromagnetic modes are
below the cutofF' and in particular, for the case when the—r, ].—'f
current density J(z)

~
varies much slower than e

Subject to these assumptions, we can assume that the
main contribution to the integral is from the region z =z'
and therefore J(z) can be extracted from the integral.
The result in this case reads

of

1
Esc(z;cv) = —. gscJ(z),jcocp

ksc= 1—
s=1

Ji (p, Rb /R;„, )

b,,J, (p, )

as indicated in Eq. (39).

where the space-charge coefficient gsc is given by

(A4)

(A5)
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