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Gradient descent learning in perceptrons: A review of its possibilities
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We present a streamlined formalism which reduces the calculation of the generalization error for a
perceptron, trained on random examples generated by a teacher perceptron, to a matter of simple alge-
bra. The method is valid whenever the student perceptron can be identified as the unique minimum of a
specific cost function. The asymptotic generalization error is calculated explicitly for a broad class of
cost functions, and a specific cost function is singled out that leads to a generalization error extremely
close to the one of the Bayes classifier.

PACS number(s): 87.10.+e, 02.50.—r, 75.10.Nr

I. INTRODUCTION

Many of the tasks that we routinely perform during
our daily activity have been learned through experience.
These tasks may appear to be simple, yet it is often very
difBcult to find algorithms on the basis of which they can
be carried out reliably. This observation has prompted
the search for systems that can learn from examples.
Prominent among these are the so-called neural net-
works. To gain more insight into the mechanism of
learning, a very simple scenario, namely, that of a student
perceptron learning from examples generated by a teach-
er perceptron, has been investigated in great detail using
the powerful techniques of statistical mechanics, see, e.g. ,
[1—7]. This scenario can also be used as a test ground for
new ideas. Furthermore, these theoretical insights can
often be applied to multilayer architectures, especially so
when the training algorithm is dealing with the separate
perceptrons that constitute the network, see e.g. [8,9].

In this paper we will review the performance of gra-
dient descent algorithms for the perceptron on the basis
of a unified and streamlined presentation, which comple-
ments the one given recently for the capacity problem
[10,11]. We will focus on the case of a cost function with
a unique nondegenerate minimum. When this condition
is met, the calculation of the generalization error and
other quantities of interest such as the cost or the overlap
distribution is a matter of simple algebra. The local sta-
bility of the replica symmetric solution, can be verified by
the evaluation of a simple integral. The same results can
be obtained using a cavity approach with the additional
advantage that the parameters appearing in the replica
calculations acquire a simple physical interpretation.
Apart from illustrating the calculations for cost functions
that have been discussed previously in the literature, we
consider a general class for which we calculate the gen-
eralization error in detail. The aim is to identify a cost
function for which a simple gradient descent algorithm
can be applied, but which gives a lower generalization er-
ror than the currently used perceptron with optimal sta-
bility (which can be found through the adatron algorithm
[12]). This purpose is realized beyond expectation since
we find a cost function with a nondegenerate minimum

that has a generalization error lying within 0.5% of the
lowest possible result as given by the Bayes rule [13]. We
also consider a class of cost functions for which the gen-
eralization error is expected to be large even though the
training examples are correctly reproduced. This case is
of interest in the more theoretical context of the so-called
worst case scenario, which has been considered in detail
in the computational science literature see, e.g. , [14—16].

II. REPLICA CALCULATION
AND CAVITY INTERPRETATION

We first briefly review the teacher-student perceptron
scenario. A teacher perceptron, characterized by an X-
dimensional weight vector T, returns the classification

on a set of randomly selected training patterns
P', p=1, . . . , p. On the basis of this information one
would like to select a student perceptron, with weight
vector J, such that it reproduces as closely as possible the
classification of the teacher. One of the most common
and practical procedures to select a student vector is to
require that it gives the minimum value of an appropri-
ately chosen cost function E(J). If the minimum is
unique, this I vector can be obtained by applying a gra-
dient descent algorithm. We will restrict ourselves in this
paper to a cost function in which the information about
the difI'erent training patterns enters in an additive way:

E(J)= g V(iP)
p= 1

This choice leads to a cost function which is extensive in
the number p of patterns, which itself is chosen propor-
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tional to the dimensionality N of the input space. The
physics of the problem will involve the competition of
this cost with an entropic term, namely, the number of J
vectors that correspond to a given value of the cost.
With the normalization condition J =N, this number is
exponentially large in 1V so that the corresponding entro-

py (being the log of this number) is also extensive. For
simplicity of the calculations we also follow the conven-
tion that the other X-dimensional vectors such as T and
g'" also have a length equal to &N .

