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Large relativistic density pnlses in electron-positron-ion plasmas
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The nonlinear propagation of circularly polarized electromagnetic waves with relativistically strong
amplitudes in an unmagnetized hot electron-positron plasma with a small fraction of ions is investigated.
The possibility of ending localized solutions in such a plasma is explored. It is shown that these plasmas
support the propagation of "heavy bullets of light": nondi6'racting and nondispersive electromagnetic
pulses with large density bunching.
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I. INTR&)DUCTION

The nonlinear propagation of electromagnetic (e.m. )

waves in electron-positron (e-P) plasmas is a subject of
considerable interest [1]. Electron-positron pairs are
thought to be a major constituent of the plasma emanat-
ing both from the pulsars and from the inner region of
the accretion disks surrounding the central black holes in
the active galactic nuclei [2]. The process of e-p pair
creation occurs in relativistic plasma at high tempera-
tures, i.e., when the plasma temperature exceeds twice
the electron rest mass. In the standard cosmological
model of the hot Universe (the Big Bang model), it is es-
timated that such temperatures (T-10' K-1 MeV)
prevail up to times —1 sec (t = 1 sec) after the Big Bang.
In this epoch, the main constituents of the Universe are
photons, neutrinos and antineutrinos, and e-p pairs [3].
As the plasma cools down, the annihilation process
e++e —+y+y dominates and the e+e pair concen-
tration goes down according to the exponential law
n =exp( m, c iT ). Since t—he equilibration rates are fast
in comparison with the changes in plasma parameters, an
equilibrium e-p plasma should be present in the MeV
epoch of the early Universe. Note that neutrinos and an-
tineutrinos are in equilibrium with the primordial plasma
only for T )3 —5 MeV (t (0.1 sec) while at smaller tem-
peratures their interactions can be neglected.

During the past few years, a considerable amount of
work has been devoted to the analysis of nonlinear e.m.
wave propagation in pure e-p plasmas. Although the e-p
pairs form the dominant constituent of the aforemen-
tioned astrophysical and cosmic plasmas, a minority pop-
ulation of heavy ions is also likely to be present. For ex-
ample, in the MeV epoch of the early Universe, the num-
ber of protons and neutrons is roughly 10 —10 ' (fol-

lowing from the present baryon asymmetry) of the num-
ber of light particles (electrons, neutrinos, and photons).
Closer to the "beginning, " at t & 10 sec there were ~
mesons, E mesons, and proton-antiproton pairs as well as
neutron-antineutron pairs in the primordial plasma. The
minority ion population (even a very small fraction of the
total) imparts interesting new properties to the composite
system. Three-component plasmas have been studied, for
example, in the context of pulsar magnetospheres [4]. In
another study, theoretical investigations of relativistic
collisionless shock waves in electron-positron-ion (e p i)--
plasmas of relevance to astrophysical sources of synchro-
tron radiation were carried out [5]. In our recent paper
[6], we have shown that the present of even a small frac-
tion of massive ions in the cold e-p plasma can lead to
stable localized structures of relativistically strong e.m.
radiation.

Would such structures survive if the plasma were rela-
tivistically hots This question must be answered before
one can explain their astrophysical as well as their
cosmological consequences [7]. We must point out here
that a stable, localized, e.m. solution with density excess
may, coupled with gravity, create templates for confining
rnatter and creating inhomogeneities necessary to under-
stand the observed structure of the visible Universe.

In this paper we consider the propagation of relativisti-
cally strong e.m. radiation in a hot e-p-i unmagnetized
plasma. We demonstrate that the presence of a minority
ion species can indeed lead to the creation of stable, local-
ized, nondispersive, and nondiffracting pulses that carry a
large density excess within the region of field
localization —the "heavy bullets of light. "

II. BASIC EQUATIONS

*Permanent adress: Institute of Physics, The Georgian
Academy of Science, Tbilisi 380077, The Republic of Georgia.

Let us assume that the velocity distribution of the par-
ticles of species a is locally a relativistic Maxwellian.
The dynamics of the Quid of species a, then, is contained
in the equation [g]
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(U'U kW )
— P = F—'"J k,

where U' =—[y, y u /c ] is the hydrodynamic four-
velocity, u is the hydrodynamic three-velocity of the
fiuid, y = ( 1 —u /c )

' is the relativistic factor, J k is
the four-current, E' is the electromagnetic field tensor
[9], and W is the enthalpy per unit volume

n moaC
(2)

Xa
Oa a

2

Here mo and T are the particle invariant rest mass and
temperature, respectively, n is the density in the labora-
tory frame of the fluid of species 0;, and
G (z )=K3(z )/E2(z ), where E2(z ) and E3(z ) are,
respectively, the MacDonald functions of the second and
third orders (z =m 0 c /T ). The pressure P = n "T,
where n" is the density in the rest frame of fluid element
of species a. Using the relation n" = n /y, the relativis-
tic particle pressure becomes

relation, we find

~aZa
exp[ —z G (z )]=const.

yK2z
This is the adiabatic equation of state. In the nonrela-
tivistic limit, Eq. (6) yields the usual result for a monoa-
tomic ideal gas (n" /T ~ =const) and in the ultrarela-
tivistic limit one obtains the equation of state for the pho-
ton gas (n" /T =const).

