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Kolmogorov-Smirnov test distinguishes attractors with similar dimensions
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Recent advances in nonlinear dynamics have led to more informative characterizations of complex
signals making it possible to probe correlations in data to which traditional linear statistical and spectral
analyses were not sensitive. Many of these new tools require detailed knowledge of small scale structures
of the attractor; knowledge that can be acquired only from relatively large amounts of precise data that
are not contaminated by noise—not the kind of data one usually obtains from experiments. There is a
need for tools that can take advantage of “‘coarse-grained” information, but which nevertheless remain
sensitive to higher-order correlations in the data. We propose that the correlation integral, now much
used as an intermediate step in the calculation of dimensions and entropies, can be used as such a tool
and that the Kolmogorov-Smirnov test is a convenient and reliable way of comparing correlation in-
tegrals quantitatively. This procedure makes it possible to distinguish between attractors with similar
dimensions. For example, it can unambiguously distinguish (p <107%) the Lorenz, R&ssler, and
Mackey-Glass (delay=17) attractors whose correlation dimensions are within 1% of each other. We
also show that the Kolmogorov-Smirnov test is a convenient way of comparing a data set with its surro-
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gates.

PACS number(s): 05.45.+b

I. INTRODUCTION

Recent advances in nonlinear dynamics have led to
more informative characterizations of complex signals
[1-4]. The realization that even simple dynamical sys-
tems are capable of exhibiting complex unstable behavior
with broadband spectra has made it clear that descrip-
tions in terms merely of time series, conventional statisti-
cal measures, and spectra are no longer sufficient. Chaot-
ic trajectories starting from neighboring initial points
diverge exponentially; simple nonlinear maps have spec-
tra that are as broadband as those of the outputs of well-
designed random number generators or of sequences as
random as the time intervals between decays of radioac-
tive nuclei [5].

Nonlinear dynamical tools have made it possible to
probe correlations to which traditional linear statistical
and spectral analyses were not sensitive. Some of these
new tools make it possible, at least in principle, to deter-
mine if a signal is deterministic, to identify and classify
seemingly random signals, to compare complex experi-
mental results with theoretical or model predictions, or
to distinguish signals generated by distinct but similar
dynamical systems.

These new tools typically rely on the possibility of us-
ing a series of measurements of a single variable to recon-
struct or embed the system’s multidimensional trajectory.
The embedding, or reconstruction, is usually done using
the method of time delays [6—8]. If the reconstructed
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trajectory evolves on an attractor, the system’s dynamics
may be described in several ways, including (1) the rate at
which nearby trajectories diverge from each other
(Lyapunov exponents) [9—-12], (2) the rate at which infor-
mation is generated by each new datum (entropy produc-
tion) [13], (3) the topological properties of the trajectory
[14-18], or (4) by characterizing the geometry of the at-
tractor by one or all of a hierarchy of dimensions
[19-21].

Many of these new tools, however, require detailed
knowledge of small scale structures of the attractor;
knowledge that can be acquired only from relatively large
amounts of precise data which are not contaminated by
noise. Unfortunately, this is usually not the kind of data
one gets from experiments.

When dealing with limited amounts of noise-
contaminated data, there is a need for tools that can take
advantage of “‘coarse-grained” information, but which
nevertheless remain sensitive to higher-order correlations
in the data. In many situations, the need is not for an ab-
solute characterization of an attractor, but rather for a
reliable way of comparing attractors. There is increasing
realization that answering the question “is it chaos or is it
noise?”” is not as easy, or indeed as immediately impor-
tant, as it once seemed. For instance, one often wishes to
compare experimental results with the predictions of a
theory or a model, or to compare an attractor with those
of surrogate data—correlated noises with some statistical
or spectral properties that mimic those of the original
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data [22,23]. In medical applications, one may wish to
determine whether a particular signal more closely
resembles those from a normal subject, or those from sub-
jects afflicted by one of a variety of pathological condi-
tions.

In Ref. [24] we illustrated the use of the (Gibbs) entro-
py and related measures to analyze sequences of time in-
tervals between spikes in the electrical activity of human
muscles (human electromyograms, or EMG’s). We
achieved statistically significant discrimination
(p <0.001) between normal and denervated muscle using
measures related to the inertia tensor of two-dimensional
embeddings of interspike interval data using less than
200 points.

In this contribution, we propose that the correlation
integral, now much used as an intermediate step in the
calculation of dimensions and entropies [18—-21], can be
used for comparing attractors, and that the
Kolmogorov-Smirnov test (see, e.g., [25,26]) is a con-
venient and reasonably reliable way of quantifying the
comparison. We emphasize that this procedure does not
provide a quantitative characterization of individual at-
tractors. Rather, it makes it possible to compare attrac-
tors even in some situations where the more commonly
used nonlinear dynamical measures are not computable.

