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Multiphoton ionization (MPI) of a noble gas produces an electron plasma, acting as a defocusing
lens for the laser beam. In this paper we show that some parameters of the MPI process, e.g., order of
nonlinearity p, and of the plasma, e.g., size and density, can be estimated by examining the far-field
intensity distribution of the laser fundamental. In the limit of small electron density, describing the
scattering within the framework of the Born approximation, an analytic expression of the scattered
field has been obtained. For the other cases, we have developed a numerical approach based on
the expansion of the field in a series of Gaussian beams. On the other hand, the aberration of the
fundamental beam interferes notably with the process of harmonic generation in the gas medium.
Our theoretical findings agree well with experimental data relative to the fundamental and the third
harmonic of a Nd:YAG laser radiation (where YAG denotes yttrium aluminum garnet) produced in
the nonresonant 14-photon ionization of Ar. This agreement confirms that the distributions reported
in literature describe quite well the plasma formed in our 30-ps experiments.

PACS number(s): 52.25.Qt, 42.65.Ky, 52.40.Db

I. INTRODUCTION

In harmonic-generation experiments carried out at in-
tensities above 102 W cm™2, the effect of ionization be-
comes significant. The presence of free electrons intro-
duces a space-time-dependent change of the refractive in-
dex of the medium. When the fraction of ionized atoms
exceeds a few percent, the efficiency of harmonic genera-
tion is mainly dominated by the phase mismatch due to
the electron plasma [1].

The medium ionization has been considered by Lago
et al. [2], L’Huillier et al. [1, 3, 4], Lompré et al. [5],
and Hutchinson et al. [6] by including in the phase-
matching integral the contribution of the free electrons
to the refractive index. At intensities of 10'5-1017
Wcm™? Auguste et al. [7] observed a strong defocus-
ing of a laser beam focused in a cell filled with helium
at relatively high pressure. Rae and Burnett [8] studied
numerically the effects of the plasma formed in ultrain-
tense (I > 10'®* Wcm™2) field interactions by using a
one-dimensional model, which includes pulse propagation
and ionization dynamics.

The aim of this paper is to analyze the effects of the
plasma produced at intensities of the order of I ~ 1012-
10*3 W cm™2 on both the incident beam and the harmon-
ics. In a previous paper [9] we investigated the defocusing
effect of the electron plasma on the harmonic beam in the
weak field approximation by using the so-called complex
eikonal formalism. Here we extend the previous analyis
by following a complementary approach. In particular,
we shall dwell on the scattering of the fundamental by
the electron plasma formed in the focal region and on
the pattern of the low-order harmonics.

We start from the low-density-low-intensity case, for
which we shall derive an analytic representation of the
scattered field, valid in the Born limit (single scattering).
As a result of this analysis we will see that the structure
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of the pattern of the fundamental provides useful infor-
mation about the transverse dimension wplasma and the
density of the plasma. In fact, the pattern consists of a
central beam having the same geometrical parameters of
the incident one and a sequence of scattered beams with
beamwidths proportional to the square root of p/2, with
p the order of the ionization process. By choosing ade-
quate experimental conditions (atomic jet densities and
laser intensities sufficiently small) it is possible to observe
a pattern consisting only of a single scattered Gaussian
beam with the incident beam superimposed. In these
conditions it is possible to measure the ratio between
the beamwidths of these two beams, so that the order p
of the multiphoton ionization process can be estimated.
The scattering process of the fundamental is well charac-
terized by its scattering cross section o: a measure of it
provides useful information about the plasma geometry
and the electron density. In fact, by measuring the frac-
tion of power carried by the scattered beam the plasma
density can be easily estimated.

Moreover, the harmonic field, e.g., the third harmonic,
appears in the far field as a beam whose divergence is
broader the larger the plasma density. We have analyzed
several facets of the problem both experimentally and
theoretically.

The above analysis, valid in the limit of single scatter-
ing, has been extended to the multiple-scattering case by
integrating numerically the wave equations for the fun-
damental and the harmonics. To this end the fields have
been expanded in a series of Gauss-Laguerre modes and
the wave equations have been transformed in differential
systems. Since the waist of the incident beam is much
larger (4-5 times) than the plasma transverse dimension
Wplasma, We have used Gaussian beams having spot size w
intermediate between that of the incident beam wg and
the plasma cross section wplasma. In particular, accurate
results can be achieved by assuming w = wo/2.
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The transport equations of the Gauss-Laguerre mode
amplitudes Eé") have been put in simple forms by ex-
panding the field in power series in the saturation pa-
rameter s (depending on the laser energy used in the
ionization process) and in the phase A¢ (measuring the
effective dephasing undergone by the incident beam in
passing through the plasma). As a result of several com-
putations we found that for A¢ < 10 the patterns and
the mode amplitudes are well approximated by expres-
sions truncated at first order in A¢.

The scattering of the fundamental beam by the elec-
tron plasma in the framework of the Born approximation
is described in Sec. II, while in Sec. III we illustrate a
numerical method for integrating the wave equation for
the fundamental field by expanding it in a superposition
of TEM,,,0c Gaussian modes. The coefficients E{"‘) of
this expansion form a vector E;, which is a function of
the longitudinal coordinate. Section IV is dedicated to
the the harmonic beam, which is represented as a com-
bination of Gauss-Laguerre modes ugr) weighted by co-
efficients Eér). The far-field components Eév(?)ut) play the
role of partial phase-matching integrals, analogous to the
phase-matching integral used in Ref. [1]. The experi-
mental setup is illustrated in Sec. V, while in Sec. VI
experimental data are presented and compared with the
results of numerical simulation based on the Gaussian
beam expansion. Finally, a discussion of the results and
the limits of the present approach are presented in Sec.
VII. The matrices occurring in the modal analysis of the
fundamental beam are discussed in Appendix A, while
the extension of the Gaussian beam expansion to the
harmonics is presented in Appendix B. An integral ex-
pression of the mode amplitudes is derived in Appendix
C. In Appendix D the harmonic mode amplitudes are
derived in the limit of small electron density. The beam
divergence is analyzed in Appendix E.

II. PROPAGATION
OF THE FUNDAMENTAL BEAM

Let us consider a well collimated pulsed beam of fre-
quency w; (k1 = wy/c) propagating along the z axis,
Ei(r,t) = efrzmionte, (p)), (1)
inducing a polarization in an atomic jet,
Pl(l‘, t) = eik12-iw1tfpl (l‘, t)
= goetkrziwrt [Vf(r,t) — 1] & (r, ) (2)
with v (r,t) a space-time-depependent refractive index.
For plasmas produced in harmonic-generation experi-
ments, Av; = v; — 1 is generally so small that v2 — 1

can be replaced by 2Av;, while the envelope £; satisfies
the paraxial wave equation

) 8 10
[v? + 2ik; (g + EE:@) + 2kau1] E=0. (3

The index 1 has been introduced in order to distinguish
the quantities relative to the fundamental from the gth
harmonic ones.
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Now, we introduce the coordinate system t* = t —
z/c,z,ry and express the incident beam &;, (not per-
turbed by the atomic beam) and £; in the form

Ein(r,t) = /Lt )uin(r),
E1(r,t) = /L O(t")uy (r, t*), (4)

where I and 6(¢*) stand, respectively, for the peak power
and the pulse profile of the incident beam. In particular
lim, , oo u1(r,t*) = uin(r). Plugging the right-hand side
of (4.b) into (3) yields

; 2 0 0
[Vtz + 2’Lk1 <E %Ayl + a—z) + 2k%AV1] uy = 0. (5)

When we consider pulses longer than some hundred pe-
riods and with intensities such that Av; is much smaller
than unity we can drop the time derivative from Eq. (5)
by recalling that the partial derivative with respect to z
is calculated by keeping constant the retarded time ¢*.

