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Understanding the nonlinear relationship between neutron or x-ray reflectance and the scattering-
length-density (SLD) profile of a surface film is important for valid and efficient data inversion in
reAectivity studies of material films, surfaces, and interfaces. For this reason, a systematic analysis is
made of the relationship based on existing reAection theories. Mutual relationships among Parratt s for-
mula (a recurrence relationship in optics for calculating the reQectance of a multilayered film. ), the non-
linear differential equation, the weighted-superposition approximation (WSA), the distorted-wave Born
approximation (DWBA), and the Born approximation (BA) are first explored. Derivations are presented
to unify the nonlinear differential equation for the reflectance, the WSA, the DWBA, and the BA under
the same Parratt formula. A simplified DWBA formula is also obtained from the WSA and shown to be
simpler and more accurate than the regular DWBA formula. Extensive numerical comparisons are car-
ried out to establish well defined ranges of validity for various formulas. In particular, although the BA
is useful for analyzing only large-Q data, such as in x-ray studies, the modified BA formula is shown to
be very accurate for most free-liquid surfaces. The simplified DWBA is found to be accurate for films on
substrates for which an average SLD is well defined. For both free-liquid surfaces and films on sub-
strates in which multiple reflections are weak, the WSA is proven to be accurate over the entire range of
Q except some small deviation around the critical edge. Finally, the origin and manifestation of non-
linearity in the reflectance-SLD relationship are discussed quantitatively. The nonlinearity is found to
originate from three sources: multiple rejections between interfaces, the nonlinear dependence of the
Fresnel reflectance on the SLD, and the dependence of the phase speed of the wave on the SLD. The
nonlinearity affects a reAectivity curve in both amplitude and phase and a simple criterion is established
for dividing a reAectivity curve into a nonlinear region and a linear region to facilitate data analysis. Re-
sults in this analysis may be used as the basis for developing new methods or improving existing methods
for model-independent reAectivity data inversion.

PACS number(s): 61.10.Dp, 61.12.Bt, 68.10.—m, 02.50.—r

I. INTRQDUCTIQN

A neutron or x-ray reInectivity curve can be divided
into low-, intermediate-, and large-Q regions. In the
large-Q region, neutron or x-ray refiectance depends on
the scattering-length-density (SLD) profile of the film via
a linear Fourier transform relationship represented by the
Born (or the kinematic) approximation. In the low- and
intermediate-Q regions the relationship becomes complex
and nonlinear, as expressed by the discrete Parratt for-
mula or the continuous weighted-superposition approxi-
mation (WSA). Data analysis in refiectometry has been a
challenging task owing to the complex relationship in the
nonlinear regions [1]. As the phase of the refiectance is
generally not measured in experiments, the determination
of the sample SLD suffers from ambiguity to various de-
grees depending on the nature of the sample. From an
analogy to crystallography [2,3], there has arisen a con-
cern that the sample SLD structure cannot be determined
uniquely because the reflectance and the SLD profile are
related by a Fourier transform relationship in the large-Q
region while the phase is missing in the data. However, a
recent work by Zhou and Chen [4] pointed out that the
nonlinearity in the low- and intermediate-Q regions fol-
lowing the total reAection plateau might remove some of

the ambiguity caused by the lack of phase information.
To be more specific, a neutron or x-ray reAectivity curve
contains a region of total reAection and a region of nonto-
tal but strong reflection at low and intermediate wave-
vector transfer Q. The data in these regions provide use-
ful constraints for determining the correct scattering-
length-density (SLD) structure of a surface film. Under-
standing the nonlinear relationship is important for using
reAectivity data in the nonlinear region to remove ambi-
guity for the determination of the film's SLD structure.

In the study of the relationship of the reflectance and
the SLD profile, several approaches have been used to
derive analytic formulas for the reflectance. Notably, the
standard Green's function approach was used to obtain
open-form solutions for the reflectance [5—7]. Depending
on how the unknown wave function in an open-form ex-
pression is approximated, different approximations are
obtained. When the wave function is approximated by
the incident wave, the Born approximation (BA) [8—12]
results. This approximation essentially assumes that the
reAection is weak, so the incident wave is unchanged in-
side the film. When the wave function of a reference film
(say a uniform average film) is used to approximate the
unknown wave function in the actual f][lm, a more con-
sistent approximation, called the distorted-wave Born ap-
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proximation (DWBA) [13—16], is obtained. A general-
ized form of the DWBA can be found in a paper by Sears
[17]. These approximations have a limited range of valid-
ity. Qther approximations with different or increased
ranges of validity include the small curvature approxima-
tion (SCA) [6] and the modified WKB approximation
(MWKB) [7]. A recent development in the reffection
theory is the weighted-superposition approximation
(WSA) by Zhou and He [18]. This approximation was
simple in form, was shown to be valid over the entire
range of Q, and was more accurate than all existing ap-
proximations.