The basic question at hand is how the generalization
performance depends on the choice of the "potential"
function V. This performance is usually quantified by in-
troducing the so-called generalization error E(J) defined
as the probability that student and teacher disagree on a
randomly chosen question S. As is well known, the gen-
eralization error is essentially determined by the angle be-
tween student and teacher [3,4]:

1
e( J)=—arccosR

with

(4)

The following asymptotic forms are useful:

+I—R
7

R —+0 2 7T R~1

In order to calculate c, the formalism of statistical
mechanics turns out to be a very elegant and powerful
tool. One can associate the following partition function
to the energy function E:

Z = f d J e ti~ ~'i—g( J' N)— (&)

This partition function is a random variable through its
dependence on the randomly chosen training patterns.
However, the corresponding free energy F =Nf is exten-
sive and expected to be self-averaging in the limit X~~,
pli ca with a=p/N fixed:

—PNf =lnZ=(inZ) .

In this limit, the average over the patterns can be per-
formed through the replica technique and one finds under
the assumption of replica symmetry that

q
—R ln(1 —q)

2P(1 —q) 2P

+Qo +Qo +~ d —P~[~ggn(t2)] —(k —Rt —+q —R t ) /2(1 —q)+— Dt1 Dt2ln e
P —~ —~ —~ &2n( 1 —q)

(7)

The meaning of the order parameters q and R is as usual: q is the overlap between two typical J vectors and R is the
overlap between a typical J vector and the teacher vector T. The word typical refers to the J vectors that give the ex-
ponentially dominant contribution to the free energy. The generalization error is obtained by inserting the value of R
into Eq. (3).

In order to find the ground state we take the limit p~ ao. As mentioned in the Introduction we will concentrate on
the situation in which this ground state is nondegenerate. In this case, the calculations are extremely simplified.
Indeed, if there is a unique minimum, the overlap q between the typical J vectors has to converge to 1, hence q —+1, and
the free energy thus reduces to the following simple expression:

f =e = —Extr„z ~
1 —R +~ ~ A. —t—2a f Dt, f Dtzminz V(A )+

2X —Qo 0 2x

with

x =lim& „P(1—q),

t =Rt, ++I R't, , —

and E =We is the ground state cost value.
In order to make the connection with the cavity ap-

proach [17],which will allow us to give physical meaning
to the parameters A, , t, and x, we review the steps that
lead to the solution contained in Eq. (8) in more detail as
follows.

(1) Find the function A,o(t, x) which minimizes

v(~)+" "
2x

(2) The values of R and x in function of a are obtained
from the extremum conditions (saddle point equations):

2f Dt f Dt (A,, t)—
0 BR cx

1 —R
2f Dt, f Dt, (AO

—t)'=

(12)

(13)

&2/~ f Dt Ao(+1 —R't, x)=-
QO

(14)

2 f Dt II — [k,(t, x) —t]'= . (15)
QO 1 —R

A more useful form of these equations is obtained by an
orthogonal transformation on the integration variables:
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One thus finds that

sgn(g Tg J* ~ z (18)

Here R = (J* T) /N is the overlap between J* and T,
t2=[g' Tsgn(g' T)]/v'X is the absolute value of a nor-
mal random variable, while +1—R t,
=[sgn(g' T)g' J*]/v'K is an independent Gaussian ran-
dom variable (since the orientation of gi is uncorrelated
from that of J and g'~~) with second moment 1 —R

As usual, Dt stands for the Gaussian measure
Dt =(dtl&2m)e ' and M(u) = J Dt.

(3) The ground state cost value is given by

e =2m f Dt, f Dt, V[X(t x)] .

The function X„(t,x), which minimizes (11), is identical to
the one obtained in the analogous treatment of the capa-
city problem [10,11,18]. Its interpretation can be
clarified as follows by applying the cavity method pro-
posed by [17], see also [20,21]. Let J* be the vector that
minimizes the cost function E (or its intensive counter-
part e) for a given set of P patterns g'",p = 1, . . . ,P. Con-
sider a new randomly chosen pattern g, with
classification go=sgn(T. g') and define the vector u )go.
In order to find the new vector J=J*+6J that minimizes
the cost function including the new pattern we can
proceed in two steps. First, we restrict ourselves to the
search of an optimal J vector that has a given overlap
A, = (u J)/&K with u. The contribution to the cost of
the new pattern is then clearly equal to V(A, ), cf. Eq. (1).
However, since we expect that J will slightly deviate from
J*, there is also an increased contribution to the cost aris-
ing from the original patterns, which can be evaluated by
Taylor expansion of E(J) around J*. Solving this simple
variational problem (subject to the spherical constraint
J =X), one finds that the minimal value of this contribu-
tion is equal to (A, —r) /2X, with r =(u.J*)l&N the
overlap with the vector J* prior to training of the new
pattern, while x is a measure of the steepness of the cost
function in the vicinity of J*. In the second step we find
the optimal value of A, =Xo by minimizing
V(A, )+(k—r) /2x. We thereby recover the result (11),
but with the additional insight that A.o is the overlap of
the vector u with the J vector after training, given as a
function of the overlap t prior to training. Note that all
the patterns play a completely symmetric role so that this
interpretation applies to any one of them. In the capacity
problem [17], where the factor g'o is randomly equal to
+ 1 or —1, t is the overlap between J and a random vec-
tor u=g'go, hence it is a Gaussian random variable. In
the case considered here, the vectors u and J' are corre-
lated through their dependence on the T vector. This
correlation can be taken into account by decomposing g'