To describe the e.m. wave propagation in a plasma we
must couple the equations of motion with the Maxwell
equations. In terms of the potentials defined by

1 BAE= —— —Vy, 8=VX A,
c Bt

the field equations take the form (Coulomb gauge
V A=O)

0 A —c b, A+c (Vy) —4m.cJ=O
Bi

and

P = T
Ya

(3)

where

4&P (9)

Note that if our ultrarelativistic plasma is in full therrno-
dynamic equilibrium with the photon gas (like in the ear-
ly universe) one should also take into account the radia-
tive pressure P~ =o T (o =m/45h c ) [3]. In this paper
this e6'ect, however, is neglected and will be discussed in
a future publication.

The set of equations (1) can be rewritten (relativistic
equation of motion)

(mo G y c ) — P =e u .E, (4)

d e
(P G )+ VP =e E+ (u XB),

where P =y mo u is the hydrodynamic momentum, E
and B are the electric and magnetic fields, and
d /dt =8/Bt+u V is the comoving derivative.
Momentum equations similar to Eq. (5) have been widely
used in literature (see references in Shukla et al. in [1]).
In these papers, the thermal particle pressure P is taken
to be P =n T . The correct expression for P, howev-
er, must contain the relativistic factor y [see Eq. (3)],
which can be dropped only when the motion of the fluid
elements is nonrelativistic (i.e., p /mo c «1). Another

important di6'erence from the cold relativistic hydro-
dynamics is that the role of the particle mass is now
played by the quantity M,s =mo G (z ), which depends
on the temperature. For nonrelativistc temperatures
(T « mo c, z » 1), the effective mass reduces to
M,s.=mo +5T /2c, while for the ultrarelativistic high
temperatures (T &)mo c, z «1), the effective mass
becomes M,tt=4T /c &)mo [8]. For the ultrarelativis-
tic case, the fluid inertia is primarily provided by the ran-
dom thermal motion of the particles.

Taking the scalar product of Eq. (5) with u, subtract-
ing the result from Eq. (4), and integrating the resulting

p=ge n„, J=ge n u (10)

+
+ p

mec

T-T*=+ 7

"o m, c
(12)

A= 2, P= z, r= r, t =co,t,le Iq

mec mec C

where co, =(4vrnoe /m, )'~ is the electron Langmuir fre-
quency, the entire set of defining equations reads

8 A + +—5 A+ VP+ —(1 —e)
Bt y y+

=0,

(13)

are, respectively, the charge and current densities. One
now needs the continuity equation for the particle species
a,

Bn +V.(n u )=0,
at

to close the system, which will now be studied to investi-
gate the nonlinear propagation of relativistically intense
e.m. wave in a relativistically hot three-component plas-
ma made up of unmagnetized electrons, positrons, and
massive ions; we aim at finding localized stable structures
sustained by this plasma. The equilibrium state of the
three-component system is characterized by an overall
charge neutrahty n 0

=n 0 +Xo;, where n 0, n 0+, and Xo;
are the unperturbed number densities of the electrons,
positrons, and ions, respectively. Because of their rela-
tively large inertia, the ions do not respond to the dynam-
ics under consideration and just provide a neutralizing
background. The subscript a henceforth will indicate the
electrons (a= —) and the positrons (ct = +) only.

In terms of the dimensionless quantities
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(14)

= + u + (u*VQ), (15), ah
Bt

hP = n —(1 —e)n+ —e,
d~ +~+

[G(T+—
)y

+—]—
1 (3 n T*

n+ ~t y*

+ u~~ +ah, a~
Bt Bz

8+u,+— 6*y——
et ' Bz

and the continuity equation (17),

(24)

[G(T )p*]+ + V Bn

Bt 8
(25)

y*T*Z 1
2 T+

Gk
. exp T* =const,

where
+

[ 1 ~ (p+ )2]1/2 uk P
r*

=+ +VP+[u +—X(VX A)],
Bt

On~
+V (n u )=0,

(16)

(17)

(18)

Because of circular polarization of the e.m. wave y does
not depend on the "fast" time (coo ') and [using Eq. (22)]
can be written as

1/2

, = 1+ I I'+(,,*)A

(G —
)

(26)

Note that every quantity in Eqs. (23)—(25) varies on the
slow time scale. It is now convenient to introduce new
variables g=z ust an—d r=t, where us=ko/coo is the
group velocity of the e.m. wave packet. Assuming that
u B/Bg»B/Br and integrating Eqs. (23) and (24), we get
the integral of motion

and d+/dt=B/Bt+u*. V. The coeScient e=Xo;/no is
the ratio of the unperturbed ion to electron densities.