In Sec. II we review the use of the correlation integral
in the calculation of dimensions and Kolmogorov entro-
pies. We use the correlation dimension to illustrate prob-
lems that arise when dealing with limited amounts of
noisy data, or when comparing dynamical systems with
similar dimensions, or when dealing with moderately
high-dimensional systems. In Sec. III we review the
Kolmogorov-Smirnov test and discuss precautions that
need to be taken when applying it to compare correlation
integrals. In Sec. IV we illustrate some of its capabilities
as well as its limitations by using it in the same situations
that caused the problems discussed in Sec. II. We also il-
lustrate its use in comparing a time series with its surro-
gates. Section V summarizes the paper and discusses
some areas in which the procedures proposed here may
profitably be used.

II. THE CORRELATION INTEGRAL

Let X={x,,x,,...,xy}, X, =x(k7), be a series of
measurements (a time series) of x, one of the variables
that characterize a system. These measurements are tak-
en at equal time intervals 7. The state of the system at
any time is specified by the simultaneous values of all the
system variables, and its temporal evolution is described
by the trajectory of this representative point in phase
space, the space which the variables span. The time series
X may be embedded in an m-dimensional space by con-
structing the vectors

(

yk'n)=(xk’xk+l,--~ k=1;2)--"Nv ’ (1

s Xk +m—1) >
where N,=N —m +1 is the total number of vectors
formed from the time series. For a sufficiently large value
of the embedding dimension m, and if some additional
conditions are satisfied, the reconstructed trajectory has
the same topological and geometrical properties as the

system’s phase space trajectory [6-8,27,28]. Most non-
linear analysis of experimental data is done on trajec-
tories reconstructed in this manner. In the development-
presented here, we consider the case of a single-channel
time series. The procedure generalizes immediately to
multivariate data.

In an m-dimensional space, the correlation integral
C,,(r) is the fraction of all distances between distinct
pairs of points on the trajectory that do not exceed the
value r [18,19]:
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(2)

Here, ©( ) is the Heaviside function which has the value
1 if its argument is non-negative and is zero otherwise,
N, is the number of embedding vectors used, and

ly/™ —y{™| is the distance between y/™ and y{™. The

1

sum is taken only for those i’s and j’s that are separated
in time by more than B sampling times to avoid artifactu-
al correlations among consecutively sampled points on
the attractor [29]. (Hereafter, we refer to B as the
“blind”.) It is seen that C,(r) is monotone increasing
with 7 and, under this normalization, has a maximum
value of 1. The correlation integral is what statisticians
call the cumulative distribution function or the sample
distribution function (see, e.g., Refs. [25,26]) of the inter-
point distances. Grassberger and Procaccia have shown
that the correlation integral satisfies the scaling relation-
ship

lim lim C,,,(r)oird2 exp(K,mT) , (3)

r—0m— oo

where d, is the correlation dimension and K, the order-2
Kolmogorov entropy [18,19].

The correlation dimension is usually evaluated by tak-
ing the slope of the double-logarithmic plot of C,,(r) vs r
in that interval of r values where the right-hand side of
Eq. (3) is satisfied, the so-called scaling region. Instead of
taking the high-m limit, Takens [7] shows that taking
m >2d, may be sufficient. Sauer, Yorke, and Cadagli [8]
show that m >d, is good enough.

K, is calculated by taking differences of log-log plots of
C,,(r) vs r for different values of m. Values of d, and K,
obtained in this manner have been used in numerous
studies to identify, classify, or diagnose the behavior of
many complex systems (see, e.g., Refs. [1-4]).

More recently, they have also been used to compare
the properties of test data with those of their surrogates,
sequences of random numbers designed to have some sta-
tistical and/or spectral properties that are identical to
those of the original data [22,23]. Generalizations of Eq.
(2) to order-q correlation integrals, where g in principle
ranges from — oo to + o, have been used to estimate
order-g dimensions and entropies [20,21], which provide
a more comprehensive description of the reconstructed
trajectory or of the attractor on which it moves.



198 A. M. ALBANO, P. E. RAPP, AND A. PASSAMANTE 52

A, Computational details

The embedding window T, the time interval spanned
by each embedding vector, is given by

T,=(m—1)Lt, 4)

where, as above, m is the embedding dimension, 7 is the
time interval between successive elements of the time
series, and L, the lag, is the number of elements of the
time series between successive components of an embed-
ding vector. It is known [30,36] that, for dimension calcu-
lations using sufficiently high embedding dimensions, it is
the embedding window, and not the embedding dimen-
sion m and the lag L separately, that is important. Al-
though there is no unanimity on how to choose an op-
timal embedding window (see, e.g., Refs. [30—35]), using
one that is based on the autocorrelation function or
higher-order correlation functions of the data has led to
consistently reasonable results. In the following, we use
the time to first minimum of the autocorrelation function
as a window, primarily because it is easily computable.
We used the same quantity as the “blind,” B.