into its components parallel and orthogonal to T:

gT
~

fT
2V

(17)

These results again agree with the ones obtained from the
replica calculation, cf. the integration over the normal
random variable t& from —~ to ~ and the integration
over the normal random variable t2 from 0 to ~ with an
extra factor of 2 in Eq. (8).

In view of the physical meaning of the overlap A,o, and
of the permutation symmetry of all the training patterns,
one can infer the following additional properties.

(4) Since A,o is a known function of the normal random
variables t, and t2 (and a known function of a through its
dependence on x, but we do not write this dependence ex-
plicitly in the following for simplicity of notation), one
obtains the following result for the probability density of
this overlap (also called the aligned field [11,19]):

P(A, )=2f Dt, f Dr, 5[A, —A,,(r)] . (19)

(3)' The ground state cost can be rewritten under the
following physically appealing form:

(20)

which is merely expressing the fact that this quantity is
self-averaging.

(5) The training error v is defined as the fraction of
misclassified training patterns. Such a pattern clearly
corresponds to an overlap A,o(0. Therefore

v= f P(A, )dA, . (21)

2a Dt H [A,,'(t) —1]'& 1 .
1 —R

(22)

Note that a sufhcient condition for symmetry breaking
[23] is the presence of a discontinuity of the alignment
A,o(t) as a function of t.

rsvp. RKvIEW OF PREvIOUS RESUIXS

The results from the previous section can be applied to
situations that have been discussed previously in the
literature, see, e.g. , [24], and that we now pass in revue.
Although they do not fit in the scheme of an energy func-
tion with a nondegenerate minimum, we have included
for later comparison the results of the Gibbs, Bayes, and
worst case rule.

A. Hebb rule

For the specific choice

the minimum of the cost function E(J) is known explicit-
ly, namely,

(6) It is also possible to perform a stability analysis of
the replica symmetric solution. The resulting Almeida
Thouless condition [22] for local stability of the replica
symmetric solution takes on the following simple form in
terms of the overlap A,o..
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and

Ao(t, x)=t +x (25)

(26)

1/2
R

(27)

which agrees with the results of [25]. We also mention
the small and large a behaviors of the generalization er-
ror:

J- +PAL (24)
p, =1

with the proper normalization constant (J =X). This
choice corresponds to the familiar Hebb rule. In this
case we find

minimum value v'1 —2/m-0. 6, which is obtained for
K =&rr/2.

C. Pseudo-inverse rule

The J vector is obtained by minimizing a cost function
similar to the one for the adaline, namely, [26]

E (J)= g (J P—P) (34)
p=1

however without the normalization constraint J =X.
The relation with the Adaline rule is clarified by looking
for the minimum of this cost function in two steps, one in
which the normalization of J is kept fixed to the value
1/K and the second one in which one minimizes over
the choice of K. By a further change of variable
J~J/(K &N ), one recovers the usual normalization
condition J =X:

1 &2a
eH(a) =——

J +0 (a),

1 0.40
EH(a)

&2m a &a

(28)

1 J 4"P
MinJ[EpJ(J)] =Mill)r '

z Min J g — K
(J'=~) ~ .

(35)

B. Adaline rule

This rule corresponds to gradient descent on the fol-
lowing potential function:

The partial minimization of the cost with K held constant
is realized by the Adaline rule. The minimization with
respect to K leads to the following optimal value of this
parameter:

V(A, ) =—,'(A, —K)' (K & 0) .

One finds

(29) 0! 1

1+—(a —2)
2

1/2

(a&1) . (36)

1/2

E +1—2 — KR2 2
2

1 —R =n2

1+x
1/2

2R=
7T

a K.