We begin this study by analyzing the one-dimensional
propagation (B/Bz&0, B/Bx =0=B/By ) of circularly po-
larized (CP) e.m. wave with a mean frequency coo and a
mean wave number ko along the z axis. The appropriate
vector potential can be represented as

Aj =
—,'(x+iy ) 3 (z, t )exp(ikoz —icoot )+c.c. , (20)

where 2 (z, t) is a slowly varying function of z and t and x
and y are the standard unit vectors. (The gauge condi-
tion allows us to adopt A, =0.) Writing the last term on
the right-hand side of Eq. (16}as

,+ I&l' Go, + 0
(G )' (G )', Go

G +— 1+ +( +—
)(G+)2

The constant of integration is determined by using the
natural boundary condition that at infinity, the e.m. fields
and the plasma momentum vanish. We also assume that
To =To+ =To, where To and To+ are the equilibrium
temperatures of electrons and positrons. Thus the con-
stant of integration is found to be Go( To ).

In this paper we consider the case of a transparent
plasma (coo»1) for which us=1. After simple algebra,
Eq. (27) yields

G 6
Pz =2G

0

, aA, , ah,
u +—X(VX A )= —u* +z u*. (21)

X 1+
0

(28}

the transverse component of the equation of motion (16)
is immediately integrated to give

p~G =+ Ai,

and
G+

2G0
1+ + 1+(G*)' (G*)' o

where the constant of integration is set equal to zero
since the particle hydrodynamic momenta are assumed to
be zero at infinity where the field vanishes. The longitu-
dinal motion of the plasma is determined entirely by the
set consisting of the z component of the equation of
motion (16),

r

X I+ &

Go

Integrating the continuity equation (25) we get
+

y pz

(29)

8 ~ 8 g ~ 1 8 n*T*
Bt Bz n+ Bz y+

+0 G p +--

8Aq=+ + uP
Bz Bz

the "energy" conservation equation (15),

(23)

G*
Go

1+ &
G+ Go

From Eqs. (28) —(30) we derive important relations

+ —1
n

(31)

(32)
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which allow us to write the electron and positron densi-
ties fully in terms of the potentials P and A (and the rela-
tivistic G factors)

(G')'
2g2 (G+)2

1 +
0

—2
1+—
2

(33)

These expressions, along with Eqs. (20) and (22), help us
to convert the Maxwell equations (13) and (14) into a set
of coupled equations in y and A,

BA (2—e) BA
coog0 8f

g —1

+Ago ' [e—(2 —e)/GO ']=0,
(1 $2G 2)

a'y 1 G- [1+jAj'(G-)-']
Bg 2 G (1+KG ')

(34)

G+ [1+jAj'(G+) ']—(1—e) —e
G (1 yg

—1)2 (35)

G I

+ =1+ b T*+
y

+— Go Go
'

while the "adiabatic" equation (18) reduces to

n —+ Go —1=1+ AT— .
To

(36)

(37)

From Eqs. (36) and (37), it is easy to see that
ET=AT = —AT and

Go

Go Go

Gl

To
(38)

where the wave frequency coo satisfies the dispersion rela-
tion coo=ko+(2 —e)go ', implying v =1 for a transpar-
ent plasma for which coo)) Go

' (1+
j
A Go )' (plac-

ing an upper limit on the allowed wave amplitude) has
been assumed. Equations (18), (34), and (35) constitute a
closed set describing the nonlinear propagation of power-
ful CP e.m. waves of arbitrary (as long as j A

j (coo) ampli-
tude in an unmagnetized, transparent hot electron-
positron-ion plasma. For the case of a pure electron-
positron plasma (e=O), we can see from Eq. (35) that the
only solution consistent with the boundary condition
P( 00 ) =0 is /=0 everywhere (see also Refs. [10,11]).
Comparing Eqs. (18) and (31) we find that the tempera-
tures of the electron and positron Auids remain un-
changed T = T+ = To. The potential vanishes because
the equal effective masses of the electron and the positron
fiuids lead to equal radiative pressures. Equation (34),
then, does not have a soliton solution; the CP e.m. waves
cannot be localized in a pure electron-positron plasma.

Let us now introduce some heavy ions, i.e., a small but
nonzero e. The presence of even a small fraction of ions
leads to "symmetry breaking" between electrons and pos-
itrons and consequently we can have a finite P/Go( —e).
For P/Go ((1 the temperature variation is also small
AT*/To «1, allowing us to write G*=G0+GohT*,
where Go =dgo/dTO. In this ordering, Eq. (31) becomes

explicitly showing that, in the absence of charge separa-
tion ($~0), the temperature variation of the plasma van-
ishes (hT ~0).