To gain insight into the physical contents of these ana-
lytic formulas for the reflectance as a function of the SLD
profile, a systematic study is needed to compare them
with each other and link them with the exact Parratt re-
currence formula. As Parratt*s formula is an exact solu-
tion of the wave equation [19,20] for a stack of N
discrete, uniform layers, the WSA, the DWBA, and the
BA should all be derivable from Parratt's formula in the
continuous limit. The BA should also be derivable from
the WSA because the BA is the linear limit of the non-
linear WSA. The exact differential equation for the
reflectance inside a surface film should also be derivable
from Parratt's formula in the continuous limit, as both
are exact solutions of the wave equation. We will make
these derivations in this paper to unify reflection theories.
As data analysis demands an accurate understanding of
the ranges of validity of the approximate formulas used,
we will make a numerical evaluation of these formulas for
a variety of practical SLD profiles and determine which
formula is accurate for what profiles. To achieve an
unambiguous understanding of the nonlinear region of a
reflectivity curve, we will analyze Parratt's formula, the
WSA, the DWBA, and the BA comparatively to deter-
mine the origin and manifestation of nonlinearity and
how it affects the reflectivity data in the small and inter-
mediate Q regions.

In this paper, the mutual relationships among Parratt's
formula, the WSA, the DWBA, the BA, and the
differential equation for the reflectance, and their numeri-
cal comparisons will be discussed in Sec. II. The non-
linearity analysis will be presented in Sec. III. Note that
in Sec. II, the WSA, the DWBA, and the BA will each be
derived through three different methods, showing their
roots of origination, and a different, simplified DWBA
formula will be derived. The discussion in this paper ap-
plies to both x-ray and neutron grazing-angle reflection,
since both the x ray and the neutron obey a wave equa-
tion of the same form [20].

II. ANALYSIS OF EXISTING
REFLECTION THEORIES

We discuss the mutual relationships among Parratt's
formula, the differential equation for the reflectance, the
WSA, the DWBA, the simplified DWBA, the BA, and
the modified BA, and their ranges of validity. Since
Parratt's formula is an exact solution of the wave equa-
tion, we wi11 show how to use it to derive the differential
equation and all other approximate formulas in the con-

tinuous limit. We also show how to derive the BA from
the WSA in the linear limit and how to obtain the BA for
reflection from the general theory of scattering. The
derivation of a simplified DWBA will also be presented.

R„+,+r„+,exp(2ik„+ &bz„+, }r„= I+R„+,r„+i exp(2ik„+iaz„+, )
'

where R„+& is the Fresnel reflectance of the interface be-
tween layer n and layer n +1, Az„+& is the thickness of
layer n + 1, k„+&

is the value of k inside layer n + 1 relat-
ed to the SLD p„+& by k„+&=(ko—4mp„+i}', r„ is the
reflectance of the entire region beneath the interface at
z„, and r„+&

the reflectance of the region beneath the in-
terface at z„+&.

Let us assume that a surface film profile is divided into
X layers with each layer having the same thickness hz. It
can be shown that the Fresnel reflectance of the interface
between the layer (z bz, z) and the laye—r (z,z+bz) is
proportional to the first power of hz. Expanding the ex-
ponential terms in Eq. (1) and keeping only the first-order
terms, we obtain

r =
n

R„+)
r„+)+ 2ik„+,r„+,+ Az

R„+)1+r„+, bz
hz

(2)

Noting the following relations,

lim
hz ~0

R„+)
hz

(3)

hm
hz —+0

rn+i rn

we take the limit that hz tends to zero in Eq. (2) to reach

k'
r'+2ikr+ (r —1)=0,

2k

which is identical to the one derived in [21], although a
different approach was used there. Equation (5) is an ex-
act differential equation equivalent to Parratt's formula
and is a nonlinear equation because it contains r . If we
consider the dependence of r on the SLD p, it is clear
from Eq. (5) that there are three sources of nonlinearity
in the dependence: the phase coefticient 2ik, the Fresnel
refiectance coefficient k'/2k, and the r term due to mul-
tiple reflections. We will discuss the origin of nonlineari-
ty in more detail in Sec. III.