If we represent u; as a product of the incident beam
Uin [Uin(0,t) = 1] times a factor e**15

up = ey, (6)

with S the so-called aberration eikonal (see, e.g., [9]),
using the property of u;, of being an integral of (5) for
Avy = 0, we obtain

—VS - V.S + ik VIS

oS
+ik71V,S - Vi In(uin) — 25+ 2Av; = 0. (7)
z
Finally, ignoring the terms with the factor k' in front
and considering an incident beam and a particle number
distribution rotationally invariant around the propaga-
gation axis, Eq. (7) reduces to the eikonal equation

1/08\> 88
:(57) + 0= ®

p being the transverse coordinate. Lago et al. [2] and
L’Huillier et al. [1] have neglected the terms proportional
to the transverse gradient and have set S = [ Av,dz.
When the beam u;, is strongly focused, the term in
Eq. (7) proportional to the transverse gradient of In(u;,)
cannot be neglected. In fact, for a TEMyo, Gaussian beam

B 1 klpz
uin(p, 2) = T /b P [‘m] @

we have ViInui, = —ky1p/(b + iz) and Eq. (8) must be
rewritten as

1 /08\? p 0S 08S

- (2= —— 4+ = = Auq. 10

2(6p) threop 0z oM (10)
Inserting now the approximate expression of S =
J Avidz in Eq. (10) we see that it can be used only
when

P o f Avidz

b Op
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If we indicate by Wplasma and lplasma the transverse and
longitudinal dimensions of the electron plasma present in
the focal region, the above inequality can be recast as

ﬂ < wplasma’ (12)
b lplasma
with wg the radius of the laser spot at the waist. This
condition is satisfied only when the extension of the
atomic jet is much shorter than the confocal parameter
b. In the other cases wo/Wplasma = /P and lplasma/b =

vIn2/,/p (p being the order of nonlinearity) and the two
sides of (12) are almost equal.

The limitations imposed by Eq. (12) can be partially
removed for Av; very small by representing u; as the
superposition of u;, and the field us. scattered by the
partially ionized medium,

ul(r,t*) = usc(ry t*) + uin(r) (13)
where
z o0
usc(r,t*)zkf/ dz'// dr;Gr(rs,ry; |2 — 2'|)
xAvy (rg, 2’5" Jua (r4, 2’5 t*), (14)

GF being the free-space Green’s function in the parax-
ial (Fresnel) approximation [see Ref. [10], Eq. (3.07)].
When the leading-phase

¢ = kl /oo Al/le (15)

of the incident beam along the plasma z axis is sufficiently
small (namely, ¢ < 1), the scattered field becomes neg-
ligible with respect to the incident one and u; can be
replaced by u;, in the above integral (Born approxima-
tion),

usc(r,t*)=2kf/ dz’// drlGr(re,ths |2 — )

x Avy (v}, 258 ) uin(ry, 2'). (16)

For ionized gases the refractive index depends on the
plasma frequency. At A = 1.06 pym,

Avy = —0.5 x 1072A/, (17)

with A the electron number density expressed in cm=3.
When the ionization depends on a power of order p of
the laser intensity [1, 11, 12] the electron density A, can

be expressed as

Ne(za P t*) = N(Z) [1 - exp(_Pi)] = Nmaxf(zvp; t*)a

(18)

where P; represents the ionization probability and A'(z)
the distribution of neutral atoms along z. For a nonreso-
nant p-photon ionization process characterized by a cross
section o(?), P; is given by

J¥ 0% (¢')|uy|?Pdt!
[5ew(t)dr

P = s(t")

= smax/ 02P(t')|u1|2”dt', (19)

with s(t*) = o®(I/hw)P [U_e®t)dt =

Smax f 6%r(t')dt'/ _f 6?7 (¢')dt' the saturation param-
eter for the pth—order multlphoton ionization process.

In the following we will express the plasma refractive
index deviation by means of the function f(r;t*) < 1
defined in Eq. (18),

AVI = _Aymaxfﬂ (20)

with Avmax = 0.5 x 1072 M .«. In the numerical simula-
tions discussed in the following, we have assumed a sech?
profile for the laser pulse intensity 6(t*) =sech(1.76t*/7),
with 7 the laser pulse duration, and we have set s(t*) =
Smax [ cosh™2P(1.76t' /7)dt'/ [*°_ cosh™?P(1.76t' /7)dt".
In particular, for an ionization process with p = 14 (Ar
ionization at A = 1.06 um) [ cosh™?"(1.76t'/7)dt' =
0.277.

For discussing the field scattered in the Born limit, it
is worth expressing Av; and us. as power series in the
saturation parameter

= ‘S)k k
Avy = —AVmax Z ol o ),
k=1 :

_ o~ (=9)* w
Uge = -'Aymax Z k' sc ) (21)
k=1
with
V(k) — N(Z) | ,2pk
ulF)( p,z)-—2k2/ dz' // dr;Gp(re, 1l |z — 2'))
xu(k)(r 2uin(r}, 2'). (22)

For an incident field w;, having the form of a TEMgo
Gaussian beam [see Eq. (9)], the leading phase ¢ will be
equal to [see Egs. (15) and (20)]

o(t*) = ABf(t"), (23)

with A¢ = k1bAvmax = 0.5 x 1072 k16N pax and f =
ffooo f(z,0;t*)dz/b. The latter quantity is plotted in
Fig. 1 as a function of the saturation parameter. In
typical experiments the confocal parameter b is of the
order of 1-5 mm and k;b is about 1-5 x 10%, so that
A¢ =~ 107" Nyax. Since f is less than one for s < 6,
the Born approximation holds true for plasmas having
number particle densities smaller than 1017 cm™3.

Now in order to evaluate the integral (22) it is worth
noting that the product v*®u;, is proportional to the
complex amplitude a(*) of a Gaussian beam

v®) (p, 2)uin(p, z) = |tin | Uin

(®(2)a® (p,z),  (29)

where
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1 k02
(k) — _ 1P
T TR aERm P [ 2060 +1~T<w)]
iz (k) /p(k)
o) — 1 1+iz . /b ’ (25)
(1 +22/b2)Pk  144z2/b
with
1 1 2kpb
b(k) + iz® — b +iz b2 4 227 (26)

a(®)(p, z) represents the amplitude at the point (p, z) of
a Gaussian beam of confocal parameter b(*) and waist
in ¢(® = z — 2()_ On the other hand, the diffraction

|

N(z) 1
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integral —2ik; [ fix;o Gradr' transforms a Gaussian dis-

tribution having the form of a(*)(r;,z) into a Gaussian
beam a®)(r},2"). Accordingly, the integral (22) relative
to a thin region extending from z to z + dz is equal to

dulf) (o, 2'; 2)

./\f(z) 1
Nmax 1+ i(2' — z + 2(®)) /b(k)

=ikydz ¢®)(2)

(k) N — c®)
Uge (p’ ) lkl/wNmax ()1+i(zl

z' 200 z

klbplz ; klplz
4kpz'2 2z )’

— / N(z) c(k)(z)b(")(z)

’M_ w_ b
Xexp[ 5,77 <b kp dz.

Setting z = btanv, 2z = b(®) tan+®) and using Eq.
(26) yields

(29)

b 1+ 2kp
b |1+ 2kpe™ cos |2’
k 2k
W oY (30)
b 1 + 2kpei¥ cos ¢
For large values of kp and kb, Eq. (29) reduces to
1
o8
f os[
04l
02}
% 2 ¥ 6 s 10
s
FIG. 1. f versus the saturation parameter s for a TEMoo

Gaussian beam [see Eq. (23)].