To make further progress, let us assume that the
characteristic length (L) of the wave satisfies the condi-
tion L &)(1+

j Aj Go )
' . The assumption implies a

major simplification; Eq. (35) can now be algebraically
solved for y,

I+P+(I P) j Aj
G 4 G2 G2

(39)

where the parameter

(Go —1)GO —1
T060

)O (40)

measures the relativistic temperature effects. In the cold
plasma limit (To~0) P—+0 and in the case of ultrarela-
tivistic temperature (To~ ~) P monotonically attains its
asymptotic value P=0.25. Without loss of generality, we
neglect P in Eq. (39). From (39), it follows that $&0;
thus in the region of field localization, the electron tem-
perature decreases and the positron temperature in-
creases. If we now redefine the electron rest mass in Eq.
(12) as m, —+m, Go( To ), Go will disappear from Eqs. (34)
and (39). Substituting (39) into (34) and neglecting P and
higher orders, we obtain

2icoo + —+ f(j A )A =—0,
Cl I Qj ()g 8

(41)

where

(A )=1— 1

(1+jAj )
(42)

Thus the nonlinear propagation of CP e.m. waves in a hot
electron-positron plasma with a small fraction of ions is
described by the nonlinear Schrodinger equation (NSE)
with a saturating nonlinearity, which comes naturally
from our model. An equation of the exact same form as
Eq. (41) was derived in our paper [6] for the cold plasma
limit. The only difference is that now the rest mass of the
charge particles has been replaced by a temperature-
dependent effective mass. The temperature variation of
the plasma does not play an important role during wave
propagation. This is true even if we considered an iso-
thermal equation of state. Note that these statements are
valid for a transparent plasma when the group velocity of
the e.m. pulses is close to velocity of light (v = 1).

We now generalize our results by allowing a transverse
variation of the fields. If we assume that A depends
weakly on the transverse coordinates [A = A (g, x,y, r)],
i.e., BA /Bg')) ViA, Eq. (41) acquires an additional term

bi A [for a proper derivation, see (11)]and changes to

(43)

In spite of the fact BA/Bg)&V'iA, the second and the
third terms may have comparable magnitudes because of
the transparency of the plasma (coo)& 1). In the following

2 2

2i coo + — +b i A + f ( j A j ) A =0 . —
'o Bg
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i + +had+ 1 — A =0 .
t) t)g' ' (1+

~
A ~')2

(44)

sections we investigate the solutions of (43), which after
the self-evident renormalization of the variables can be
presented as

of the nonlinear Schrodinger equation, pertains for all

The highly relativistic large amplitude wave (Q~l,
A »1) is different and considerably more interesting
[6]. Barring the exponentially decaying tail, the main
body of the soliton is well approximated by

A = A cos(g/A ) (49)

III. STATIONARY PROPAGATION

In this section we seek the localized soliton solutions of
(44) under a variety of conditions. Let us start with
deriving one-dimensional structures by dropping the
transverse derivative term. For the stationary solitons,
the ansatz (Q is a constant corresponding to a nonlinear
frequency shift)

A = A (g)exp(iQ r)

reduces Eq. (44) to

(45)

d 3 1—0 A+A 1— =0.
dg (1+A 2)2

(46)

Invoking the boundary conditions appropriate to a local-
ized solution, i.e., A =O=dA/dg as ~/~~ac, Eq. (46)
can be readily integrated and allows solitonlike solutions
for 0 & 1. There are several ways in which the exact im-
plicit solution of Eq. (46) can be displayed. The most re-
vealing perhaps is the form

cos '[(1—Q2)(1+ A )]'
( 1 Q2)1/2

1 Q(1+A )' +[1—(1—Q )(1+A )]'
Q(1+ A')' ' —[1—(1—Q')(1+ A')]'

(47)

For all values of Q, Eq. (47) can be satisfied at ~g =0 if
(1—Q )[1+A (0) ]= 1, leading to A (0) = A
=Q /(1 —Q ), where the amplitude A is the maximum
value 3 can attain. Clearly 3 ~0 as 0,—+0 and A be-
comes large as A~1. Remembering that A is exactly
equal to the particle hydrodynamic momentum measured
in M,zc, large A corresponds to a highly relativistic
plasma, the principal regime of interest for this paper.

Let us begin the analysis of Eq. (47) by determining the
asymptotic behavior of A. As long as Q is not extremely
close to unity, it is only the second term that can provide
the balance as ~g~~~. Thus, for sufficiently large ~g~,

Eq. (47) leads to the exponentially decaying solution (for
all Q)

and has been termed a "cosine" soliton. The general
shape of the large-amplitude soliton is displayed in Fig. 1,
where the amplitude A is plotted as a function of g. The
exact solution is barely distinguishable from (49) in the
nonasymptotic region. Equation (49) also predicts that
for 2 & 1, the soliton width L is linearly proportional
to 3

The total plasma density variation associated with the
soliton

(50)

is large for A »1; the solitons with ultrarelativistic am-
plitudes create large concentrations of plasma density.
The stability of the soliton solution of the NSE can be in-
vestigated using the we11-known stability criterion of Va-
khitov and Kolokolov [12]. According to this criterion
the soliton is stable if

(51)

where N represents the "number of photons"

N= f dgA (52)

From a direct integration of the defining equations, one
finds

A

1 —AN= A (1+A )' +—'(1+ A ) arccosm m 2 m 1+2m

(53)

and it is trivial to see that BN /BQ
=(aN/a A' )a A.'/aQ'=(1 Q') 'a—N/aA-.' &0, prov-
ing the stability of the one-dimensional soliton for all Q.