A. Nonlinear differential equation for reflectance

The goal is to derive a nonlinear differential equation
for the reflectance from the discrete Parratt formula by
taking the continuous limit. For a stack of N layers each
having a constant SLD and a given thickness, the
reflectance can be calculated according to Parratt's re-
currence formula [19]
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k (z„—bz/2) —k (z„+b,z/2)R„=
k (z„—b,z/2)+ k (z„+hz/2)

which satisfies

(6)

B. Weighted-superposition approximation (WSA)

The WSA was derived in detail in [18] based on the
principle of superposition. For convenience of discus-
sion, we describe the coordinate system and notations by
a brief derivation of the WSA. As shown in Fig. 1, a
coordinate system is set up such that a surface film occu-
pies the region (

—d, 0), the substrate (or bulk), the region
(0, ~ ), and the incident space (

—ao, —d). A plane wave
is incident on the sample from the free-space region. The
wave has a wavelength A, and makes a grazing angle of in-
cidence 0 with the sample surface. The projection of the
wave vector of the wave in the direction perpendicular to
the sample surface is k0=2m/A, sinO. The sample SLD
profile p(z) is divided into an infinite number of histo-
gramlike small differential SLD steps distributed along
the depth direction z. A simple elemental Fresnel
reAection is assumed to occur at each of the steps. The
weighted sum of all the elemental Fresnel-reAected
wavelets is equal to the reAection from the entire sample.
First, the elemental Fresnel reflection at the differential
step at z„ is given by

spans a range from total reAection down to 10, 10
or even lower, the second term in the denominator of Eq.
(1) is much smaller than the first term, which is unity, for
most part of a reAectivity curve. This is true even if r„+&
and R„+, are respectively as large as 0.2 in magnitude.
Thus,

rn +8+1+m+1 exp(2tkn+1~ n+1) (10)

kp ) kp pp ppR =4~k, +k hz

Az

(k, +k )
(12)

Combining Eq. (11)with Eq. (12) under the limit that b,z
and hz vanish and 1V approaches infinity, we obtain

r =m f dz exp 2i f k(z)dzdp/dz
'

. z

—d k2 d
(13)

is a very accurate approximation of Eq. (1). The recur-
sion in Eq. (10) can be carried out to obtain

%+1 p —1

ro= g R exp 2i gkbz
p=1 q=l

where ro is the reAectance of the entire film and R is the
Fresnel reAectance of the interface between layer p —1

and layer p given by

m(dp/dz)
az~dz

(7)

which is identical to Eq. (9), derived through a different
method.

The accumulated phase along both the incident path and
the reAection path by the wave reAected at z„ is given by

Z

W(z„)= exp 2i f k(z)dz (8)—d

2. Derivation of the 8'SA from the differential equation (5)

If the square term in the parenthesis in Eq. (5) is negli-
gible compared to unity, say, the magnitude of r is less
than 0.2, then Eq. (5) reduces to a linear equation

Summing the product of Eq. (7) and Eq. (8) over "n" un-
der the limit of "n" tending to infinity, we get

r=~ dz ~, exp 2i k zdzdp/dz
k —d

which is the weighted-superposition approximation
(WSA) presented by Eq. (9) in [18].

k'
I' +2lkI' —0 ~2k

a solution of which is

r (z) = —exp 2i f k—(z)dz—d

k'
X f dz exp 2i f k(z)dz

z 2k —d

(14)

(15)

1. Derivation of the O'SA from Parratt's formula

We show here that the WSA can be derived directly
from Parratt's formula Eq. (1). As measured refiectivity

air film substrate

FIG. 1. Illustration of the three space regions: the incident
space z & —d, the film —d & z & 0, and the substrate z )0. The
SI.D of the air region, the film, and the substrate is, respective-
ly, 0, p(z), and p, .