Although it is the embedding window that is important
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in dimension calculations, there is no reason to expect
that this remains true for the calculation of other quanti-
ties. Indeed, Kaplan and Glass [37,38] have shown that
for calculating a measure of deterministic structure
which they introduced it is the lag rather than the
embedding window that is important. To obtain a lag
that is determined by the data, we make use of a criterion
proposed by Schuster [32,33], one that has lately also
been used by a number of other investigators (e.g.,
[31,35]). Schuster’s criterion is based on the observation
that if a set of dimension d is successively embedded in
spaces of dimensions m and m +1 then, if d > m, nearest
neighbors in m dimensions may not remain nearest neigh-
bors in m + 1 dimensions, and nearest-neighbor distances
may increase as one goes from the smaller embedding
space to the larger. If a sphere is projected onto its equa-
torial plane, the north and south poles coincide in the
projection, becoming ‘“false nearest neighbors.” Increas-
ing the embedding dimension increases the distance be-
tween false near neighbors. Using too small a lag has a
similar effect. If the lag is too small, all points cluster
around the main diagonal of the embedding space, and
nearest-neighbor distances are artificially small. As the
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FIG. 1. Time series for the x variable of the Lorenz equations, Eq. (5). (a) No added noise. (b) The signal in (a) after the addition
of white Gaussian noise to give a signal-to-noise ratio (SNR) of 20 dB, (c) SNR =10 dB, and (d) SNR =5 dB.
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lag is increased, interpoint distances increase. To quanti-
fy these notions, we have used a variant of a false
nearest-neighbor procedure introduced by Schuster and
his colleagues [32,33] to help determine appropriate
values of L and m.

B. The correlation dimension

The limiting scaling behavior given in Eq. (3) and simi-
lar behavior of higher-order correlation integrals under-
lies the calculation of generalized dimensions and entro-
pies. The necessity of taking limits as 7 becomes small
and m large imposes severe limitations on the reliability
of the calculated quantities. It is small values of r that
are most sensitive to noise and experimental uncertain-
ties. And as the embedding dimension m is increased,
nearest-neighbor distances on the embedded attractor in-
crease, raising even more the lowest level to which the
small r limit can be taken.

Limitations on the reliability with which dimensions
and entropies can be calculated from experimental data
makes it inappropriate to use them when precise values
of these quantities are required. This is especially so
when the intent is to get an absolute characterization of
the attractor being studied. In the rest of this section we
illustrate the nature of some of these problems by giving
computational examples of what happens (1) when a sig-
nal becomes increasingly noise corrupted, (2) when trying
to compare time series from systems with similar dimen-
sions, and (3) when using insufficient amounts of data to
study signals from moderately high-dimensional systems.

1. Additive noise

Figure 1(a) shows a segment of a series of x values cal-
culated from the Lorentz equations [39], integrated in
steps of 0.01,

(dx /dt,dy /dt,dz /dt)
=(—10(x —y),x(28—2z)—y,xy —%z) . (5)

Figures 1(b)—1(d) show the same time series after Gauss-
ian white noise has been added to give signal-to-noise ra-
tios (SNR’s) of 20, 10, and 5 dB, respectively (the SNR in
decibels (dB) =101log,,[(signal variance)/(noise vari-
ance)]). Figure 2(a) shows plots of log,C,(r) vs
log,(r /rm.y) for all four cases, r,, being the largest in-
terpoint distance on each attractor, while Fig. 2(b) shows
plots of the slopes vs log,(r /7., ) for each of the graphs
in Fig. 2(a). In each calculation, 2048 points were used
and the lag and embedding window were chosen as de-
scribed in the previous section.

The least steep graph in Fig. 2(a), which corresponds to
the graph with the long, flat plateau in Fig. 2(b), was cal-
culated from the uncorrupted or “clean” data. The in-
creasingly steep graphs at larger values of log,(r/7,,)
were calculated from the 20, 10, and 5 dB data, respec-
tively. The plateau value of the slope in Fig. 2(b), ap-
proximately 2.0 for the clean data, is the estimate of the
correlation dimension obtained from this calculation.
This value characterizes the attractor only in the scaling
region, the region in which the graph shows a plateau. As

noise is added, the plateau region shrinks, making it in-
creasingly difficult to claim that a meaningful calculation
of dimension has been achieved. It also becomes increas-
ingly difficult to assert that the resulting graphs still
characterize signals that came from the same underlying
system.

Figure 2 provides a dramatic demonstration of how
disastrously noise affects the calculation of the correla-
tion dimension. Interestingly, most of the effects of noise
on the Lorenz attractor, even at the SNR =5 dB level, is
restricted to the smallest 5% of interpoint distances. In
Fig. 2(a), this corresponds to log,C, (r)<—3.0 or
log,(r /7. ) < — 1.6, but since log, (7 /7., ) is used as the
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FIG. 2. (a) In[C,,(7)] vs In(r/r,,,) for the signals shown in
Fig. 1. Distances are scaled to r,,, the largest interpoint dis-
tance on the attractor; m =11, L =4 for all cases. The least
steep graph is that of the noise-free data. The increasingly steep
graphs at larger values of In(r/r,,) are of the data sets with
SNR’s of 20, 10, and 5 dB, respectively. (b) The slopes of the
graphs in (a) obtained by making least squares fits of successive
nine-point segments of the graphs. 95% of all interpoint dis-
tances are in the region In(7 /r,,) = —1.6.
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ordinate in Fig. 2 the effect of this small fraction of dis-
tances is grossly exaggerated. Noise corrupts at small
length scales. However, these are the length scales that
are essential to an estimate of dimension which, as indi-
cated in Eq. (3), is obtained in the » —0 limit.