X - ko 27
exp 2 [b(k) + 'i(z' —z 4+ z(k))] . ( )

Then summing over z gives the total scattered field

klpl2
00 ) P {”2 B0 1 i = 5 =20y |
(28)
s
/2

oW~ L N(®) e~ cos?*P~3 ydyp. (31)

2kp —7r/2 Nmax

In particular, for a symmetric particle number distribu-
tion represented by the series

% = g;Nz cos? 1, (32)
using the relation (see [13], integral No. 3.631.17)

cos’™z = i c(m,n)e?"® (33)
with _

c(m,n) = 2%,; <m2+m|n|) , (34)
C®) can be expressed as

c® ~ kip > Nic(kp+1-1,0). (35)

1

In conclusion, in the Born limit the field u; is a super-
position of TEMg Gaussian beams with different confo-
cal parameters

2
uy(r;t*) < exp (_k_ﬂ)p_)

2 22

e s Ly kib p?
+iA¢ ,;zl ol C'™ exp 4kp )
(36)

with A¢ defined in (23). Accordingly, the incident power
is scattered in a sequence of Gaussian beams with diver-
gences equal to /2kp times the divergence of the inci-



52 RADIATION SCATTERING IN INTENSE-FIELD HARMONIC- . ..

a)

Fundamental intensity (arb. units)

b)

3-rd harmonic intensity (arb. units)

Transverse coordinate (arb. units)

FIG. 2. Schematic patterns of (a) the fundamental u; and
(b) the third-harmonic us after the interaction with the pulsed
atomic jet in the case of single scattering.

dent one (see Fig. 2). When the saturation parameter is
sufficiently small, the scattered field reduces to a single
TEMjpo Gaussian beam, so that the pattern of the total
field is composed of a main central lobe plus a weak and
much broader scattered beam. Such a pattern has been
observed experimentally as discussed in Sec. VI A. A
more accurate expression of the field will be discussed in
Sec. III A. In particular, the above picture of the field
as a superposition of TEMgo modes is confirmed by the
modal expansion. The main difference with the exact
analysis concerns the beamwidths. In practice, in (36)
the coefficient p appearing in the argument of the expo-
nential must be replaced by an effective p;, [see Egs. (63)

1997

0.1
0.08
b

0.06["

h(s)

0.04]

0.02]

FIG. 3. Plot of the function h(s) introduced in Eq. (37)
and calculated by means of Eq. (56) with the mode ampli-
tudes of Eq. (59).

and (64)].
The fraction of the incident power scattered by the
plasma is measured by the scattering cross section o

o = Tw? isc = mwi A¢?h(s)

m

(37)

with h(s) a function of the saturation parameter plotted
in Fig. 3. The above expression of o can be extended to
the incident €;, and scattered €;. energies of a laser pulse
having a temporal profile 6(t*) by setting

_ 2esc _ ffooo 02(t*)0'[Nmax, S(t*)]dt*
O = MWy — =

€in J2o, 02(t*)dt*

(38)

The scattered field is structured as a superposition of
TEMgo beams having divergences much larger than the
incident one. If we measure the energy €; flowing outside
the cone occupied by the unperturbed beam we have

I 07 (") () + ae

J=o, 6%dt*

2 oo
— 2 € _ 2 ) v, TAS
Oy = Twg— = MWy { € + e
P

€in

where Vo = k1bp2/2% with po representing the radius of
the stop used for eliminating the central lobe. When
the order of nonlinearity p is sufficiently large, po can be
chosen in such a way as to make o sufficiently close to
Oe.

III. MODE EXPANSION

For calculating the field in the more general case we
can integrate the wave equation by expanding the field
in a superposition of TEM,,o Gauss-Laguerre modes of
confocal parameter B,

e RN DR D)k k) (" 1 prkprk’

!
Vo prk + pirk ) ’ (39)

ugm)(p’ z) — cos U Lm(V)e—(l—itan ¥)V/2—i(1+2m)¥
(40)
In Eq. (40) the coordinate p has been replaced by

V= k1p? _ kp?

B(1+22/B?) B

cos® ¥ (41)
with B representing the confocal parameter of the beams
ugm) and the angle ¥ defined by the relation z =
B tan V.

Representing the fundamental beam w; as a combina-
tion of the above modes
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wi(r;t7) = 30 B (85 27)ui™ (x) (42)
m=0
amounts to associating uw; with a vector E; of compo-
nents E:Em). In particular, the TEMgo beam of Eq. (9)

Uiy = COSY e—(l—itan¢)v/2—i¢, (43)

recast in terms of the variables ¢ and v defined im-
plicitly by the relations z = btanyY = Btan¥ and
v = kip?cos?v/b = V(cos?/cos? U)(B/b), is repre-
sented by a vector of components [see Eq. (A8)]

(m) _ COSY i1tomyv—ipq _ o\ n
E;"™(¥) = g (1 —a)a”, (44)
witha = [(1—itany)v/V —1+itan ¥]/[(1—itan)v/V +
1+ itan ¥].
Now, plugging (42) into the parabolic wave equation
(5) yields
dE™ (m)
S uf™ g tiAe cos 2w fFE™ | =0,  (45)

where A® = A¢B/b. Next, multiplying Eq.
(n)*
Uy

(45) by
, integrating over the cross section, and exploit-
ing the orthogonality [f;° u&m)*(V,\I')ugn)(V,\I')dV =

(m)

8m,n cos? ¥] of the modes u; ", we finally obtain

v
%EY" = —iA® cos™? \I’J/\\//r(na:
% Z e2i(n—m)‘IlM1(m§n)E§m), (46)

with M; a symmetric matrix discussed in Appendix A,

M]Fm,n) = lefax ;

and f defined in Eqgs. (18) and (20).

By virtue of the symmetry of My, the modulus of E;
remains constant during the transport along the plasma
axis.

Introducing the intensity matrix I

e VL,(V)Lin(V)fdV (47)

1™ (5 4%) = / €™V L (V) Ln (V) |ur (V, &5 £*)|2dV
0

_ Z Ck,mneZi(l_’“)‘I’E{k)E§l)*, (48)
k,l

with
Cutrn = [ ¢ Lu(@) (@) Lm (@) Ln(2)dz,  (49)
0
M, can be expressed as

Jr 6B (W5 ¢)de
J2o. 0% (t)dt

—Smax

M, (¥;t*) = 1—exp

(50)

Replacing E{™ by E{™ = E{™e=2n¥ the system (46)

can be recast as

d ~(n o (m . _ N(‘Ii)
ﬁEi ) — —z2nE§ ) _iA® cos™2 \Ileax

< S M E™. (51)

Patterns of the fundamental calculated by integrating the
system (51) for different values of A¢ and s are presented
in Fig. 4.

Implicit in the use of the parabolic wave equation (5)
is the assumption that ]kldE§")/dz| < |d2E§")/dz2|.
On the other hand, according to (46), [dE{O)/dzl <
Av1|EL?)|. Since Avpay is of the order of 1073-10~%, the

condition that Ein) does not change significantly over
one wavelength is well satisfied.

The scattering cross section o [see (37)] is simply given
by

g = 7Tw(2)|E1(out) - El(in)lz' (52)

Integrating the system (51) provides the amplitudes
Em)
1(out)
uration parameter s(t*). By dividing the pulse duration
into several intervals (slots) and repeating the integra-
tion for the values of s relative to each time slot, the
space-time profile of the far field is easily reconstructed.
The cross-section relative to the scattered energy [see

Eq. (38)] will be given by

relative to the far field for given values of the sat-

02dt|Ey (out) — Er(in)|?

= mw? [es
° [0, 02t

Oe

(53)

In particular, the power P,(t*) carried by the harmonic

field at time ¢ is proportional to the squared modulus of
E

g(out)»
Py(t) = (mqkb2'~9)2N2, x D2 19629 (1) | Eq(ouny|*.  (54)

On the other hand, as shown in Appendix D, the aperture
of the harmonic field also can be expressed in terms of
these coefficients.

A. Perturbative integration
of the equation of motion of E;

Before concluding this section we shall dwell on the
integration of the differential system for very small values
of A®. To this end we represent E; as an asymptotic
series in the smallness parameter A,

E; = E{” + A¢E, + A¢*E? + ... (55)

The zeroth-order vector Ego) coincides with the incident
field. Accordingly, the cross section o can be expressed
as [see Eq. (52)]

g = ng (A¢)2IE1(out) + A¢E%(out) + - |2' (56)

The quadratic dependence of o on the particle density
for small values of M.y is a consequence of the fact that
this scattering process is coherent, as implicitly assumed
in the wave equation (5). This fact has been confirmed
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experimentally by the measurement of ¢ in conditions of
single scattering (see Sec. VI B).