r=r( —d)=m f dz exp 2i f k(z)dzdp/dz
'

z

d k
(16)

which is identical to the WSA in Eq. (9).
In the derivation, it is obvious that the WSA omits the

multiple reAection effect by neglecting r . However, it
has completely included the nonlinear dependence of r on
p(z) through the phase coefficient 2ik(z) and the Fresnel
reAectance term k'/2k. Fortunately, multiple reAections
are negligible for most parts of a reAectivity curve be-
cause the maximum magnitude of r in Eq. (5) is of the
same order as of the measured refiectivity ~r~ . As a re-
sult, the relative error introduced in the WSA is of the
order of ~r~ and is negligible for refiectivities less than
0.1. Larger errors only affect the region from the critical
edge down to 0.1 in reAectivity, and we know that this re-

The refiectance of the surface film is equal to r (z) evalu-
ated at the air-film interface z = —d:
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gion is very narrow in a typical reflectivity curve. In the
total reflection plateau, the reflectivity is dominated by
the Fresnel reflectivity of a major interface in the film and
the wave is evanescent, so that the efFect of multiple
reflections is again not very significant. As a result, the
total reflection plateau can be well represented by the
WSA, as shown by the calculations in [18].

C. Distorted-wave Born approximation (DWBA)

r =Re ' + A J dz'(k —k )U(z')—d

X (
ikz +'R —ikz')

R =C( —R, +R e '"
)

E( i(k —ko)dT e
2k

(19)

(20)

(21)

p=p+~p (17)

where Ap is the deviation of the surface film SLD from
the reference film SLD, and its average in ( —d, 0) equals
zero. The reflectance of the reference film plus the sub-
strate R can easily be calculated by solving the one-
dimensional wave equation U"(z)+k U(z) =0 with
k =ko —4mp, and matching the continuity boundary
conditions at the air-film and film-substrate interfaces.
The reflectance of the actual film should be calculated
from the wave equation U"(z)+k U(z)=0, which can
be written as

U"(z)+k U(z)=(k —k')U(z) .

Regarding the right-hand side of this equation as a source
term and using the Green's function approach, we obtain
an exact solution of Eq. (18) as [7]

The spirit of the DWBA was given in [13]and a simple
derivation of the DWBA for the reflectance can be found
in [14]. The essence of the DWBA is to treat a surface
film as the sum of a known reference film and a small
derivation from the reference film. Thus reflection from
the reference film is dominant and contribution from the
deviation should be comparatively small. Before we show
that the DWBA can be derived from Parratt's formula,
we define the notations in the DWBA through a tradi-
tional derivation of the DWBA as given in [14]. As
shown in Fig. 2, the simplest reference film is a uniform
film with a constant SLD p and thickness d situated on
top of the same substrate with the SLD =p, . The SLD of
the surface film is related to the reference film SLD, p, by

1

e 2ikd
1 r

(22)

2koT+=
ko+k

k —k
R(=

k+ko

T 2k

k +k
k —k,

R, =
k+k,

(23)

i(k —ko)d ikzU(z)=T+Ce ' (e' '+R„e '"') . (24)

Substituting Eq. (24) into Eq. (19) leads to

r=e R+ T+T C
ik

X[bp(2k)+R„e '""bp( —2k)] ', (25)

which is the DWBA result given by Eq. (8) in Ref. [14].
Here Ap denotes the Fourier transform of the deviation—2ikod .
Ap. Note that the constant phase factor e is due to
the location of the origin z =0 at the film-substrate inter-
face and can be omitted without afFecting the reflectivity.

where R& and R, are the Fresnel reflectances of the film-

air interface and the film-substrate interface, respectively.
The quantities ko, k, and k, are the perpendicular com-
ponent of the wave vector in air, the reference film, and
the substrate (or bulk), respectively.

Under the DWBA, the wave function U(z) in Eq. (19)
is approximated by the solution of U"(z)+k U(z)=0,
which is

air

Legend:

reference film

substrate

l. Derivation of the DWBA from Parratt's formula

Here we show how to derive the DWBA from Parratt's
formula. For a film that is a small deviation from a refer-
ence film, we first approximate the air-film interface and
the film-substrate interface of the film by those of the
reference film. The air-film interface has two sides,
z = —d in air and z = —d+ in the film. The reflectance
r of the entire system is the value of r(z) evaluated at
z = —d; that is, r( —d ). According to Parratt's for-
mula Eq. (1), this reflectance is related to the reilectance
inside the film r ( —d+ ) by