A„„=QsechQ~g~ . (48)

Having demonstrated that we have indeed found local-
ized solutions for all 0, we shall now derive approximate
formulas to describe the main (not the asymptotic) part of
the soliton. In the two limiting cases of interest Q~O
(nonrelativistic) and Q~ 1 (highly relativistic), the right-
hand side is dominated by the second and the first terms,
respectively. Naturally, in the nonrelativistic limit, the
asymptotic shape (48), which is the usual soliton solution

0-
—20 10 20

FIG. 1. Typical large anip1itude structure A versus g. Bar-
ring the exponentially decaying tail (~g~ & 10), the rest of the sol-
iton is very well approximated by the "cosine" formula.
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We conclude that it is possible to obtain a large-
amplitude soliton solution in an unmagnetized hot plas-
ma consisting of electrons, positrons, and a small fraction
of massive ions. We assert that the presence of even a
very small fraction of massive ions is crucial to the soli-
ton formation; a pure electron-positron plasma cannot
sustain this disturbance. The e.m. wave pulse with arbi-
trary amplitude, under certain given conditions, will al-
ways spread out in a pure electron-positron plasma [13].
The addition of a small fraction of massive ions stops the
pulses from spreading out; the solitons will emerge from
the modulational interactions of these pulses. We note in
passing that such soliton potentials propagating with
U =c could readily cause acceleration of resonant parti-
cles [14].

We now generalize our results by allowing a transverse
variation of the fields. If we assume that in Eq. (44)
b,iA ))t) A /t)g [note that this condition corresponds to2 2

eood, tA »(t) A /Bg ) in Eq. (43); there was a rescaling of
variables from (43) to (44)], then with the ansatz (45) we
obtain

a'~ 1

Br2
+— —0 A+A 1—

(1+A )
=0 (54)

for the cylindrically symmetric configuration.
We solve this nonlinear eigenvalue problem numerical-

ly for the ground state solution [12] [(dA/dr)„o=0,
A(ac )=0]. However, for the ultrarelativistic case, for
the region where A & A ))1, the solution of Eq. (54) is
simply the zeroth-order Bessel function

1.0

0.8

0.6

0.4

0.2

0.0
0

Am

10

FI~G. 3. Nonlinear dispersion relations: the effective eigen-
~ ~ ~

value Q as a function of A, the amplitude. The solid line cor-
responds to the 2D case and the dashed line to the 3D case. As
A ~~, 0 —+1.

analytical expression (55) (dashed line) is displayed in Fig.
2. In this example the eigenvalue 0 =0.952 71
[A (0)= A =8]. One can see that the main part of the
solution is again very well described by the analytical
Bessel function solution (55), the radial analog of the axi-
al cosine soliton [Eq. (49)]. In Fig. 3, we plot the numeri-
cally calculated nonlinear dispersion relation
Q =A ( A ) (solid line). It is clear that for large-
amplitude (A »1) e.m. waves, 0 —+1. Let us define
the effective width of the soliton as

A = A Jo(kr), (55) a =— drr AefF (57)

where k =(1—0 ) . In the asymptotic region, the solu-2 1/2

tion must decay and Eq. (54) is solved by the modified
Bessel function

1
o(nr )- exp( Qr ), —

(nr)~~2
(56)

revealing the characteristic exponential decay. The nu-
merical solution of Eq. (54) (solid line) along with the

where

N= I drrA (58)
0

In Fig. 4 we plot the numerically obtained relation be-
tween the soliton effective width (a,s. ) and the amplitude
A (solid line). Note that, as in the axial case, the soliton
width is an increasing function of the amplitude 2 & 1.

For the large-amplitude case, the "stability integral" N

12—
—————3D

2D

0-
jeff

—20
I

10
I

15 20
0
0

Am
FIG. 2. Comparison of the numerical 2D solution with the

Bessel function approximation [Eq. (55)j. There exists excellent
agreement for the bulk of the structure.

FIG. 4. EA'ective width a,& versus the amplitude A for the
2D (solid line) and the 3D (dashed line) calculations.
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will be dominated by contributions from the region in
which the Bessel function solution holds. Simple algebra
leads us to

~mN= f dxx Jo(x))0,

——Analytical 3D-
—Numerical 3D

where C is a constant of the order unity. From (59) and
from the condition BA /BQ )0 (see Fig. 3), we get that
BN/BQ )0. This proof is clearly not formal, but it is
quite adequate for the large-amplitude solitons. Using
detailed computer simulations, we found that stability
criterion BN/BA )0 is satisfied for arbitrary amplitude
soliton solutions. The dependence of X on Q is plotted
in Fig. 5. Note that if 0 ~0 (i.e., A ~0), then
1V —+0.93, which corresponds to well known "critical
power" of the NSE with the cubic nonlinearity
f ( l

~
l ) =2 3

I
. Both the cosine and the Bessel function

solution were reported in [6].
Now let us consider the stationary solution of Eq. (44)

when 8 A/Bg -b, iA. It is natural now to look for a2

"spherical" symmetric distribution of the fields. In terms
of the radial variable r=(x +y +g )', and with the
substitution (45), we find

d2W 2, dW+— —0 2+3 1 — =0.
dr r dr (1+A

(60)