+Kx
1+

while the equations for x and R read

(30)

(31)

Again the restriction to values cz & 1 follows from the fact
that otherwise the ground state, corresponding to the
solutions of Ep, (J)=0, is degenerate. Note that due to
the extra factor in 1/K, the pseudo-inverse rule is not
identical to the Adaline rule for an optimal choice of the
parameter K. For a~~ however, we obtain that
K =&a./2, and the pseudo-inverse coincides asymptoti-
cally with the best value of the adaline rule.

D. Maximum stability

For a fixed value of K, these equations have no acceptable
solution (i.e., x & 0 and 0 ~ R ~ 1) for a (a, given by

m 1+K t/(K +1) —8K /~
4 K K

(32)

1 +K +1—2&2/mKe„(a)~-- &2n.a (33)

This result dieters from the Hebb rule by a factor with

In particular, one has that a, =1 for X =0. The break-
down of our formalism for a & a, is due to the fact that
the minimum of E (J) is degenerate in this case. For
a & a„Eqs. (31) admit a unique solution that can be ob-
tained analytically by identifying the physical acceptable
solution of the third order equation for R. We only men-
tion here the resulting asymptotic behavior

v(i)
O' A) (37)

and find the largest possible value of ~ for which there ex-
ists a solution J with cost equal to zero. There are several
ways to obtain the corresponding generalization error
from our formalism. The simplest, although not the most
transparent one, is to work directly with the above poten-

The quantity A,"quantifies "conviction" with which the
classification of the student perceptron J agrees with that
of the teacher on example P. Following the criterion of
"maximum stability" (this name was coined in the con-
text of the capacity problem, where it is also called the
optimal perceptron) one looks for the J vector such that

s, Vp for the largest possible value of ~. This can be
realized by considering the following potential:
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tial. One finds F. Bayes rule

A,o(x, t) ' (38)

By inserting this result into the saddle point equations,
Eqs. (12) and (13), one finds that the variable x disappears
altogether and one obtains two equations determining the
value of R and ~:

2 Dti Dt2 v —t Bt R
a ~t M tx

1 —R1 R

(39)

(40)

We recall that t is defined in Eq. (10). These equations
are identical to those given in [26]. The equation for x.

arises from the fact that there is a unique value of this pa-
rameter, namely, precisely the one corresponding to "op-
timal stability, " for which our formalism applies (i.e.,
there is a nondegenerate ground state with zero value of
the cost). In order to obtain the generalization error, one
has to numerically search for the solution of Eqs. (39) and
(40). The asymptotic behavior can be found analytically:

1ez(a) = arc—cos+RG(a) (46)

with the following asymptotic results:

e~(a)= ——
3&&

+O(a)1 &2a
(47)

In the Bayes rule one classifies a new pattern following
the majority vote of all the J vectors in the version space.
It seems a priori unlikely that this rule can be represented
by a specific member of the version space, which is the
same independent of which question is being asked.
Surprisingly, it turns out [27] that there is indeed such a
member, namely, the perceptron with as J vector the
center of mass of all the vectors from the version space.
Because of convexity of this space, this perceptron is also
a member of- the version space. Note that this vector can
in principle be identified on the basis of the information
provided by the training examples, since the latter deter-
mine the version space unequivocally, but we are not
aware of any fast converging algorithm that will do so.
The generalization error for the Hayes rule was first de-
rived in [13]and is given by

C
eMS(~) 1 —u 2/2c--(x du 1 —u e

0 5005
(41)

which is identical to the result obtained for the Hebb
rule, cf. Eq. (28) and

with the constant c determined by the following transcen-
dental equation:

dQ 1 Q H

eG(a)
e (~)—a- v'2

0.442
(48)

C

2m 1 2
du (1—u)e

(42)

E. Gibbs rule

The version space is defined as the set of all J vectors
that classify correctly the examples from the training set.
The Gibbs rule corresponds to choosing at random a J
vector from this space. The corresponding potential for-
bids the existence of errors, i.e., A,"(0 is not allowed:

A, &0,
V(~)= '0 ~)0 (43)

1
eG(a) I" Dt

(45)

Note that the ground state is degenerate so that one has
to go back to the original formulas, cf. Eq. (7), to find the
typical overlap RG(a). The result is given by the solution
of the following transcendental equation [1,3]:

—Rf, /2
(44)a(&R r)

The corresponding small and large cx behaviors for the
generalization error are, respectively,

eG(a)= —— +O(a ),1 26K

G. Worst case rule

The worst student from the version space is the one
that has the smallest overlap with the teacher. This stu-
dent can be identified if one knows both the version space
and the teacher. One of the questions that we will ad-
dress below is how to find a worst student exclusively
based on the knowledge of the training set. The generali-
zation error of the worst student was calculated in [28].
For large n values, a one-step replica symmetry breaking
calculation predicts

3e~(~)—
o, —+ oo 2A

V(A, )= ~, A, &0,
V'(A, ) &0, A, &0 . (51)

IV. BOUNDS FOR THE GKNKRAI. IZATION
ERROR ASSOCIATED

TO A MONOTONIC POTENTIAI.