E} can be determined by integrating the system (46)
by plugging EY into the right-hand side. Choosing B =
b and assuming that the ionization is produced by the
TEMgo beam of Eq. (9), the derivative of Ell(") reads
[see Eq. (A6)]

dy N k!
1 1

X .
(T+ 1/kp)" 1+ hp

Expressing N /Nmax by means of the series (32) and re-
lying on (33) gives

oo _\k )
d E;(") — _1N(¢) Z ( S) COS2kp_2’l/1 ezan/)

(57)

e T — T P oy
015 (G) I
— L i
b=
=] r i
: .
.01 -
S A = 100
Gl - ]
° L s=1
o
3
2 L ]
a, L 4
g
© | . -
® 0.05 .
9
2 L 4
=
r 1 FIG. 4. (a) Mode ampli-
L ¢ . ° . . e N tudes |E11((:3t)| (n =0,1,...,25)
ok ° . L calculated by integrating the
R Lo I R [ PRI differential system (51) for a
5 1 Mode ord1er 20 25 constant particle number den-
sity and for A¢$=100 and s = 1.
The matrix M; has been evalu-
ated by means of Eq. (50) with
the intensity matrix I; of Eq.
6000 T T T T - T T T T T T T T T T L (48) (b) Ratio S('U)/Sin('l))
(b) of the intensity S divided by
r § the intensity Sin of the inci-
| dent beam. Notice the rapid in-
I crease of the ratio for v > 15.
4000 — —
L A¢(max)= 100 B
& s =1
2] - 1
S
n
2000 [— ]
ok |
T O S S SR S L
0 5 10 15
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1(n) ( 1 1
Z ' 1+kp(1+1/kp)"

e'i2('n.—m)1/: _ (_ 1)n—m

Z'Nlc(kp +1-1,m)

lm

2(n —m)

1(k)(n)

where the sum Z;m is extended to m # n. In particular,

k
1(7!.) _ —S) 1 1
Eifouw = ”k; k' 1+ kp (1+ 1/kp)»
XZN;C(kp-{—l— 1,n). (59)
=0

Summing the above series for a uniform particle distri-
bution and using a best fit up to n® for n <50 we obtain

[see Figs. 5(a) and 5(b)]
E:(") ~ —i0.033 x 0.4297+0-00188n%~1.4x10"*n®
for s =1,
Ell(") ~ —40.053 x 0.4467+0-00136n+3.72x107%n®

for s =2. (60)

As discussed in Sec. II [see Eq. (36)], in the
limit of the Born approximation the scattered field
is formed by a superposition of Gaussian TEMgg

beams El(ouc)ZEin+E(11)+ E§2)+- -+, with different
beamwidths. In terms of modes, E%(out) has components

k n
l(n) ( ]. ka -1
B} (outy X 1 Z kl (zkp +1
xZNlc kp +1—1,0). (61)
l

The above expression differs from (59) by the presence
of the factors c(kp+1—1,0) instead of c(kp+I—1,n). The
different behavior is due to the phase factors e’z(" m¥ g
front of the matrix M in Eq. (46). The patterns relatlve
to Eqgs. (59) and (61) are qualitatively similar, but differ
notably for the divergence (see Fig. 6). This discrepancy
can be removed by using suitable power distributions.

Representing the vector El(out) in the form El(out) =

Ek -1 (_ks,)k Eigo‘)ﬂ), we approximate E* by the power

i 1(out)
aw
1)) o, gt _ kP +1—1,0) o
El(out) ~ El(approx) - 1+ kp Y . (62)

1(k) E!® |2 we obtain

1(out) = “1(approx)
for p=12 and for a uniform particle distribution

Minimizing the distance |E

+ (¢ + 7/2) ZNlc(kp +1—-1,n)
1

(58)
0.03
- E a)
2 E
g 0.02 3
o 3
ER
3 0.014
= 3-
i.
0 "teececccccccsctcccstccccccccccccesecscccsccces
3 ' - ' e A
—_ 3 b)
2 0.04
= 3
o ]
5 3
5 R
= o.oz?
- 1
04 Stecececscccectecescccescssscssccsssscncessnnas
1 ' A 1 i P—
0.03 9
i- 2
z -
5 0024 °
I 3 ‘.
& E .
g 0.01 J "'..
m” 3 e,
0-; .."..cni-..-lctl..ln
3 i A 1 A Al
0.03 3
- ; 9
2 E
g 002
s 3
S -3
~ 3
s 0.01 4
m” 3
o_f ®ececscceccccesscescoscccsscscsscsscssesssecence
3 A . N R R
0 0 20 30 20 50 60
n
FIG. 5. (a) Mode amplitudes |E11((::t)] (n = 0,1,...,50)

calculated by means of Eq. (59) for a small value of A¢ and
s = 1; (b) same as (a) but for s = 2; (c) same as for (a) but
with modes given by (61) and s = 1; (d) same as for (a) but
with modes relative to B = 0.5b.



52 RADIATION SCATTERING IN INTENSE-FIELD HARMONIC- . .. 2001

z(1) =1.0948, yU) =0.672,
z(® =1.1315, y® =0.760,
z® =1.1507, y® =0.801, 63
z® =1.1631, y* =0.826, (63)
z(®) =1.1719, y® = 0.843,
z(®) =1.1787, y(® = 0.856,

with a residual error |Ei$l)lt) - Eié:;pmx)l /IEﬂ':‘)“)P <

0.027. Accordingly, the field of Eq. (36) is superseded by
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FIG. 6. Patterns relative to the mode distributions (a)

(59) and (b)—(d) (61) for k = 1. (b)—(d) have been calculated
by summing N = 20,40, and 60 modes, respectively.

uq(r;t*) o< exp (—-g)
+1A¢Z (——s) z(*

( v
xexp [ —

c(kp —1,0)

_2(_k).:_1 . (64)
2y 41

For improving the convergence of the series (42) it is
worth choosing B # b. For example, with B = 0.5b we

obtain the amplitude distribution of Fig. 5(d), which is
approximated by the best fit

El(n) —70.034 x 0.311™~ 0.009n2+6.67x10"°

for s=1, (65)
IV. HARMONIC FIELD

The harmonic-generation problem has been analyzed
by L’Huillier et al. [1, 3, 4] by starting from the wave
equations for the envelope &, of the harmonic fields

. o]
(V_ZL + 2zqk1—a; + 2(qk1)2AVq> Eq = —4n(gk1)?P,.

(66)

Av, = Av,; /q? represents, as for the fundamental, the de-
viation from unity of the refractive index at the harmonic
frequencies. The subscript ¢ refers to the gth-harmonic
beam throughout.

The envelope P, of the polarization field is a function
of £;, which reduces, in the weak field case, to the gth
power of the laser field amplitude £;. If we neglect the
propagation time through the ionized region, the time-
dependent polarization will be given by

Po(T,V;t*) = 21 IN XD 192994 (T, V)

= Pugoman (1) 20, (67)

with x(9) the nonlinear susceptibility [4]

Nat Nion
X9 = X X9+ X X2 =x91 - fo) + x2 fe,
(68)
with fo = Ne(¥,V;t*) /N (P) = fNmax/N(T).

Lago et al. [2] and L’Huillier et al. [1, 3, 4], follow-
ing the approach of Refs. [14-16], have calculated the
harmonic field by expressing it as an integral over the
polarization field. Here we prefer a different approach
based on the representation of £ as a combination of
modes

ul(lm)(qvv’ \I’) = cos U Lm(qv)e—(l—i tan\lf)qV/2—i(1+2m)\I’.
(69)

Plugging into Eq. (66) the right-hand side of the expan-
sion

Eq(r;t*) = 27k BPmax (t*)ug(r, t*)
= 27k1 BPy(max) (t*) Z Eém) (7, t*)ué’n) (r)

(70)
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we obtain [see Eq. (46)]
d

70 E(n) = —3A®P cos Z\I,Nmax > ez‘z(n—m)\Il
xMé""*")E(m)
: q—3 i(2n—q+1)¥ _ 7V N (n)
+i cos e 1 S (71)
max
where
N oo
M) = f €™ Lin(qV) L (V) (¥, V)4V,
0
S‘g'"') = Z Ci1 ,iz,...,iquiil)Eliiﬂ . E§‘q), (72)
i1,i2,00siq
with
oo
Cuviaram = [ € Lis(2)Lay () -~ Li Ln(g2) o
(73)

The first term on the right-hand side of (71) describes
the effects of the plasma on the propagation of the gth
harmonic. The second one represents the polarization
source proportional to the gth power of the incident field.
In Fig. 7 we have plotted two typical patterns of the
third harmonic calculated by integrating the differential
system (71).