Like in the cylindrically symmetric configuration, we
solve this nonlinear eigenvalue problem numerically f
the

or
t e ground state solution. However, for the ultrarela-
tivistic case it is again possible to get a nearly analytical
solution. Indeed for the region where 2 ~ 2 &&1, the
solution of Eq. (60) is

sin(kr)
m

and in the asymptotic region (r ~0) the solution must de-
cay as

The salient features of the solutions presented until now
are quite generic to the solution for the NSE with sa-
turating nonlinearities [15]. The numerical solution of

10 20

FIG. 6. Comparison of the numerical 3D solution (solid line)
with the analytical expression (61) (dashed line). Again there
exists good agreement for the bulk of the structure.

drr 3 = C.2k'

From (63), the condition BA /BQ (see Fig. 3) implies
2N/dQ )0. Thus, for all cases considered, the large-

amplitude soliton solutions of Eq. (44) are stable. The
dependence of X on A, which is found by computer
simulation, is presented in Fig. 7. One can see that the

10

Eq. (60) (solid line), along with the analytical expression
(61) (dashed line), is displayed in Fig. 6. In this example
the eigenvalue fl =0.89809 (A =8). One can see that
the main part of the solution is approximated rather well
by the analytical expression (61), the spherical analog of
the axial cosine, and the cylindrical Bessel solitons. The
nonlinear dispersion relation 0 =II (3 ) is displayed in
Fig. 3 (dashed line). Note that if 2 ))1, 0 -~1 and for
a given amplitude 3 of the e.m. wave, Q spherical is al-
ways less than 0 cylindrical. In Fig. 4 we plot the soliton
eff'ective width (a,s) as a function of the a,mplitude 3
(dashed line).

For the large-amplitude case, the "stability integral" X
will be dominated by contributions from the region in
which the solution (61) holds. Simple algebra leads us to

0 I

0 0 O. i
I

0.2
I

0.3
0'

I

0.4 0.5 0.6

FIG. 5. 2D "stability integral" X versus 0 . %~0.93 as
0 ~0.

000 005 010 015 020 025 030
0'

FICx. 7. 3D stability integral versus Q . The stability condi-
tion (8Ã/BQ )0) holds for 0 greater than a critical value
0 =0.06.
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stability condition is satisfied for A greater than a cer-
tain critical value Q„(A =0.07).

Such localized stable objects (using the novel terminol-
ogy of [16]) can be called "light bullets. " Indeed in our
case, the solutions represent nondiftracting and non-
dispersing light pulses with ultrarelativistically strong
field amplitudes. Since these pulses carry large density
excesses (5n —A )&1) with them, they could be called
heavy bullets of light.

IV. DYNAMIC PROPAGATION

The soliton solutions found in the preceding section
represent a class of particular solutions of Eq. (44). It is
well known that exact analytical solutions for the NSE
with a cubic nonlinearity can be obtained in slab
geometry; this equation can be solved exactly using the
inverse-scattering technique [17]. For the NSE with a sa-
turating nonlinearity [such as Eq. (44)] the exact analyti-
cal methods to derive nonstationary solutions do not ex-
ist. One often has to resort to computer simulations to
investigate the solutions of such equations. However,
general dynamical properties of nonstationary solutions
are rather complex, making analytical approximations
highly desirable. To describe the dynamics of the local-
ized solutions of the NSE, various approximation
schemes, such as the paraxial ray theory [18], the mo-
ment theory [19],and the variational approach [20], have
been devised.

In the present work we shall follow the variational ap-
proach. We will concentrate on the cylindrical sym-
metric case described by the time-dependent equation

+ — .' +y(lAl~)A=O,
aw r ar ar

(64)

where f(l Al ) is defined by Eq. (42). In a recent paper
devoted to the problem of the self-focusing of e.m. waves
[21], we have obtained an analytical solution of Eq. (64)
by using the paraxial-ray approximation. In this paper
we abandon the paraxial-ray approximation because the
variational scheme yields much more accurate results.
The first step is to construct the Lagrangian

2

ar 2" a~ a~

chosen trial functions. To make the time-dependent
problem tractable, an averaging over the radial coordi-
nate is helpful. To do so we have to specify the radial
shape of the pulse with time-dependent "shape" parame-
ters. As trial functions, we will use Gaussian shaped
pulses, which greatly simplify calculations. Thus we as-
sume that the subsequent evolution of the wave field can
be characterized by the trial function

L. = r'l A l' ——+4b'1

a4

—rlA +r +rF(l Al ) .
d7

(69)

Averaging over the radius gives us

&L&=f"drL=— 1+ ' 4b'+" + '"~
2 d7

2

+ K(A, ), (70)

where

K(t)= f dt', =t —ln(l+t) ., F(t')
0 t' (71)

The reduced variational principle now can be written as

5f dr&L &( A, ,a, b, g) =0 (72)

and the set of Euler-Lagrange equations can be derived
by demanding that the variation with respect to each of
the unknown functions be zero,