FIG. 2. geometry showing that a rejecting system can be
treated as the sum of a reference film system plus a deviation.
The reference system, as indicated by the dashed line, consists
of the incident space, a constant film with SLD p, and the same
substrate with SLD p, . The deviation Ap and the reference
SLD p add up to the total SLD p(z).

r=r( —d )=
—Ri+r( —d+)
1 Rir( —d+)— (26)

Note that —R& is equal to the Fresnel reflectance of the
air-film interface of the reference film for a wave incident
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from air. Now we calculate r( —d+) by integrating Eq.
(5). Formal integration leads to

r (z) = —exp 2—i f k (z)dz—d

f dz bp[ exp[2ik(z+d)]
ik

+e '""R„exp[ —2ik (z +d ) ] [

k'
X f dz (1—r ) exp 2i f '

k(z)dz
z 2k

thus,
I

r( —d+)=mf . dz P (1—r ) exp 2i f k(z)dzd+ I 2 d

(27)

(28)

Using Eq. (20), we get

(1 —Ri )
r =R+ 2"

ik [1—R,R„exp(2ikd) ]

X[bp(2k)+R„e ' "Ap( —2k)),

[b, (2k)+R e '" b ( —2k)] .
ik

(35)

Equation (28) is exact but "r(z)" inside the film is un-
known. We now find a way to calculate it approximately.
For the reference film, we know that

r(z) =R„exp( 2ikz—) . (29)

r( —d ) =R„exp(2ikd)
—I

=sr f dz [1 r] exp 2i f— k dz, (30)—d+

where the quantities with an overbar pertain to the refer-
ence film. Note that, although p is a constant inside the
film, it contains discontinuity at z =0 so that (p) is non-
vanishing. Substituting Eq. (17) into the right-hand side
of Eq. (28), approximating r (z) by r(z) given in Eq. (29),
approximating k (z) by k, and using Eq. (30), we have

r ( —d+ ) =R„exp(2ikd)

Applying Eq. (28) to the reference film and comparing it
with Eq. (29) at z = —d+, we get

which can be easily shown to be equal to Eq. (25) derived
from the Green's function approach, except for an
nonessential phase constant due to a shift by d of the ori-
gin of the coordinate system to the air-film interface com-
pared to that in Fig. 2.

2. Derivation ofa simplified DMS from the WSA

In this section, we derive a simplified DWBA from the
WSA. Applying the WSA Eq. (9) to the reference film
with SLD p on top of a substrate of SLD p„we get

R =rr f dz exp 2i f k(z)dz—d k —d

Substituting Eq. (17) into Eq. (9), we obtain

r =sr f dz exp 2i f k (z)dzdp jdz
k d

+~f dz P exp 2i f k (z)dz . (38)
d(hp)/dz '

. z

k —d

Approximating k (z) by k and using Eq. (37), we obtain

I

+sr f dz [1—R„exp( 4ikz)]— "d d(~p)~dz 2k( +a)7" R +& Qz
2

e—d
(39)

X exp 2i f k(z)dz—d
(31) Calculating the integral by integration by parts, we ob-

tain

Carrying out integration by parts in the second term and
noting that hp vanishes at z = —d and z =0, we obtain

r =R+ f dz hpexp[2ik(z+d)]
ik

r( —d )=R„exp(2ikd)+ Y, (32) =R+ b,p(2k) .
Ek

' (40)

, f",dzap

X I [1—R„exp( 4ikz)] e—xp[2ik(z+d)]].

(33)

Substituting Eq. (32) into Eq. (26), regarding Y as a small
term, and expanding it to first order of Y, we obtain

—R
&
+R„exp(2ikd )

r( —d )=
1 R iR „exp(2ikd)—

Comparing Eq. (40) with the DWBA formula Eq. (25), we
find that Eq. (40) is equal to the DWBA result Eq. (25) if
terms proportional to R„and R„RI are ignored compared
with unity, in accordance with the spirit of the WSA.
Calculations in Sec. E will show that Eq. (40) is as accu-
rate as Eq. (25) for free-liquid surfaces that are small de-
viations from the reference film, but is more accurate
than Eq. (25) for profiles that significantly deviate from
the reference film.