A. Perturbative integration
of the equation of motion of E,

If we expand Eq in an asymptotic power series in A¢,

E, = Eg + A¢E] + (74)
assuming B = b we obtain from (71)
d n - i(—
E’l—b—E‘(’)( ) = anOZNz cos2 a3 yeil—at1)¥, (75)
14 F
12 F a) s=1 , Ap=0.1
é; 10 F
w6 f
<
. b
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12 F b)) s=1 Ap=1
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FIG.7. Patterns of the third-harmonic field amplitude ob-
tained by integrating the differential system (71) for different
values of A¢ and s. (a) A¢p =0.1, s=1;(b) A¢=1, s=1.
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Then
0(0) __ q—3
) _Z'N,c(z y23 ,u)
L
eiZu—a+1)¥ _ (_ 1)11—’;1

2p—g+1

+%(¢ +7/2) ZN[C(Z + g;_?»’ %), (76)
l

the sum Z; . being extended to positive and negative
integers p # (¢ — 1)/2. In the absence of the electron
plasma the gth harmonic is a TEMgo beam with far-field
amplitude

0 4=3 g-1
E (out) = WZN’C(+ 2 )

vanishes for a uniform particle dis-

(77)

In particular, Eq((out)
tribution.
For a Lorentzian distribution N /Npmax = 1/(1 +

tanZ 1/ tan? 1) with |tanZo — 1| < 1,

Eg((g‘)lt) =im tan? g Z(l — tanZ )" !

-3 qg—-1
(l 4129 ) (78)
2
At first order in Ag, Sé") reduces  to
ADY, Coo...ommBr™. Since Coo,...omm = (’:) (¢
—1)™"/q™*L, Eq. (71) gives
d El(n) — 4 -2 M(O;n) 2im,bE0(0)
ap P —1 cos d)N_—max . e q
. N (g—1)™™ (m)
+1
Nmax mZ’n- qm n
x cos?73 ¢ei(2"—2m_q"’1)‘l’E;(m). (79)

The first term on the right-hand side of (79) represents
the contribution of the aberration undergone by the gth
harmonic. The second term is due to the aberration un-
dergone by the incident field. Accordingly, the effect of
the plasma on the harmonic is twofold: a direct aberra-
tion of the harmonic field propagating through the non-
homogeneous ionized medium and an aberration caused
by the aberrated fundamental beam. It is worth noting
that E.} ) depends only on the modes of the fundamental
of order greater than n — 1.
Now, expanding E; ™ ina power series in the satura-
tion parameter [see Eq. (58)]
El(n) - (—S)k 1(k)(n)
=2 E (80)
and integrating Eq. (79) for the kth-order mode ampli-
tudes we obtain for ¢ = 3 (see Appendix D)
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2 e _ 1 1 NAS Y Voo SRR L= Lip+n—1) — (-1)*Tc(kp+1—1,n)
: E3<out> kp/3 + 1 (1 + 3/kp)™ ; ! lz; vell’, u) -1
+ZN,/c(l' 1) Z’wc(kp+ l—1,u) +imc(kp+1—1,n)
l’ b " n — u I I
1 1 m m—n
- N .
"1+ kp (3+3/kp)" ; (n) (3+3/kp)
- —(=1)m—# -
« Z'N,,c(kp+l’—1,u)c(l’” n+1)—(-1) c(l,m—n+1)
U'p m-—p
( l)n m—1—p
+ZNpc(kp+l —1,m) Z — c(l p) + ime(l,m —n 4+ 1) (81)
In particular, for a particle Lorentzian distribution with ¥ = 7 /4 [cf. (78)]
(n) (=9)* 1 1 B o
E3(out) - 25710 + A¢Xk: k! kp/3 F1 (1 + 3/kp)" [ d(kp, n) + z7rc( D, n)]
1
+ T+ 3/k)" [dlkp,r) + ime(hp,m) + ehp )] | (82)
where
d(kp,n) = 1.5¢(kp,n) + 2¢(kp,n — 1) + 0.5¢(kp,n — 2) + Z (—)————c(kp, ),
m
. > m 2 ™7 e(kp,n) c(kp,n—1) c(kp,n—2)
em= 2 (%) o) [m“" HHmondl a3
(=1)""™c(kp, m)
P T mo1?—1n—m=1) | (83)
Summing the above series and using a best fit up to n3 for n < 20 we obtain for s=1
|E;.(’n)| ~ 0.043 x 0.1717~0-0457 n?+1.22x10"%n° (84)

Since Eg () = 0.5 and in view of these values of E;("), we can truncate to first order the series expansion of the mode

amplitudes for A¢ no greater than 10.

In Fig. 8 we have plotted the third-harmonic pattern for N'/Nyax = cos? 4, s=1, and A¢ = 1,3,5,6. The broadening
of the beam is evident for increasing A¢. Finally, we can estimate the effective beamwidth 6 of the harmonic beam

by means of Eq. (E3)

g(out) g(out)

92 A {2(n + D)Re(EXTIVENY 1y 4 (20 4+ 1)| BN 2} 4+ 28¢Re(EXO 4+ EXD 1y 41

g(out) g(out) g(out)

— = 85)
2 1(n 1(0 ’ (
00 A¢2 Zn:O |Eq((olzt)l2 + 2A¢R9E (( \).1t) + 1
[
with E;((:zt) = E;((:‘Zt) /EZ((L?‘)1 t) and 0y the beamwidth in and reducing as z — oo to the TEM,, Gaussian mode

the absence of aberrations.

B. Integral expression
of the far-field mode amplitudes

As an alternative to Eq. (69) we can expand the field

in terms of modes Uér) satisfying the homogeneous wave
equation

d
(v‘i + 2igky 5~ + 2(qk1)2Auq> Ul = (86)

u,(;). From the Green’s theorem applied to Eq. (80) we
find that

iz / UPulItdp? =o. (87)
0

Since for z — oo, Uér) and Uée) reduce respectively to the
mutually orthogonal modes TEM,, and TEM,o , then

the modes Uér)

These modes Uér) can be used as basis for representing
the harmonic field

are mutually orthogonal at every section.
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E4(T,V;5t*) = 2mk1 BPg(max) (t*)
x Y FI(T UM (W, V5tY).  (88)

The coefficients Fq(r)(\Il;t*) form a vector Fg, which re-
duces to E,(oyt) in the far field. Using this representation,
the nonhomogeneous parabolic equation (66) transforms
into a transport equation [see Appendix B, Eq. (B6)] for
F,.

The coefficients Fq((gut) =
of the phase-matching integrals used by L’Huillier et al.
[1,3,4]: they represent the efficiency of generation in the
far field of the Gaussian mode TEM,o. It is shown in

Appendix B that E™

q(out

are a generalization

y is given by
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FIG. 8. Patterns of the third-harmonic intensity calcu-

lated by means of Eq. (82) for s =1 and A¢ = 0.5,1,3,5,6.
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o) w2 [ N o) cost-3 pau
E") (t)=1 = gl - , (89
q(out)( ) Mo ‘/—1/2 Nmax g cos ( )
with
oo X_(Q)
97 (¥5¢%) = cos ™97 ¢/ 1— fet+ =22 fe
0 Xat
xUM*uddv. (90)

V. EXPERIMENTAL SETUP

The light source used in our experiment is a mode-
locked Nd:YAG laser (where YAG denotes yttrium alu-
minum garnet) (A = 1064 nm), with two-stage amplifica-
tion, delivering 35 ps/50 mJ pulses at a 10-Hz repetition
rate. The laser pulse energy is varied by means of a half-
wave plate—polarizer optical system and measured by a
pyroelectric calorimeter. The laser beam is linearly po-
larized in the horizontal plane and focused on the gas
target by an f =250 mm focal length lens, which pro-
duces a confocal parameter b of about 5 mm (see Fig. 9).

The gas sample (Ar and Xe) is injected into the inter-
action chamber by a solenoid valve with a 0.8-mm orifice.
With an opening time of about 1 ms and a backup pres-
sure around 5 atm, the local pressure in the interaction
volume ranges between 30 and 100 Torr. The interac-
tion chamber can be pumped down by a turbomolecular
pump to a background pressure of 2 x 10~8 Torr. With
the valve operating at a few hertz the background pres-
sure in the scattering chamber is about 3 x 10~2 Torr.