A = A, (r)exp —— +ir b(r)+i)(r), (68)
2 a'(r)

which will be used in making the variational functional
an extremum. This trial function is parametrized by four
real functions: the pulse amplitude A, (r), the pulse
width a(r), the phase-front curvature b(r), and the
overall phase g(r); these functions are allowed to vary
with time. Using Eq. (68), the Lagrangian [Eq. (65)] can
be expressed in terms of the characteristic parameters of
the trial function

(65)
n&L&

6
(73)

where the asterisk denotes a complex conjugate and

F(t)= f f(t')dt'=
0 1+t (66)

BA BA* BA BA"
r ar a7 a7

dr d~=O,

whose appropriate variation (5L/5A *=0) within the
framework of the variational principle

1da
4 dr' a'

F(A i ) IC(A i)—
aA)

2F(A, )
—K(A, )

(74)

(75)

where Q =( A, ,a, b, g). After some simple algebra, we

get the set of ordinary di6'erential equations

(67)
Aa =A a1 m 0 (76)

yields Eq. (64) as the Euler-Lagrange equation.
In the optimization procedure, the first variation of the

variational functional must vanish on a set of suitably

1 da
4a dw

(77)

to be solved for the four functions A „a,b„and g. Equa-
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(78)

where E is a constant of integration and

V(a )= 1 Q0
2 2

Q
2 2

Q

Q02
K

tion 76) is nothing but a statemenment of the fact that the

(which is identicall e 1 t h
c o t e amplitude and the radial half-

ri t alto A
y equa to the radius of

o ao, where A and a are r
tively, the initial amplitude

' ' '
us

(76), the integration of E (74
p i u e and the initial radius

q. gives

1 dQ + V(a )=E=V(a )

1.0

0.8

0.6

0.4

0.2

0.0
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1 Q g 2 2

Q Q
2

0 m Q
(79)

FIG.G. 8. Comparison of the 2D numerical resul

py ic q. 81), solid line n

ln(1+ A ) 1

1+3rn

(80)

with the non
'

onlinear frequency shift given by

IC(A ) ln(1+A )

m

(81)
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' '
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direct numerical int
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where

Q2-
e

Q Qe e

Using Eqs. (66) and (80), it can be shown that 0 is al-
ways positive and consequentl the
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y e equilibrium solution
us t e results of variational a ro
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reaches a minimum and then increases to its asymptotic
value V(~)=0. The qualitative behavior of the time-
dependent propagation is clearly controlled by the nature
of V(a). If V(an ):E—& 0, i.e., if [see Eq. (79)]

ln(1+ A )
ap wQ] 1 (84)

25

20

15
I 10

then there are two turning points (a and a+) in the po-
tential well. As a result, the beam radius will oscillate be-
tween these two values. For the oscillating beam-radius
case, there are two distinct modes of behavior: (i) when
ao & a, (note that a, & a t must always be true), the beam
radius initially contracts until it reaches the minimum
value given by the turning point a & a„' (ii) on the other
hand, if a, &ap) a&, the beam radius initially increases
(diffraction) until it reaches its maximum value corre-
sponding to the turning point a+ & a, . In either case, the
beam radius is bounded between ao and a (a+ ).

In the opposite limit when ap (a& we have only one
turning point (a =an) and consequently the beam spreads
out monotonically. Note that the amplitude of the e.m.
beam A, (r) follows the beam radius as
A &(r) = A ao/a(r). In Fig. 10 we summarize the beam
behavior in various distinct regions.

In the preceding analysis, we employed a variational
approach involving a Gaussian trial function. It is also
possible to use different kinds of trial functions such as
the super Gaussian [20], which may fit the equilibrium
profile better than the Gaussian. However, for the non-
steady propagation, our approach provides explicit, al-
though approximate, analytical expressions for the beam
parameters.

We must now emphasize that the main shortcoming of
these various integral approaches —the variational and
the moments theory —is their inability to account for
structural changes in the beam shape (i.e., aberrationless

FIG. 11. Field intensity I=
~

A~ versus r and r for initially
Cxaussian shaped beam ~A(r, O)~=A exp[ (r ro)'—/2ao—] in
the case 3 =5, ap =5. The beam is trapped in an oscillating
waveguide. This curve is the result of direct numerical integra-
tion of Eq. (44).

approximation). For example, neither of these schemes
can predict that a sufficiently broad beam can undergo
"filamentations" as it propagates [22]. Such aspects of
the beam dynamics are better delineated by numerical
simulation.

In a recent investigation with Abramyan, we have car-
ried out systematic computer simulations of Eq. (64) and
its slab geometry version [23]. It is shown that several as-
pects of the beam dynamics closely follow the prediction
of variational approach, for example, the classification of
the beam dynamics based upon the critical radius (Fig.
10). Here we present several figures from [23]. In Fig. 11
we plot the field intensity (I=

~
A

~ ) distribution versus r
and z for the initially Gaussian shaped beam
i A(r, 0)~ = A exp[ —(r ro) /—2ao], where the beam
width ap=5 and the beam amplitude is relativistically
strong A =5. This case corresponds to beam self-
trapping in an oscillating waveguide. In Fig. 12 we
present the case when the beam amplitude is the same,
but its width ap=20 is much greater. One can see that
for this large width, the beam filaments as it propagates.