Y(1—Ri )+
[1—R&R„exp(2ikd) ]

The value of Yean be evaluated as

(34)

D. The Born approximation (BA)

We will show that the BA can be derived directly from
Parratt's formula. We will also show that the BA is the
linear limit of the WSA. Before making such derivations,
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we first demonstrate that the BA for specular reAection
from a surface film can be obtained by specializing the
general theory of scattering under the weak scattering ap-
proximation to the one-dimensional surface film. Here
we only discuss neutron wave reAection because x-ray
reAection can be obtained analogously.

ReAection of a wave from a stratified medium is a spe-
cial case of wave scattering from an arbitrary three-
dimensional (3D) scatterer. If the total 3D wave function
is denoted as g(r ) and the 3D scattered wave function as

f, (r ), then they are related to the incident wave function
f;(t') by g(r)=g;(r)+f, (r). The scattered wave
satisfies the following exact integral equation [20]:

incident
direction

X

(r', y', z') '.
& 3-e'..

Ro

specular (x,y, z)
direction ...-', I &'

~ i
~ +

~ u

r~

R

1',qR

P, (r)= —f dv' p(r')P(r'), (41)

where du' is an elemental volume in the scatterer,
R =

~

r r'~ is t—he distance from the source point r' to the
field point r, and q is the magnitude of the 30 free-space
wave vector. Substituting g(r)=g;(r)+g, (r) into Eq.
(41), we get

FIG. 3. Geometry showing the field point r relative to the
source point r'. The stratification plane coincides with the xy
plane and the scattered wave direction makes the same angle 0
with the xy plane as the incident wave does. The distance R be-
tween the source point and the field point can be approximated
by Eq. (45) when r' « r in the far field.

iqR

tt, (r ) = —f dv' p(r')g, (r')

iqR—f dv' p(r')g, (r') . (42)

and Ro = r +z'sinO. Replacing R by R 0 in the denomina-
tor of Eq. (44) and by Eq. (45) in the numerator, integrat-
ing with respect to x' and y' over ( —oo, ao ), one obtains

The first term is the first Born approximation in three di-
mensions and is obviously due to the direct illumination
of p(r') by the incident wave tI(;(r'). The second term is
the multiple scattering effect because the source term
p(r')tP, (r') is due to the illumination of the SLD profile
by the scattered wave P, (r), which itself arises from
p(r'). Omitting multiple scatterings,

4~i—, „;g. . . 4n dp(z')
(47)

g (r)= — e'i"f dz'p(z')e'~'S g
where Q =4m. sin8/k. The reflection coefficient of the
surface is the amplitude of the scattered plane wave e'q",

so the BA for the reflectance is [8—12]

iqR

Q, (r)= —f dv' p(r')f, (r') .
R

(43) I. Derivation of the BA from Parratt's formula

This is valid only when scattering is dominated by single
scatterings, which means scattering is very weak. For in-
stance, if the single scattering amplitude is 10 times the
incident wave, double scattering is 10 and is negligible.
However, if the single scattering amplitude is O.S times
the incident wave, double scattering is 0.25 and triple
scattering is 0.125, and both are not negligible. It is im-
portant to know that all multiple scatterings are omitted
in obtaining Eq. (43) and only single scatterings are in-
clucl eel.

For a plane wave g;(r )=e'~'" incident on a stratified
medium, p(r') =p(z'), we have

r„=R„+&+r„+,exp(2ikohz„+, ) .

Carrying out the recurrence, we obtain

%+1 p —1

r, = y R, exp 2ik, y az,
p=1 q=1

(48)

(49)

Under the Born approximation as discussed above,
reAection is assumed to be weak in the film, implying that
R„+i and r„+i in Eq. (1) are much less than unity. In ad-
dition, a rejected wavelet travels in free space without
phase drag, i.e., k can be approximated by the free-space
value ko. According to Eq. (1), we have

iqR
Ps(r)= —f dv' — p(z')e't" . (44)

where Fresnel reAectance R of the interface between lay-
er p —1 and layer p can be approximated as

x' +y' sin 0
0

(45)

In the specular direction, the outgoing scattered wave
vector makes the same angle 0 with the xy plane as does
the incident wave vector, and the scattering plane coin-
cides with the yz plane. As shown in Fig. 3, the distance
R can be approximated in the far field as

(50)

Thus

%+1 p —1

go= — g (p —p, ) exp 2iko g hzq
k,', q=1

Taking the limit that N approaches infinity and hzq ap-
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proaches zero, we obtain

dp i oz 4m ~d dp

0
(52)

which is the Born approximation .ormuformula for the
reAectance.