2. Similar dimensions

There are similar limitations on the usefulness of the
correlation dimension to distinguish systems with nearly
equal dimensions, even when using relatively clean data.
Such is the case, for instance, with the attractors of the
Lorenz equations, Eq. (6), the Rdssler equation [40], in-
tegrated in steps of 0.05,

(dx /dt,dy /dt,dz /dt)
=(—y —2z,x +0.2y,0.4+xz—5.7z) , (6)
and the Mackey-Glass equation [41]

0.2x(t—8)
1+[x(t—8)]"°

integrated in steps of 0.5, with delay 6=17. All three
have correlation dimensions that are approximately 2.0
[29,42]. That is, the differences in their correlation di-
mensions are in the second decimal place so that these
must be calculated with an accuracy of the order of 1% if
they are to be useful in distinguishing any one attractor
from the others. Accuracies of this quality when using
the Grassberger-Procaccia algorithm impose data re-
quirements that are effectively unobtainable with experi-
mental data.

Figure 3 shows the slope of the log,C,(r) vs
log,(r /7 ,.c) plots for the three cases. These graphs
show, first of all, the difficulty of establishing the location
of a scaling region and, once this has been done, of ob-

dx (t)/dt= 0.1x(z) , (7

Slope

IN[r/rmax)]

FIG. 3. Slopes of the In[C,,(7)] vs In(#/r.,) graphs of the
Lorenz [Eq. (5); m =11, L =4], Rossler [Eq. (6); m =11, L =5],
and Mackey-Glass (delay §=17; m =11, L =5) [Eq. (7)] sys-
tems. All three have correlation dimensions of approximately
2.0.

taining an estimate of the average slope for the region
with the desired accuracy and precision. It is clear that
merely quoting estimated values of the correlation dimen-
sions with their corresponding uncertainties will not
suffice to distinguish these attractors.

3. High dimensions

There are some rather stringent limits on the number
of data points needed to determine dimensions reliably.
A limit due to Eckmann and Ruelle [43] requires
(l/p)d2 data points to resolve an attractor of correla-
tion dimension d,, where p is the ratio of the length scale
being characterized to the maximum length on the at-

L d, /2
tractor. For p=0.1, this gives a rather generous 10 2",
Nerenberg and Essex [44] propose a more stringent

2°%(d,+1)"2, while Smith [45] proposes an even more

stringent 42 % (however, see Ref. [46]). A commonly used
rule of thumb that has not been given much rigorous
backing is 10 2. It may be possible to estimate the value
of the correlation dimension using fewer data than are re-
quired by the more stringent of these requirements once
it is established that the correlation integral satisfies the
scaling property given in Eq. (3). However, it may take
considerably more to establish that this is so. If this can-
not be done, that is, if it cannot be shown that the corre-
lation integral has a non-negligible scaling region, then it
cannot be claimed that the data set is characterizable by
a correlation dimension. Figures 4(a)—4(d) illustrate this.
Figure 4(a) shows the log,C,, () vs log,(r /r /,,) plot for
a time series generated by the Mackey-Glass equation,
Eq. (7), with a delay, §=150, which has a high dimen-
sional attractor. Figure 4(b) shows the slope of this graph
vs log,(r/r.,). Figures 4(c) and 4(d) show the corre-
sponding plots for filtered random noise (cf. Ref. [23]). In
both cases, 4096 data points were used. This is half of
the number of points used in Ref. [23] to exaggerate the
problems that arise when an insufficient number of data
are used. None of the graphs shows a convincing scaling
region. Assigning a correlation dimension to either sys-
tem on the basis of Fig. 4(a)—4(d) is not entirely defensi-
ble. Nevertheless, there are discernible differences in the
graphs for the two systems.

C. Surrogate data

The difficulty of using dimensions and similar measures
to distinguish between deterministic and stochastic or
noise-dominated signals have led a number of investiga-
tors to propose the use of surrogate data [22,23]. These
are randomized sequences some of whose statistical
and/or spectral properties are similar to those of the time
series being studied. Measures calculated using the origi-
nal data set are compared to those obtained using its sur-
rogates. If the measures so obtained are not significantly
different, then one concludes that the original data are
not distinguishable from correlated noise, which is what
the surrogate data are.