The gas jet characteristics (local pressure, density
profile) have been determined with an interferometric
method derived from the apparatus described by Faris
and Hertz [17]. We can briefly say here that the gas jet
profile can be approximated with a Lorentzian shape (in
a plane orthogonal to the valve axis) whose full width
at half maximum shows a linear dependence on the dis-
tance from the valve orifice, with a half angle of about
25°. The average pressure (p) experienced by the laser
beam across the gas jet follows an exponential law

(p) = (po) ™%, (91)
where d is measured along the valve axis. This result
agrees with that reported by Lompré et al. [18]. The
values of (pg) and do deduced from a best fit of the ex-
perimental data for argon are, respectively, 90 Torr and
500 pm for a backup pressure of 10 atm. Most of the re-
sults reported in this paper have been obtained at a dis-
tance of about 500 pm from the nozzle and with backup
pressures ranging between 1 and 10 atm of argon. We
have verified that the local pressure is proportional to
the backup pressure. In particular, for a backup pressure
of =~ 10 atm the local pressure is of the order of 40 Torr.

The uv light has been analyzed along the laser axis by
using a nearly normal incidence (deflection angle § = 15°)
grating monochromator, as shown in Fig. 9. As usual, in
order to optimize the collection efficiency, the laser focus
plays the role of the entrance slit of the monochromator.
We have used in our experiment a Pt-coated, spherical
holographic grating (Jobin-Yvon) with a radius of cur-
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FIG. 9. Schematic view of the experi-
mental setup. The Nd:YAG laser beam is
focused by the lens L, (f= 250 mm) onto
the gas jet inside the scattering chamber S.
The radiation escaping from S (aberrated in-
cident beam plus harmonic field) is sent to
the spherical grating G (1080 grooves/mm,
blazed at 250 nm) and focused on the exit

polarized plane. A CCD camera is used for recording
He-Ne laser the pattern. A He-Ne is used for operating
a differential interferometer [17]. The polar-
ized input beam goes through a A/2 plate
------- Nd:YAG laser

vature of 1 m and 22% spectral efficiency at the third
harmonic (A = 355 nm) of the laser fundamental.

The nearly normal incidence geometry of Fig. 9 has
been chosen in order to reduce the aberrations introduced
by the grating. In this case, when both the source and
its image created by the spherical reflecting surface lie on
the Rowland circle, the main residual aberration is astig-
matism: the point source is imaged in two segments, one
on the Rowland circle and normal to it (horizontal focus)
and the other lying on the incidence plane and on the tan-
gent to the Rowland circle through the source (vertical
focus). As a consequence, the intensity distribution of
the diffracted radiation in a generic plane normal to the
diffraction direction has an elliptical profile.

Measurements of the third-harmonic beam profile and
divergence angle in different experimental conditions
have been performed by using a charge coupled device
(CCD) detector (Pulnix TM 745 E) at various distances
from the monochromator exit slit. The sensitive area of
the CCD detector is 8.8x 6.6 mm? and consists of 780
(horizontal) by 244 (vertical) picture cells. The quantum
efficiency of the CCD detector in the uv region is of the
order of 10%, although it drastically decreases towards
200 nm. Finally, the precise determination of the har-
monic power dependence on the laser intensity has been
performed by using a photomultipier (Thorn-EMI 9250-
QB) with quantum efficiency of about 25% at the third-
harmonic wavelength. The experimental determination
of the dramatic defocusing effects on the fundamental
laser beam after its interaction with the ionized gas pro-
duced in the focal region is described in the following
section.

VI. EXPERIMENTAL RESULTS

The results presented in this section refer mainly to
argon as the target gas, although the main features have
also been confirmed in the case of xenon. Moreover, we
have concentrated our attention on the laser fundamen-
tal and its third harmonic only, because the detection
response of our CCD camera is rather poor in the region

and a cylindrical lens L,. A spherical confo-
cal mirror M, is used for obtaining a sheet of
light that passes through the atomic jet. The
output is sent to the calcite crystal C, tilted
by the smali angle 8. The two polarizations
of the beam, spatially separated, interfere at
the exit of the polarizer P. The interference
pattern is analyzed by the photodiode PD
mounted on a translation stage.

of the fifth harmonic (=200 nm). Nonetheless, we think
that the experimental data reported in the following rep-
resent a significant test of the analytical model discussed
in the previous sections. They can thus be extended to
some extent to higher-order harmonics, particularly in
the spectral region between the third and eleventh har-
monics (~100-350 nm).

Another interesting aspect of our measurements is that
they shed light on a very important feature of harmonic
generation in noble gases with intense laser pulses: the
laser-plasma interaction. In fact, a high gas pressure is
desirable since the number of harmonic photons scales
quadratically with gas density [19]. However, as well ev-
idenced by our results, moving to higher gas densities
certainly complicates the picture because of the interac-
tion between the laser pulse and the ionized gas medium.
This interaction has significant consequences from the
point of view of the optical characteristics of the vacuum
ultraviolet (vuv) radiation produced and can thus play
an important role in specific applications. This turns out
to be true even in the relatively moderate laser intensity
range investigated in our experiment, namely, 1012 —1014
Wecem™2.

A. Defocusing of the fundamental beam

An important point of our analysis is the study of the
effects that the laser radiation-plasma interaction has on
the fundamental beam. To this end, we have carried out
an experiment similar to the one reported by Auguste
et al. [7], where the radiation produced by a terawatt
laser was focused in a cell uniformly filled with helium
at relatively high pressure (15 Torr to 1 atm). On the
other hand, we have used an argon gas jet with local pres-
sures of about 40 Torr, i.e., rather smaller than the ones
of the above paper and, more important, of much lower
laser intensities (about 10 W cm™2 against 10*® — 107
Wcem™2).

We have thus measured the laser pulse energy at the
output of the vacuum chamber with a joule meter posi-
tioned just after a variable circular diaphragm and at a
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distance from the focal volume equal to the focal length
(25 cm) of the focusing lens. What we have observed is
that the laser pulse energy transmitted after the interac-
tion with the ionized gas decreases dramatically when the
laser energy and/or the local gas pressure is increased.
Figure 10 shows the energy transmission ratio, defined
as € /€in, where ¢€; is the output energy and ¢;, the inci-
dent one, as a function of the incident laser pulse energy
at a fixed local pressure of the argon jet (~ 40 Torr).
Cases (a), (b), and (c) refer, respectively, to diaphragm
diameters of 3 mm, 10 mm, and 20 mm (the unperturbed
laser beam diameter is about 20 mm). Thus the defocus-
ing effects on the fundamental beam are dramatic, with
up to about 50% of the input energy diverted from the
beam after laser-plasma interaction, and it is active on
the whole laser beam cross section, even at the relatively
moderate intensities of our experiment. It is worth not-
ing that the pulse energies used in Fig. 10 are always
smaller than that (~ 20 mJ in our case) corresponding
to the saturation intensity for argon ionization.

We have also studied the transmission ratio as a func-
tion of the local gas pressure, at fixed laser energy. By
increasing the argon pressure in the range 20 — 50 Torr
we have observed a consistent decrease in the transmitted
energy, as shown in Fig. 11 for a laser energy of 15 mJ
and the maximum diaphragm diameter (20 mm). Such a
drop-off is fairly linear in the investigated pressure range,
in good agreement with the corresponding results of Au-
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FIG. 10. Energy transmission ratio €:/€in vs laser pulse

energy €in in argon (local pressure 40 Torr) for three di-
aphragm diameters (a) ¢ =3 mm, (b) ¢=10 mm, and (c)
¢ =20 mm.
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FIG. 11. Energy transmission ratio €;/€in vs local gas
jet pressure P for €, = 15 mJ and diaphragm diameter
¢=20 mm.

guste et al. [7].

As discussed by those authors, one can safely assume
that absorption in the plasma is very little, if not ab-
sent, and, moreover, the energy required to remove outer
shell electrons of noble gas atoms (argon, for instance)
in the interaction volume is completely negligible. As a
consequence, the reduction in the output laser intensity
can only be ascribed to the ionized gas medium, which
acts as a diverging lens. In fact, the free-electron den-
sity builds up faster on the laser axis, i.e., at the peak
of the Gaussian radial intensity profile. This mechanism,
which is a strongly nonlinear function of the laser inten-
sity, leads to a radial electron density profile much steeper
than the laser intensity profile. As a result, the refrac-
tive index of the gas is a minimum on the laser beam
axis and the ionized gas acts as a diverging lens. This
is exactly the same process that causes defocusing of the
third-harmonic beam, although the effect is reduced be-
cause of the scaling law of the refractive index with the
inverse square of the radiation frequency. The output
beam becomes larger than the diaphragm dimension and
only a fraction of the output beam can be collected by
the joule meter.