10-
Beam radius oscillates;
initial contraction

ao

50
40
30
20
10

0
0

(iii)
I

5

Monotonic diffraction
l I

10 15 20

FIG. 10. Classification of regions in the ap-A (ap is the ini-
tial radius and 2 is the initial amplitude of the beam) plane.
For ap & a &, the beam monotonically diffracts while for a p & a I,
the beam radius remains bounded but oscillates as the beam
propagates. When ap & a, also, then there is initial self-focusing
until the beam reaches the lower radius a (a, . If ap is the
range a, & ap &a&, the beam initially diffracts until it acquires
its maximum radius a+ & a, .

FIG. 12. Field intensity I versus r and z in the case of
=5, ap=20. The filamentation of the beam profile takes

place as the beam propagates. This kind of behavior cannot be
captured by approximate "integral'* methods such as the varia-
tional or the moment approach.
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(86)

where X is the photon number (i.e., our stability integral
for the stationary case) and H can be viewed as an energy
integral. For H (0, simple manipulations of Eqs. (85)
and (86) can lead to the bound

maxfAf (87)

This result is very significant and simply means that if in-
itial Geld distribution is such that it provides a negative
value of H, then the field intensity has a time-independent
upper bound. This is precisely the meaning of the term
"self-trapping of the beam. " It is interesting to note that
in regions (i) and (ii) of Fig. 10, where we have self-
trapping of the beam, the energy integral is indeed nega-
tive. The condition H &0, of course, does not provide us
with any details of the time evolution of the light pulse,
but is quite general and for any symmetric case gives us

Note that in this case the beam width (ao) is approxi-
mately five times larger than the equilibrium width a,
corresponding to A =5. In the jargon used in "laser in-
teractions with nonlinear media, " this situation corre-
sponds to the case when the beam power (-aors ) is
much larger than the critical power (-a, 2 ) and as a
result the beam breaks down into a set of narrow chan-
nels ("filaments" ), each with a power content of the order
~f the critical power.

In this section we have limited ourselves to the study of
the e.m. beams with cylindrical profiles. [Note that one
spatial coordinate may be replaced by a "moving" coor-
dinate (g=z —ust), thus creating a light bullet. ] For the
case of Cartesian or spherically symmetric beams it is
also possible to develop a variational approach. We do
not discuss these results here because algebraic complica-
tions make them less transparent. However, solutions of
Eq. (44) in a general geometry will be interesting for non-
linear optics and will be presented elsewhere.

Finally, we would like to remind the readers about an
important general result found by Zakharov, Sobolev,
and Synakh [24] using the moment method. It is easy to
prove by direct calculation (or by Noether's theorem us-
ing the Lagrangian) that Eq. (44) has the integrals of
motion

the range where we should expect the formation of the lo-
calized self-trapped field configurations. The derivation
and verification of such general results are two of the
main purposes of this paper.

V. CQNCLUSIQNS

We have investigated the nonlinear propagation of Cp
e.m. waves in hot unmagnetized e-p plasmas with a small
fraction of ions. In our analysis, we included not only the
ponderomotive nonlinearity and relativistic efFects in the
hydrodynamic motion of the plasma, but also the efFects
that result from the relativistic electron velocity distribu-
tion. We concentrated on the case of a transparent plas-
ma and derived the NSE with a saturating nonlinearity.
It turns out that in this equation, the role of the particle
mass is played by a temperature-dependent "effective
mass. " We were able to obtain analytical and nearly
analytical soliton solutions of this equation. Using
analytical and numerical methods we demonstrated the
stability of the soliton solutions. These solitons, corre-
sponding to relativistically strong amplitude e.m. waves,
carry a large density inhomogeneity, and are
nondi6'racting and nondispersing localized structures that
could be called heavy bullets of light. To understand the
main properties of the nonsteady propagation of e.m.
pulses, we used a variational approach and found that the
main results of the variational approach are confirmed by
numerical simulations.

In conclusion, we have shown that in an electron-
positron plasma with a small fraction of ions, it is possi-
ble to have localized stable structures with large density
bunching and with velocities close to the velocity of
light —the heavy bullets of light. Such objects could play
an important role in cosmology as a source of structure
formation in the MeV epoch of the evolution of the
Universe. Coupled with gravity, these objects may lead
to the creation of large scale inhomogeneity in the
Universe. Another potentially important applications of
the e-p-i plasma may be found in providing an under-
standing of the nature of the intergalactic jets. Astro-
physical objects, such as the radio galaxies, quasars, or
radio pulsars could radiate ultrarelativistically strong
e.m. pulses, which, in the ever present e-p-i plasmas in
their vicinity (for example, in the form of relativistic jets),
could propagate in self-created channels.

The full impact of our theory on cosmology and on as-
trophysics cannot be expounded in the present paper. In
future work we plan to investigate the problem in more
detail.
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