In the next sections we will consider two classes of cost
functions based on potentials, defined within the version
space, that are monotonic increasing or decreasing func-
tions of X. For such potentials, it is possible to derive a
bound for the corresponding generalization error. Con-
sider first the case of a monotonic decreasing potential:
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A. —t = —xV'(A, ) (52)

provided X ~ 0 and it is zero otherwise. Consequently one
finds that

The function A.o(t, x) that minimizes (11) is a solution of
the following equation: +~, 1&0,

V,+(A, )= .
A, &0,

S

with s real and %0. For s =0 we define V,+(A, ) as
r

(66)

o(t x. ) & 0, r & 0,
Ao(r, x)&t, r &0.

(53)

(54)
(67)

Using this in the saddle point equation Eq. (14) yields
1 /2

Dt A,o(t+1 R,x—)
R 2

2 —oo

1 —RR2
o &2m.

(56)

Hence
2

R
CX +K

and thus

E(a) & E'(a), Va & 0,

(57)

(58)

' 1/2
1 CXE*(a)=—arccos

7T '7T +CX

(59)

for every monotonic decreasing potential in the version
space with

We start by pointing out that the parameter s may not be
larger than 2 in order to avoid the divergence of the in-
tegral determining the value of the free energy, cf. Eq. (6).
Furthermore, we show in Appendix A that the cost func-
tion associated with the above potential is convex Vs 1,
hence the minimum is unique and can be found by gra-
dient descent. At s =1, the curvature of the potential
switches sign with the result that, for the values 1 & s ~ 2,
one of the conditions in our proof is not met. In fact we
will find in this case that the local stability of the replica
symmetric solution is violated.

We now set out to find the minimum of the cost func-
tion for different values of the parameter s. The infinite
value of the cost for A, &0 implies that we are looking for
a J vector inside the version space. The function V,+(A, )

is, for all values of s, a monotonic decreasing function of
A, on the positive axis and thus belongs to the class of po-
tentials for which the upper bound E'(a) given in Eq. (59)
applies. The specific form of the potential however al-
lows to extract detailed information about the generaliza-
tion error. The derivative d V,+/dA, is, Vs & 2, given by

In a similar way one finds that for a monotonic increasing
potential of the type dV,+ = —V ' (A&0) . (6g)

V(A, )= ~, A, &0,
V'(A, l&0, A, &0,

(60)

(61)
This leads to the simple-looking equation determining the
function A,o(t, x) that minimizes (11):

that t =xV .—' (A, )0) . (69)

o(t, x) =, 0, t &0,

A.o(t, x) & t, t &0,
(62)

(63)

It is not possible to solve this equation for A,o(t, x) for gen-
eral s, but it is trivial to solve it for the inverse function:

and it easily follows that the generalization error e(a) is
bounded from below by the same E*(a):

E(a) & e'(a), Va )1, (64)

E'(a) =1/a, a~ ~, (65)

is identica1 to that obtained by using the annealed ap-
proximation for the Gibbs rule see, e.g., [5].

V. A CLASS OF COST FUNCTIONS WHICH FAVOR
LARGE OVERI.APS WITHIN THE VERSION SPACE

We consider the following general class of cost func-
tions, cf. Fig. 1:

for every monotonic increasing potential in the version
space. Note the intriguing result that the asymptotic
behavior

t(Xo x)=to —
xylo

'
Xo —O

To obtain A.o( t, x ) from it, we must consider two separate
cases. For s & 1, the function t (A.o,x) is a monotonously
increasing function on the interval A,o&0 ranging from
—ao at A,O=O to + ao as A,o~+ ~. In this case, it is con-
venient to use Xo as new integration variable in the saddle
point equations Eqs. (14) and (15) and to calculate the in-
tegrals numerically. For 1&s &2, however, t(A, )doe-
creases from the value 0 at A,o=0 to a minimum t &0 at
a certain value A,, and then increases steadily for larger
values of I,. In this case, the function A,o(t, x)=0 for
t & t . At t =t, it makes a finite jump to the value k,
and follows further the increasing branch of the inverse
function t(A, o,x). The integrals in Eqs. (14) and (15) must
now be split in a part —~ & t & t where A,o(t, x) =—0 and
in a part t & t & + ~ where A,o can again be used as new
integration variable. In this way we never need the expli-
cit solution of Eq. (69) for A,o(t, x). With regard to the
stability of the replica symmetric solution we find that
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10