Following Theiler et al. [22] we consider two types of
surrogates. The first, referred to as algorithm I, or type I,
or phase-randomized (5] surrogates, is linearly correlated
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noise with the same power spectrum (and hence the same
autocorrelation function) as the original data set. It is
obtained by (a) calculating the Fourier transform of the
original data, (b) randomizing the phases of this trans-
form, and then (c) taking the inverse of the phase-
randomized transform.

Algorithm 11, or type II, or Gaussian-scaled [5] surro-
gates address the null hypothesis that the original set is
linearly correlated noise that has been transformed by a
static, monotone nonlinearity. It has the same distribu-
tion, and therefore the same statistical moments to all or-
ders, as the original data. A comparison of the original
data set and its Gaussian-scaled surrogates using the usu-
al statistical moments such as mean, variance, kurtosis,
etc., would therefore find no differences.

A Gaussian-scaled surrogate is obtained as follows: (a)
A Gaussian-distributed set of random numbers that has
the same rank structure as the original data is construct-
ed; (b) a random-phase surrogate of this Gaussian distri-
buted set is constructed; (c) the original data set is
shuffled so that it has the same rank structure as the
random-phase surrogate constructed in step 2. Since

InCp(r)

45 -4 -3.5 -3 -25 -2 -1.5 -1 0.5 0
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Gaussian-scaled surrogates are shuffles of the original
data, they have exactly the same statistical measures as
the original, provided these measures do not depend on
the way the data are ordered in time.

The quantities used for comparing a data set to it sur-
rogates may be any one of the nonlinear dynamical mea-
sures used to analyze time series. Theiler et al. [22] sug-
gest creating several realizations of each type of surro-
gate. A measure, the correlation dimension, say, for each
of these surrogate sets is obtained and then one calculates
the quantity

S= lddata —{ dsurr ) |
g

, (®)

where d 4,,, pertains to the original data, and (d,,,, ) and
o are the mean and standard deviation, respectively, for
the set of surrogates. The value of S quantifies the
difference between the raw data and its surrogates.
Several alternative statistical procedures for evaluating
results obtained with surrogates are compared in Ref. [5].

This procedure is effective when the measure used for

(b)
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FIG. 4. (a) In[C,,(r)] vs In(r/rn.,) for a 4096-point output of the Mackey-Glass equation [Eq. (7)] with delay §=150; m =21,
L =6. (b) Slope of (a). The corresponding graphs for filtered random noise with m =11, L =1 are shown in (c) and (d). None of the
graphs shows a scaling region.
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the comparison can be calculated reliably. As seen in the
previous sections, however, there are situations where the
conditions for the proper calculation of these measures
cannot be met.

III. COMPARING CORRELATION INTEGRALS

The examples given in the previous section illustrate
the difficulty of obtaining precise values of the correlation
dimension to describe limited amounts of noise-corrupted
data. Calculations of order-g dimensions and entropies
[20] are beset by similar problems. These problems arise,
in part, from the need to establish a scaling region of
reasonable length, and the fact that calculating dimen-
sions involves estimating slopes numerically, a not very
robust numerical procedure. Calculating Kolmogorov
entropies is similarly afflicted as it involves taking the
differences of equally uncertain quantities. The correla-
tion integral, on the other hand, only involves counting,
once interpoint distances have been calculated. Being a
finite sum, it is a relatively robust object. It is less sensi-
tive to perturbations than dimensions and entropies, a
property that becomes a virtue rather than a limitation
when the object is to identify, or classify, or diagnose, a
time series of limited length that may have been per-
turbed by noise and other experimental uncertainties.

The examples above also show that, even when the
conditions for a proper calculation of dimensions or en-
tropies are not met, making it impossible to claim a di-
mension, the correlation integrals of similar attractors
still have some similarities, and those of different attrac-
tors have some differences. These can be exploited to esti-
mate how similar, or how different, the systems are. We
propose to exploit these by using the Kolmogorov-
Smirnov test to compare correlation integrals.

A. The Kolmogorov-Smirnov test [25,26]

The following is a brief account of the Kolmogorov-
Smirnov test for the case when two sets of measurements
are being compared. For a more comprehensive treat-
ment, see, e.g., Ref. [25]; for computational details, see
Ref. [26].

Let {9,715 ...,x1} and {&£,&, .. ., Enn] be two sets
of measurements (or calculations) of the same quantity.
One wishes to test the null hypothesis that the two sets of
measurements come from the same distribution. For this
purpose, Kolmogorov makes use of the sample distribu-
tion functions, or cumulative distribution functions,
S1(n) defined by

10
Si(n)=—3 6(n—mn;) 9

Ny i=1
and S,(&), which is similarly defined. S;(7) is the frac-
tion of all the measurements that do not exceed 7, and
S,(&) is the similar quantity for . As noted earlier, these
are similar to the correlation integral, Eq. (2).
Kolmogorov’s statistic D is the largest difference between
the two cumulative distribution functions for the same

value of the argument,

D =sup|S,(7)—S,(n)| . (10)
7

If the null hypothesis is true, that the two sets of mea-
surements come from the same distribution, then the
probability for D to exceed the observed value is given by

QKs(z)zzﬁ(—1)'—‘exp(—2r2z2) , (11)
r=1
where
z=DV'N,N,/(N,+N,) . (12)

Algorithms for the calculation of this probability may be
found in Ref. [26].