Our results fully confirm the data of Ref. [7], but at
much lower laser intensities. They also confirm that the
problem of choosing the optimum conditions when us-
ing harmonic generation in gases as a source of coherent,
short-pulse vuv radiation in a given application is still an
open one.

B. Scattering cross section

In order to test the analytical model presented in Secs.
IT and III, we have measured the cross section o for
the scattering of the fundamental beam by the electron
plasma. Referring to the definition (37) of o, we have
measured the scattered energy €. by detecting the laser
beam energy emerging from a circular beam stop placed
on the beam axis and downstream the interaction region.
The beam stop diameter is chosen in such a way as to
avoid that the unperturbed beam energy can reach the
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detector.
Figure 12 shows the transmission scattering cross sec-
tion at/wwg = €sc/€in [see Eq. (39)] as a function of

the gas pressure P in the interaction volume at fixed
laser intensity. We observe two distinct regions: at low
pressures, €sc/€in is almost 0 and does not depend on
P, as a consequence of the fact that the input beam is
basically unperturbed and its transverse dimension re-
mains smaller than the beam stop diameter. This is ex-
actly the case for an obstacle diameter of 10 mm (tri-
angles), whereas for an 8 mm diameter (diamonds) a
small amount of energy is still detected. This circum-
stance shows that the unperturbed beam diameter at
the obstacle position is roughly 9 — 10 mm. For pres-
sures above 6 atm a considerable fraction of the incident
power is scattered off axis and emerges from the obstacle.
In this region, experimental points are suitably fitted by
a quadratic curve [see Eq. (39)].

C. Divergence of the third harmonic

The dependence of the third-harmonic photon num-
ber Ny produced in argon on the laser pulse energy €y
is shown in Fig. 13 in a log-log plot. The experimen-
tal points represent averages of 100 laser shots with a
local gas pressure of about 40 Torr. As is well known
[20], one observes two distinct regions: the low energy
region (€, < 20 mJ, in our case) is characterized by a
slope of about 3, which is in good agreement with the
power low Ny, o €}, ¢ = 3 being the order of nonlin-
earity of the process. For ¢, > 20 mJ the slope changes
rather abruptly, becoming smaller than 3 (~ 1.5). This
is mainly due to saturation of multiphoton ionization in
the gas medium, which takes place in argon at a laser
intensity of about 3 x 10'®> Wcm™2. In this case the
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FIG. 12. Energy transmission ratio €:/€in vs local gas

jet pressure P for two stop diameters ¢ = 8 mm (A) and
10 mm (<). The apparatus used for measuring the scattered
energy is illustrated in the inset. The Nd:YAG laser is focused
through the lens L, (f = 25 cm) to the center of the atomic
jet produced by the pulsed valve V. The exit beam is imaged
on the joule meter J by means of the lens Lz (f = 15 cm).
The central spot is intercepted by a stop having diameters
¢ = 8 and 10 mm.
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FIG. 13. Third-harmonic photon number N3 vs laser in-

tensity I, measured in an Ar gas jet at 40 Torr.

ionization probability is almost unity and the nonlinear
medium consists of argon ions whose third-order nonlin-
ear susceptibility is reported to be much smaller (10 - 20
times) than that of the neutral atom [1].

In the same experimental conditions, similar results
have been reported in xenon, although the saturation
intensity is considerably smaller in this case (~ 1 x 1013
W cm™2) and corresponds to a laser pulse energy of about
6 mJ. However, the conversion efficiency in xenon is al-
most 30 times larger than that of argon.

To test the predictions of the model illustrated in Sec.
IV, we have used the experimental setup of Fig. 9 to
measure the divergence of the third-harmonic beam gen-
erated in argon at different laser intensities and gas pres-
sures, namely, as a function of the degree of ionization in
the interaction volume. The harmonic beam divergence
is, in fact, expected to increase monotonically with the
electron density in the focal region.

We report in Fig. 14 the third-harmonic beam diver-
gence angle 03 in argon as a function of the laser pulse
energy, in the case of argon with a local pressure of about
40 Torr. Each experimental point corresponds to an av-
erage over 100 laser shots. Given the elliptical spatial
profile of the intensity distribution of the generated vuv
radiation, the divergence angle has been detertmined by
measuring both the major and the minor axis of the ellip-
tical section at 1/e? of the maximum intensity at various
distances from the Rowland circle of the grating, i.e.,
from the exit slit of the monochromator. Since we have
observed the same behavior in both cases, only the values
corresponding to the major axis are reported.

The data of Fig. 14 refer to a CCD detector placed
30 cm far from the exit slit. Similar measurements have
been carried out at different distances (25 and 40 cm,
e.g.) in order to rule out near-field diffraction effects and
the trend of Fig. 14 has been confirmed.
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FIG. 14. Third-harmonic divergence § in argon as a func-

tion of the laser pulse energy €in (mJ). The horizontal line
corresponds to the lowest-order perturbation theory predic-
tion.

The increase in the third-harmonic beam divergence is
clear and it comes out to be larger than 50% for laser
energies of the order of 25 mJ. As already observed, in
our conditions this energy corresponds to the saturation
of multiphoton ionization of argon. At higher laser inten-
sities, the effect seems to saturate. This behavior can be
interpreted as due to the saturation of the ionization and
thus to the leveling of refractive index inhomogeneities
along the transverse direction in the gas medium.

At lower pulse energies (below 10 mJ), with corre-
sponding lower electron densities in the gas, 03 ap-
proaches the limit predicted by the lowest-order pertur-
bation theory, namely 83 = 6;/v/3 ~ 7.5 mrad, where
0, ~ 13 mrad is the fundamental laser beam divergence.
This confirms that a perturbative approach to the prob-
lem is only applicable in case of low order harmonics
(third and fifth, particularly) and moderate laser inten-
sities (below 10'* W cm™2).

We have also investigated the dependence of the de-
focusing effect on the density of free electrons in the
laser-plasma interaction volume by changing the local
gas pressure at fixed laser pulse energy. By increasing
the gas target pressure from 30 to 70 Torr, the value of
03 increases steadily according to an almost linear low.
The effect is not as dramatic as the one shown in Fig. 14.
Nonetheless, it is noticeable, with a maximum increase
of the order of 25% at the highest investigated pressure
(=~ 70 Torr). Moreover, we do not observe saturation ef-
fects and the third-harmonic beam divergence keeps in-
creasing with the local gas pressure, at least in the in-
vestigated pressure range. We were not able to measure
03 at higher local pressures because of pumping speed
problems of our vacuum system.

In concluding this section, it is worth stressing that we
have also carried out the same measurements in xenon.
For the sake of brevity, we do not report here a full de-
scription of the xenon data and limit ourselves to point
out that we have observed very similar results. The defo-
cusing effect of the laser fundamental and third-harmonic
beams brought about by the interaction with the plasma
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are very clear and even more dramatic than in argon.
Due to the lower ionization potential of xenon and the
corresponding lower saturation intensity (~ 1.3 x 103
Wecm™2), the increase in the third-harmonic beam di-
vergence starts at lower laser pulse energies (~5 mJ) and
is so large that in some experimental circumstances the
grating of our monochromator (diameter ¢ = 63 mm)
cannot intercept the whole cross section of the harmonic
beam.

We are presently making an effort to analyze the be-
havior of the fifth-harmonic beam in both gases. The
main problem lies in the very low quantum efficiency of
the CCD detector that makes it very difficult to obtain
precise and reliable data.

VII. CONCLUSIONS

We have discussed the effects of the propagation
through an electron plasma of the pump and harmonic
beams in harmonic-generation experiments. In particu-
lar, we have focused the attention on an incident TEMgq
Gaussian beam, although our model can be extended
without modifications to the case of higher-order Gaus-
sian beams by simply redefining the initial components

E{m) of the vector E; [see Eq. (42)] formed by the ampli-
tudes of the Gauss-Laguerre modes used for expanding
the fundamental and the harmonics.