2(x

7T
(72)

For a small, R ~0 and x ~~ so that Eqs. (14) and (15)
can be solved rather easily:

' 1/2

0—

hence

E(a)
a~O 2

&2a
3/2 (73)

0

FIG. 1. Two representative examples of potentials V, (A, ) (cf.
Eqs. (66) and (67), which favor a large overlap with the training
patterns, for s = —1.35 (upper curve) and s = 1 (lower curve).

Ao(t, x)=x' '

X 1/(2 —.) ' (71)

the stability condition (22) is satisfied for s (1. This was
to be expected since we know that the minimum is unique
and nondegenerate. The stability criterion is violated for
s ) 1, as is immediately clear from the existence of a
discontinuity of the function A,o at t = t~.

Using the above procedure one can proceed to a nu-
merical solution of Eqs. (14) and (15), and calculate the
resulting generalization error for any value of s. As an
example we plotted in Fig. 2 the resulting generalization
error for s = —1.35, together with the results obtained by
simulation using gradient descent for a system of size
X =50. The agreement is quite satisfactory.

To get a more precise idea of how the generalization
error depends on the parameter s we derive the exact
asymptotic results for small a and large u values. This
derivation is greatly simplified by the observation that the
solution A,o(t, x) of Eq. (69) exhibits the following scaling
behavior.

These results are identical to the one obtained for the
Hebb rule cf. Eq. (28). The calculation of the asymptotic
behavior for a~ ~ is more involved. We briefly discuss
some points of the calculation and refer to Appendix B
for more details. In the limit a~ ~ we have that 8 ~1
and x ~0 so that Eqs. (14) and (15) reduce to two equa-
tions for the combination A =a+1—R /~ and
B =x ' ' '/+ I —R . The coefficient A is the interest-
ing one because it is directly related to the asymptotic
behavior of E(a) by

E(a) (74)

In solving the equations for A and B one must distin-
guish two cases. When —,

' ~s &2 the equations can be
solved analytically yielding A = 1 and B =0. The asymp-
totic behavior thus saturates the upper bound, cf. Eq.
(65). For s (—,

' on the other hand, it is found that BAO
and the two equations can only be solved numerically.
The value of A is represented in Fig. 3 as a function of s.
As one moves from large to small s values, one observes
that 3 first takes on a constant plateau value equal to 1

for —,
' +s + 2, then decreases from the value 1 for s =—' to

2

a minimum value of A =0.443 for s = —1.35 after which
it is again slightly increases and asymptotically ap-
proaches to the value 3 =0.50 which is presumably iden-
tical to the asymptotic value for the perceptron with
maximal stability cf. Eq. (41). The minimal value of
0.443 is surprisingly close to the result of the Bayes rule,
cf. Eq. (48). In fact, the whole generalization curve for

0.5 0.9--

0.4— 0.8—

0.3— 0.7—

0.6—
Gibb

0.5-

0 4
-10

Optima]

Baye

0 16 20

FIG. 2. The generalization error e(a) corresponding to a po-
tential V,+(A, ) with s = —1.35 and results of a numerical simula-
tion for X =50.

S
FIG. 3. The proportionality constant 2, describing the

asymptotic decay of the generalization error e A/a [Eq. (74-)],
in function of the value of s for the case of a repulsive potential
V,+(A, ). A broken line indicates that the replica symmetric solu-
tion is unstable.
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s = —1.35, which is shown in Fig. 2, lies within 0.5%%uo of
the generalization error of the Hayes rule for all values of
a. At this point it is pertinent to recall that the corre-
sponding J vector is the unique nondegenerate minimum
of the cost function and can thus be found straightfor-
wardly by gradient descent techniques. For practical ap-
plications one may consider using an inverse power law
potential s = —1, which is numerically less time consum-
ing, and which still gives results within 1% of Hayes.