B. Caveats

The Kolmogorov-Smirnov test compares sequences
without regard to the values of variables on which these
sequences depend. When the sequences being compared
are values of correlation integrals, the values of the inter-
point distance r used for calculating the correlation in-
tegral become almost irrelevant. This makes it unneces-
sary to use the same normalizations or the same units of
length in calculating the correlation integrals. It is, how-
ever, important (i) that each of the correlation integrals
have a sufficiently large number of values [N; and N, in
Eq. (10)] and (ii) that the two sequences have the same
lower and upper bounds. But these values must corre-
spond to actual distances on the attractor.

(i) The effect of the number of points used to specify
each correlation integral is apparent in Egs. (11) and (12).
For N, =N, =N, the parameter z defined in Eq. (12) is of
the order of N'/2D, and is the argument of Gaussian
functions that determine the probability [Eq. (11)]. It is
clear that the sensitivity with which the test can distin-
guish two correlation integrals from each other is rather
sensitive to the number of points used in the comparison.

(ii) The choice of that segment of the correlation in-
tegral used for the comparison is similarly crucial. At-
tractors with similar correlation dimensions have correla-
tion integrals that behave similarly in their respective
scaling regions (cf. Fig. 3). Comparing only values in the
scaling region is thus unlikely to distinguish these attrac-
tors. The correlation integrals of similar attractors may
have meaningful differences at large distances, but corre-
lation integrals saturate—they approach unity at large
distances. On the other hand, the smallest distances may
be noise dominated and are therefore unlikely to contain
much pertinent information.

In the following, we compare correlation integral se-
quences in the range 0.01=C,(r)=<0.99 [or
—4.6<log,C,, (r)=—0.01], with r in steps of
Ar=0.0010, where o is the standard deviation of the
raw data. This includes almost all of the interpoint dis-
tances on the attractor, but avoids the smallest, most
noise-corrupted ones, as well as the largest, where the
correlation integrals begin to saturate. The choice of Ar,
on the other hand, guarantees that this range of C(r)’s
involves a few thousand entries in the C(r)’s being com-
pared. Calculated probabilities can depend on the size of
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Ar and the range of C(r) values used. It is therefore im-
portant to specify these quantities whenever the
Kolmogorov-Smirnov test is used to compare attractors.
Limited computational experiments suggest, however,
that for a small enough value of Ar the final results are
robust against considerable variations in the range of
C (r) that is used. For example, in comparing the Lorenz
and Rossler attractors (see Sec. IV below), essentially the
same results are obtained as the range of C(r) is varied
for {0.01<C(r)=0.99} to {0.3=<C(r)<0.7}.

C. Lags and windows reconsidered

In the previous discussion, attention has been directed
to the sensitivity of dynamical measures, particularly the
correlation integral, to embedding parameters m and L.
In our application of the Kolmogorov-Smirnov test, the
sensitivity of S(C,,(r)) is of importance. This sensitivity
is investigated in the calculations presented in this sec-
tion. We present evidence, that, with lags of the order
obtained with Schuster’s criterion, the shape of S(C,, (7))
approaches a limit as the embedding dimension and the
number of embedding vectors are increased.

Figure 5(a) examines the sensitivity of S(C,,(r)) to the
number of points in the embedding space. The graphs
represent two sets of calculations, one using 20 to 200
embedded vectors (in steps of 20), the other 200 to 4700
embedded vectors (in steps of 500). Both sets of calcula-
tions used a lag of 10 in 50 dimensions. The lowest graph
corresponds to 20 vectors, the highest to 40 vectors.
There are negligible differences in S(C,, (r)) if more than
160 vectors are used.

Figures 5(b) and 5(c) examine the effect on S(C,,(r)) of
varying the embedding parameters. Figure 5(b) shows
S(C,,(r))s calculated using 1024 vectors in 50 dimen-
sions with lags of 1,2,...,20. The two topmost graphs
are for lags 1 and 2, the lowest are for lags 19 and 20,
those with intermediate values of the lag cluster in be-
tween. In most of the calculations we present here, we
used a lag of 10, which is compatible with that suggested
by Schuster’s criterion.

Figure 5(c) shows S(C,,(r))’s obtained using 1024 vec-
tors with lags of 10 in embedding spaces with dimensions
5,10,...,100. The topmost graph is for a five-
dimensional space. As the embedding dimension in-
creases, the graphs approach the bottom of the band.
Graphs for embedding dimensions 35-100 are practically
coincident.

For a given number of embedding vectors, however,
the graph of S(C,,(r)) becomes severely distorted at ex-
tremely large windows. This distortion is in the form of a
steplike structure in S(C,, (r)) which occurs when the
embedding dimension is so large that distances between
neighboring embedding vectors exceed the scale Ar used
in calculating the correlation integral.