We have also shown that simple approximate expres-
sions of the scattered fundamental field and of the har-
monics can be obtained by expanding the fields in power
series in the parameter A¢, which measure the effective
dephasing undergone by the incident beam in passing
through the plasma. As a result of several computations
the fields can be approximated by £ = £° + A¢E? for Ag
less than 10.

An effective scattering cross section o has been intro-
duced for describing the interaction of the incident beam
with the plasma. An analytic expression of o as a func-
tion of the saturation parameter s and neutral atom den-
sity Mmax has been derived for the case of single scatter-
ing (Born approximation).

On the other hand, expanding the scattered field of
the fundamental in a power series in the saturation pa-
rameter s of the ionization process, we have shown [see
Eqgs. (63) and (64)] that each term of order k (=1,2,...)
of this series is well represented by a TEMgo mode with
divergence 0y, larger than the divergence of the incident
beam 6y (for a uniform gas density 6; = 2.266¢,0, =
2.7100, 93 = 300, 04 = 3.2300,05 = 3.400, and 06 = 3600)
Accordingly, the total far field consists of a central un-
perturbed region and a large pedestal.

The fraction of energy present in this external region
depends on the parameter Ag, i.e., on the neutral atom
density [see Eq. (19)], and on the saturation parame-
ter, i.e., on the laser pulse energy. Experimental results
confirm such behavior and the agreement with our theo-
retical analysis is qualitatively good.

We have also addressed the problem of the effects of the
plasma on different harmonics. To this end we have ex-

pressed the gth harmonic as a combination of to TEM,.o

™

Gaussian beams u,({). The coefficients Eé )

(out) of this se-
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ries in the far field are an extension of the phase-matching
integral used in Refs. [1, 3].

E("‘)

g(out)
the product of the modes times the nonlinear polariza-
tion induced by the incident laser beam. In particular,
we have considered the third harmonic generated by a
Nd:YAG laser pulse hitting an argon (or a xenon) gas
jet and found that the primary effect of a nonuniform
refractive index in the focal region is to broaden the far-
field harmonic pattern. Details of the pattern strongly
depend on the saturation parameter. Such a broadening
is due not only to a direct scattering of the harmonic
beam by the electron plasma, but also to the defocus-
ing of the pump beam. The direct process has a weaker
effect on the harmonics than on the fundamental beam
since refractive index inhomogeneities appear smoother
to shorter wavelengths. The harmonic beam profile does
not present a structure like the one observed in the fun-
damental field. We have also shown that from the mea-
surements of the scattering cross section o, it is possible,
in principle, to gain information on some plasma param-
eters, such as density and dimensions.

The good qualitative agreement between theoretical
predictions and experimental results provides an indirect
proof of the validity of the assumption that the electron
distribution does not evolve during the laser pulse dura-
tion. It can be considered as frozen for pulse durations
of 30 ps and shorter.

has been expressed as the volume integral of

APPENDIX A: MATRIX ELEMENTS Ml(m;")
AND INITIAL VECTOR Ejn)

According to (44) M, is given by

R
M,; = — Z ( ks') P* cos?*P 4, (A1)
k=1 :
where P* stands for the kth power of the matrix
"
627 ()15 dt’
Pun) = LR e
oo 7P t

with I the pth power of the intensity matrix I, [see (38)].
For a beam u;

uy = cos ¥ Z E](.m)e—(l—i tan ‘II)V/Z—i(1+2m)‘IILm(V)
m

(A3)
I, is given by
I = cos? ¥ Y BB Conirr (A4)
1 - 1 1 mn;rr'y
with
Conminnt = / e~ L, (2)Li(e) Lo () Lo ()dz.  (A5)
1]

For u; coincident with the TEMyo Gaussian mode u;, of
Eq. (9) and B = b,
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PE™™ () = A e *OF*P) L, (2) Ln (z)de

_(m+n 1 1
S\ m ) (1 +1/kp)™tkp+ 1

1
xF (—m, —n;—m—mn;1l— k—z—;[—)—2—> ,  (A6)

where F' stands for the hypergeometric function. For an
annular beam represented by a superposition of a TEMgg

and a TEM;¢ mode, Ei?i)n) = Eﬁi)n) =1//2,
Plk(m;n) — / e—z(1+kp)Ln (w)Lm(m)
o
|1+ (1 - m)e_iwlz’”’dm. (A7)

For a TEMyy Gaussian beam the components of the
initial vector Ej (i) read

EY&)]) = 4/1—a2a™,

with a = (1 — B/b)/(1 + B/b). Finally, for transforming

a set of amplitudes E%") relative to modes with B = b to
those with B # b we can use the matrix of components

(A8)

/ e=/2VI2L (o) Lo (V)dv
0

S (") Gi)
V/v+ 1)2

Viv—1 (A9)

xF [—m, —n; —m — n; (

APPENDIX B: MATRIX ELEMENTS Mq("“")

According to (72), M, is given by

—sqP B
M, = Z( ol ) P cos™2kP 4 (B1)
k=1
where P"; stands for the kth power of the matrix
-~
0%P (¢t I2dt’
P, = f—;—?_(__)__‘l__ cos 2P q) (B2)
Jo . 0% (t)dt
and If represents the pth power of I,
Imim = g /0 e~ L (qV) Ln(qV)usPdV
= q COS2 \I’ Z E~‘§T)E](_TI)*Cmn;rr’a (B3)
with
Commirrr = / e~ (D2 L, (qz) Ln(q2) Ly (2) Ly () de.
0
(B4)

For u; coincident with the TEMyo Gaussian mode of Eq.
(9) and B = b,
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pimin) :q/ e~ P) [ (q2) L, (qz)dz
0

_ <m+n) 1 1
m ) kp/qg+1(1+q/kp)™tn

2
q
x F (—m, —n;—m —n;1 — kz—pz) . (B5)

APPENDIX C: EQUATION OF MOTION OF F,

AND INTEGRAL EXPRESSION OF E{) .,

Plugging the right-hand side of (86) into (66) yields

(r)
Z U(r) df;\p ={icos 20 Pq

q(max)

(C1)

r

Next, multiplying (C1) by Uér) * and integrating over the
cross section

dFy” . /°° P
=inW§ cos™* ¥ U2 gy. C2
av 0 0 N g(max) ( )
Consequently,
E(" F(") —_ W2 /2 d¥ —4
g(out) = Fg(out) = Mo cos "9
—/2
oo
x / Uy)*idv
0 g(max)
/2
= / N () 9§ cos?* WdW, (C3)
—1\’/2 Nmax
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where

oo X(‘I)
A @) =cos 7w [T (1 fos Xes e
at

xUM* (@, V) [ul (¥, V)]V (C4)
For ¢=3,
(r) X(a)
g3’ = Z Cira + | =5 — 1
4,4, kil Xat
X i (= * cos?Pk w ;. }
17k;l
x EOED g® grid= (C5)

with

Ciju = / e=*3%) L (¢) L (¢) Li (<) L (32) de,
0

(C6)
while

E(")

3(out) —

/w/ M) {7 (W)dw. (C7)

/2 Nmax

APPENDIX D: VECTOR E;(")
Expanding the mode amplitudes of (78) in the power series (79) and using the expression (B5) for P,f (min) yields

d

1 1
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kp/q+1(1+ q/kp)”

—1)ym-—n . m
_ ENI (g q")L (TZ) cos2l+q—3,¢‘ez(2n—2m—q+1)¢Ei(k)( ).

Z NICOSZ(kp+l—-1)¢e2in¢E((1)(0)
l

(D1)

Then plugging the right-hand sides of (77) and (58) into (D1) yields
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Consequently,

1(k)(n) _ 1 1
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the sums Z:‘ being extended to positive and negative integer values of p except for terms containing vanishing
denominators.

APPENDIX E: BEAMWIDTH

The irradiance distribution may be characterized by the set of moments of u,g,

oo
M, = q/ |uq|2(qv)r/2dv
0
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2B Gl ’
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In particular, the ratio §2/62 between the effective beamwidth 6 and 6y (relative to a TEMgo mode) is given by
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