VI. A CLASS QF POTENTIALS WHICH FAVOR SMALL
OVERLAPS WITHIN THK VERSION SPACE

1 ~
2-

l
1

t
I
I
I

I

I

l
I
I

I

I

I
I

I

I

t
I
I

I

Since we know that the version space is convex and
that the best possible student that can be constructed on
the basis of the training set is the center of mass, we infer
that the students with larger generalization error can typ-
ically be found close to the boundaries of the version
space. To verify this intuition we consider the following
class of functions that favor small values of X:

1 2
S

FIG. 4. Same result as in Fig. 3, but for the case of an attrac-
tive potential V, (k).

same scaling relation (71) as before. Again, for s ~
—,', we

obtain

(75)

The parameter s now may take on positive values only.
Negative values must be excluded as they would destroy
the convergence of the integral over A, in (6). It is im-
mediately clear that the lowest energy E(J) will be 0 for
all values of a & 1. Indeed, for a & 1, many different stu-
dents will satisfy the conditions J P'=0 (p= 1, . . . ,p) so
that Eqs. (14) and (15), which are based on the assump-
tion of a unique nondegenerate minimum, do not describe
this case. We therefore limit ourselves here to a ) 1.

The function V, (A, ) satisfies the conditions specified in
Eq. (61), so that s*(a) gives a lower bound for the gen-
eralization error. More detailed information can be ob-
tained as follows. The equation for A,o(t, x) now reads

t = —xA, ' ' —(A~O) . (76)

From its definition, x 0. Since X must be non-negative,
it follows immediately that A,o(t, x) =0 for t &0. Again it
is easy to solve Eq. (76) for the inverse function

t(Ao, x)=AO+xko ' (go 0) . (77)

For s ) 1, t(A, o,x) is zero at A,O=O and increases steadily
with increasing ko. This defines the inverse function
uniquely. For 0&s &1 on the other hand, t(A, o,x) de-
creases from + ~ at A,o=0 to a minimum t & 0 at a cer-
tain value k, and then increases steadily for larger values
of 1,. In this case A,o(t, x)—=0 for t &t . At t =t it
makes a finite jump to the inverse function t(A, o, a). Us-
ing these observations, the integrals in Eqs. (14) and (15)
can be calculated by splitting the integration interval in a
part —~ & t & t where A,o(t, x) =0 and a part t & t & ~
where A,o can be used as an integration variable. The
equations are then easily solved numerically for any value
of o, and s.

The most interesting point is the behavior of E(a) for
a~ ~. Here we proceed as in Appendix 8 by using the

(78)

so that we saturate the lower bound c*. For smaller
values of s however, the asymptotic behavior is still pro-
portional to 1/a, but the proportionality factor A is
larger than 1 and reaches a maximum of approximately
1.28 in the limit s —+0, cf. Fig. 4. This result should be
compared with the one from the worst student of the ver-
sion space, cf. Eq. (49).

We stress that the results of this section have been ob-
tained assuming replica symmetry. It is however clear
that replica symmetry must be broken for 0 & s & 1, where
the function Ao(t) ha,s a discontinuity in function of t.
Furthermore, a numerical evaluation of the integral ap-
pearing in (22) leads to the conclusion that replica sym-
metry is broken for all values of s )0, except for the lim-
iting values o.—+I and a~ ~, where the replica sym-
metric solution is marginally stable. A similar behavior
of replica symmetry breaking between two limiting values
of a was also observed for the worst case scenario [28].
In this case it was proven that replica symmetry and
one-step replica symmetry breaking lead to an identical
asymptotic behavior of the generalization error for
a~ ~, which is therefore believed to be exact. For the
same reason, we expect that the asymptotic results de-
rived above are also exact.

VII. DISCUSSION

We would like to close with some thought-provoking
comments about the form of the version space. As men-
tioned before, the Bayes result is reproduced by the J vec-
tor located at the center of mass of the version space.
This center can be found very accurately by a cost func-
tion which penalizes heavily J vectors close to the boun-
daries of the version space. In this way we have
discovered a simple gradient descent algorithm generat-
ing a unique minimum with generalization error almost
identical to the Hayes one. Penalizing too much however
leads to the location of the perceptron with optimal sta-
bility. This suggests that the form of the version space



1966 M. BOUTEN, J. SCHIETSE, AND C. VAN DEN BROECK 52

deviates from one with inversion symmetry. Neverthe-
less, the fact that the center of mass of the version space
yields the result of the Bayes rule implies that this space
is cut in two pieces of exactly equal size by any large cir-
cle that passes through its center of mass. This is a prop-
erty that we would normally associate to an object with
inversion symmetry.