The limiting form of S(C,(r)) discussed above is
reached at values of the embedding window that are too
large to be used for the calculation of correlation dimen-
sions. With windows of this size, the correlation integral
shows no scaling region, making it impossible to con-
clude, using calculations with these values of the window,
that the data can be characterized by a correlation di-

0 0.1 02 03 04 05 06 07 08 09 1
C(r)

0 01 02 03 04 05 06 07 08 09 1
C(n

- ) L S . . L . . L B
0
o] 0.1 0.2 0.3 0.4 0.5 06 0.7 08 09 1
C(n)

FIG. 5. Cumulative distribution function S(C,, (7)) of the
correlation integral of the Lorenz attractor using the following
combinations of parameters. (a) Lag=10; embedding dimen-
sion =50; number of embedding vectors
=20,40, ...,200,700,...,4700. (b) Lag =1,2,...,20;
Embedding dimension =50; number of embedding vectors
=1024. (c) Lag =10; embedding dimension =5,10,...,100;
number of embedding vectors = 1024.
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FIG. 6. (a) S(C(r)) vs C(r) for the Lorenz (®), Rossler (X),
and Mackey-Glass (§=17) (0O) attractors. All were calculated
using 1024 embedding vectors with a lag of 10 in 50 dimensions.
(b) S(C(r)) vs C(r) for the Mackey-Glass (§=150) (®) and
filtered noise data (X) using 4096 embedding vectors with a lag
of 10 in 50 dimensions.
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mension. Nevertheless, as we show below, the limiting
forms of the S(C,,(r))’s can be sufficiently distinctive as
to lead to meaningful comparisons using the
Kolmogorov-Smirnov test.

Figure 6(a) shows S(C,,(r)) vs C, (r) for the Lorenz,
Rossler, and Mackey-Glass (§=17) attractors. All were
calculated using 1024 embedding vectors with a lag of 10
in a 50-dimensional embedding space. Figure 6(b) shows
S(C,(r)) vs C,(r) graphs for the Mackey-Glass
(6=150) and filtered noise data using 4096 embedding
vectors with a lag of 10 in a 50-dimensional embedding
space. Both sets of graphs show that graphs correspond-
ing to the different attractors are clearly distinguishable.
This distinguishability is quantified using the
Kolmogorov-Smirnov test in the next section.

IV. COMPARING SIMILAR ATTRACTORS

Table I shows results of comparing the correlation in-
tegrals of the ‘‘clean” Lorenz attractor with noise-
corrupted Lorenz attractors having SNR’s of 5, 10, 15,
and 20 dB as well as comparisons among the various
noise-corrupted data sets. In each entry in the table, the
first line gives the median while the second gives the
mean and standard deviation of ten comparisons in
which, for each comparison, noise-corrupted data of the
appropriate SNR are generated anew from the uncor-
rupted data. In each case, 1024 embedding vectors were
constructed using a lag of 10 in a 50-dimensional embed-
ding space.

Since we are concerned with probabilities which are
not likely to be symmetrically distributed, the median is a
better descriptor than the mean. In cases when there are
a lot of values near zero, for instance, these small values
contribute negligibly to the mean, which can be unduly
influenced by a few large outliers. The variance, however,
still provides some indication of the spread of the values
being considered.

Table I shows that the test is able to assert that, even
with as small a signal-to-noise ratio as 15 dB, the noise-
contaminated attractor is still unambiguously the Lorenz
attractor. At 10 dB, the effects of noise intrude. Howev-

TABLE I. Clean vs noise-corrupted Lorenz data. The Kolmogorov-Smirnov probability Qs, that
the correlation integral of the data file identified by the column and that of the file identified by the row
come from the same distribution. The first line of each entry is the median obtained in ten independent
determinations. The second line gives the mean and standard deviation. In each calculation, noise-
corrupted data sets were independently generated from the uncorrupted data.

Median and mean *+ standard deviation

SNR 20 dB 15 dB 10 dB 5 dB

Uncorrupted 0.97 0.78 0.047 0.015
0.95+0.06 0.63+0.40 0.14+0.28 0.08+0.17
20 dB 0.96 0.16 7.7X107%
0.84+0.19 0.19+0.16 0.1240.25

15 dB 0.89 0.001
0.62+0.41 0.25+0.32

10 dB 0.10

0.30£0.29
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er, the test itself makes it possible to evaluate how “noise-
like” the 5 and 10 dB attractors are (see below). It is in-
teresting, but perhaps not very surprising, that one can
conclude to a higher degree of confidence that the noise-
corrupted signals come from the same distribution (15 vs
20 dB or 10 vs 15 dB) than is possible in a comparison of
the noisy signals with the uncorrupted signal.