Both the teacher and the worst student lie at the
boundary of the version space. It is therefore of some in-
terest to study the effect of a cost function that favors J
vectors close to this boundary. We found that for such
cost functions the generalization error is larger with an
asymptotic decay of at least 1/a. The fact that this re-
sult is worse than that of the typical student (Gibbs rule)
agrees with the intuitive geometrical picture that the re-
gion of the boundary of the version space with high en-
tropy (i.e., large "number" of students between R and
R +dR close to this boundary) will lie further away from
the teacher than the region with high "bulk" entropy
("number" of students in the version space between R
and R +dR ). By maximally penalizing J vectors that are
not on the boundary of the version space we obtain a gen-
eralization error that decreases asymptotically as 1.28/o. ,
to be compared with the 1.5/o. behavior of the worst stu-
dent.

As far as practical applications of the above results are
concerned, one may wonder whether the difference be-
tween the optimal stability perceptron and the percept-
ron that one obtains as the minimum of a V potential
(with s = —l. 35) is significant. For random independent
patterns, the difference in generalization error between
both is small indeed. However, in real-life problems,
where the patterns are not random, the version space will
deviate significantly from an object with inversion sym-
metry, while the Hayes result is still reproduced by the
center of mass [29]. We expect that in this case the op-
timal perceptron will perform much worse than the
inverse-power law cost function. This question is
currently under investigation.

APPENDIX A: THK COST FUNCTION ASSOCIATED
WITH THE REPULSIVE POTENTIALS IS CONVEX ON

THK SPHERE J2=%FOR s & 1

For s ( 1 and A, ~0, the potential V, (A, ) = —
A, '/s obeys

the following two inequalities:

V[ak, , +(1—a)A2] (a V(A, , )+(1—a) V(A2),

Va, 0(a (1, (Al)

V(pA, ) ( V(A, ), Vp ~ 1 . (A2)

E(J') (aE(J, )+(1 a)E(J2) . —

This proves the convexity of E(J) within the sphere
J '=X.

We now consider the vector J that is parallel and in the
same direction of J', but with the "proper" normalization
J =N. Clearly J=pJ' with p ~ 1, since J lies inside the
hypersphere (J' (X) and Eq. (A2) immediately yields

E(J)(E(J') .

Combining (A3) and (A4) then yields

E(J)(aE(J, )+(1—a)E(J2)

(A5)

(A5)

which proves the convexity of E(J) on the surface of the
sphere J =N.

Consider now any two vector J, and J2 with A,
&

and A, 2 0
and J, =Jz=X and a vector J'=aJ, +(1—a)J2, 0(a (1,
lying on the line that connects them. By applying in-
equality (Al) to every term of the sum defining E (J'), one
finds that
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APPENDIX 8: ASYMPTOTIC FORM WHEN a~ ~
FOR V, (A, )

Using the scaling relation (71) and introducing a new
integration variable u = t I+1 —R, Eq. (15) can be
rewritten as

1

2a+ I —R

21/(2 —s)X du (~2(( &2~&& v 1 R v 1 —R2 2

f e "H( Ru 10 u—
(&(2 ~

1
v 2~

(Bl)

lim, (B2)

When a~(x), R —+1 and the Gaussian factor in the in-
tegrand tends to 1. Without the Gaussian, the conver-
gence of the integral at the upper limit is no longer
guaranteed in all cases. Indeed, from (69) one easily
derives

This means, when R ~1, that the integral will diverge
when 2(s —1)~ —1 or s ~ —,

' and converge when s (—,'.
(i) —,

' &s (2
Since the integral in (Bl) diverges when R ~1, it is

necessary that x' ' '/&1 —R tends to zero in order to
obtain a finite value for a+1 —R . We now look at the
second equation Eq. (14) which we rewrite using (71) as
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1/2
R

2 a+I —R

~ 1/(2 —s)

f Dti, , t, „,, l
~1—R' X

(83)

where we have used (69) for x =0 and A,o(t, x ) ~ 0 for all t

(ii) s (—,
'

Calling

When R ~1 and x '~' '/+I —R ~0 the RHS is
undefined. We can, however, use (71) again and rewrite
(83) as

a+I —RA= lim
1/(2 —S)B= lim

+1—R'

1/2
~ 1 /(2 —s)

Dt Ao t,
we now immediately obtain two equations for 3 and 8 by
taking the limit of (81) and (83):

Dt A,,(t, 0)
a 1 —R

QO

Dt t=
&2~

The limit R —+1 now yields immediately
1/2

2

1 QO 0 Q=V 2mB . du H( —u) Ao —,1
QO

8' B

1 =&27rB f Dt A,o —,1QO

8'
which can be solved numerically for 2 and 8.
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