When the Lorenz, Mackey-Glass (6=17), and Raéssler
attractors are compared, again using 1024 vectors with a
lag of 10 in a 50-dimensional embedding space, the result-
ing Kolmogorov-Smirnov probability that any two of
these attractors are the same is zero to within the resolu-
tion of the single-precision calculation used. A similar
comparison of the Mackey-Glass (§=150) and filtered
random noise using 4096 vectors with a lag of 10 in a 50-
dimensional space gave a probability of the null hy-
pothesis that is less than 1072,

Table II compares a number of data sets with their
phase-randomized and Gaussian-scaled surrogates. The
data sets used are (1) the ““clean” Lorenz attractor, (2) the
noise-contaminated Lorenz attractor with SNR =35 dB,
(3) the noise-contaminated Lorenz attractor with SNR
=10 dB, (4) the Mackey-Glass attractor with a delay,
85=150, (5) filtered random noise. The table entries were
obtained by comparing the data with 100 surrogates of
each type. Again, both the median and the mean = stan-
dard deviation are shown.

Table II shows that in the case of the Lorenz attractor
with a SNR of 5 dB there is some ambiguity in distin-
guishing it from its surrogates, although the values of the
mean, median, and standard deviation are compatible
with a zero probability that it is the same as its surro-
gates. The rest are less ambiguous; the figures for the
Mackey-Glass (6=150) and the filtered random noise
leave no doubt whatever that the former is not linearly

TABLE II. Comparisons with surrogate data. Kolmogorov-
Smirnov probabilities Qg that the correlation integral of the
data file listed in column 1 comes from the same distribution as
the correlation integral of its phase-randomized surrogates
(column 2) or of its Gaussian-scaled surrogates (column 3). The
first line of each entry is the median while the second line gives
the mean and standard deviation of calculations using 100 sur-
rogates. Calculations using Lorenz data used 1024 embedding
vectors, those using Mackey-Glass data and filtered random
noise used 4096.

Median and mean + standard deviation

Phase Gaussian
Data file randomized scaled
Lorenz 7.6X1073 9.8X107°
(uncorrupted) 0.04+0.14 0.09+0.24
Lorenz 0.0016 0.058
(SNB =10 dB) 0.15+0.27 0.26+0.34
Lorenz 0.21 0.28
(SNB =5 dB) 0.31+0.31 0.38+0.35
Mackey-Glass 0.00 0.00
(6=150) 0.00+0.00 <1073
Filtered random 0.93 0.98
0.70+0.37 0.81+0.29

correlated noise but that the latter is indistinguishable
from noise.

V. SUMMARY AND DISCUSSION

Most nonlinear dynamical measures used to character-
ize complex dynamical systems require information about
the small scale structure of the system’s attractor. These
structures are easily obliterated by noise and, in the case
of higher-dimensional attractors, cannot be made ap-
parent without large amounts of data. In situations
where these measures are not computable or in the more
general situation when the need is to compare attractors
rather than to characterize individual attractors, compar-
ing correlation integrals using the Kolmogorov-Smirnov
test is potentially useful. This procedure is less sensitive
to noise than the usual nonlinear measures that require
fine-grained information, and is usable even when these
measures cannot be computed. In addition, it is relative-
ly insensitive to embedding lag or embedding window,
making it unnecessary to spend much technical effort in
seeking optimal values of these parameters.

Application of the test to compare the Lorenz attrac-
tor with various noise-corrupted versions shows that it is
able to identify the Lorenz attractor with near certainty
even when the signal-to-noise ratio is as low as 15 dB.
The test is less able to identify the attractor when the
SNR is 10 dB or less, but by using it in conjunction with
surrogate data it is possible to establish with considerable
confidence that the data set is not the kind of correlated
noise represented by the surrogates.

It successfully distinguishes attractors with nearly the
same dimension, even in the case of the Mackey-Glass
(6=150) attractor and filtered random noise. Both have
correlation dimensions in excess of 4 which could not be
reliably calculated using relatively small data sets. When
used with surrogates, it shows with almost unit probabili-
ty that the filtered random data set is indeed, random and
that the correlation integral of the Mackey-Glass
(6=150) is clearly different from those of its surrogates.

These results suggest that use of the Kolmogorov-
Smirnov test to compare correlation integrals is a poten-
tially useful additional tool for the analysis of complex
dynamical signals in situations where relatively high lev-
els of noise are unavoidable or when there are stringent
lower limits on sampling intervals or upper limits on the
total measurement times. All of these conditions exist in
the study of physiological systems. Neural signals, for in-
stance, are intrinsically noisy; the neural membrane
effectively acts as a low-pass filter and severely attenuates
signals with frequencies in excess of 15 Hz, and the ner-
vous system is notoriously nonstationary (see, e.g., Ref.
[47] and references quoted therein). Neurophysiological
signals are inevitably noisy, and measurements yield ei-
ther short, or long but nonstationary data sets. As seen
above, these conspire against a proper application of the
usual fine-grained measures of nonlinear behavior. For
these and similar situations, coarse-grained tools such as
those proposed in Ref. [24] and that proposed here may
well be more appropriate and useful.
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