2. Deriuotion of the BA from the WSA

k )&4', so k=k0.At large wave-vector transfer ~~,

e inte ral in the exponential term in the weighted-
superposition approximation Eq. , can

2as 2ik z+d) and the amplitude term becomes rr/&p.as 2lkp z +
Thus, the WSA can be reduced to

dz e
2ikod ~ oo dp 2ikoz

—d dz0
(53)

dp 2iko~ 4& ~
d dp

dz Q~ ddz—0
(54)

E . (47).
orna ' ' ' E . 47), Eq. (5

hich is identical to the BA in q.
Th Born approximation as given by Eq. (, q.

r E . (54) can be modified to apply to iqui
e orn a

to li uid surfaces
We know that thewith an improved accuracy. e

~ 0

dreAectance o a s arpf h surface of a uniform bulk liqui
'

h SLD is equal to the Fresnel reflectance b. s
the slope of the SLD of such a surface is a 6 funct'function lo-
cated at the sur ace, q.f E (54) gives a difFerent result. By
forcing this result to equal Rb, we get

The constant phase factor exp,x (2ik d) comes about be-
h WSA takes z = —d as the reference point forcause t e a

stem so thath se. If we translate the coordinate systezero p ase. we
the air-Alm interface location is the referen p

'~ ~

ce oint for
zero phase, one has

4mPb
R b 2

E . (54) we obtain the modifiedDividing Eq. (55) into q.
Born approximation

Rb dp;g
T = dz e

Pb —oo dZ
(56)

which has been widely used by many auauthors 8 —12].

E. Numerical evaluation of the ranges of val~daty

The analytical derivations in the a oa ove have revealed
the origins o errors in ro' t oduced in reaching various ap-
p

'
las. It is now useful to evaluate these er-proximate formu as. is n

situations.
'

all for typica1 experimenta situa
'

rors numenca y or
one wa to directlyS h numerical comparisons are one way ouc nu

'
us a roximate for-d fi th ranges of validity of various app

facilitate their uses in reAectivity ata y
' .

ted several SLD profiles toFor this purpose, we have selecte severa
i ure 4 contains four typestest these approximations. igu

rofiles for the surface region of a liquid. Fig-of density pro es or
f e SLD rofile that startsures 4(a) and 4(b) present a sur ace pr

s into a bulk leve .wit a ig
'

h h' h density value and decreases
'

Fi ure 4(a) is a smooth monotonic decay, w
' 'g.hile Fi . 4(b)

oscillates as it goes down. ey
onential ad-rofiles, as ig. a r

'
onentia a-F' 4( ) represents a typical exponentia a-

61 n air-liquid interface and Fig.sorption pro e on an a' - '

es the surface density structure of either a iqui

film [22—25]. Figures 4(c) and 4(d) show a SL pro e
the air and increases continuouslythat starts from zero in e ai

rates at the SLD of the bulk liquid. Figure 4(c) is
h'1 Fi . 4(d) hoa monotonically increasing SLD, w i e ig.

e air-li uid interface is crosse .oscillatory structure as th
' - q

Figure 4(c) is an error function s op yp'e t ical of t e ussy
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surface density structure of some simple liquids, and Fig.
4(d) potentially represents a liquid surface that contains
an oscillatory density transition from air into the liquid.
Altogether, the four profiles in Fig. 4 form a representa-
tive set of possible surface structures of free-liquid sur-
faces. Figure 5 presents four possible profiles of a film on
top of a solid substrate. The film in 5(a) or 5(c) has a con-
tinuous profile, while that in (b) or (d) has a discrete
profile. Furthermore, Fig. 5(a) has a SLD that decreases
along the depth, while Fig. 5(c) has a SLD that increases
along the depth. The SLD profiles of a film in Figs. 5(b)
and 5(d) do not have a general trend of increasing or de-
creasing as z increases. Therefore, Fig. 5 has included in-
creasing, decreasing, and Auctuating SLD profiles and
covers a suitable range for the purpose of evaluating ap-
proximate formulas. Figure 5(a) is a typical profile for
the diffuse interface of a polymer bilayer on top of a sil-
icon substrate [26]. Figure 5(c) is a typical Gaussian ad-
sorption profile at the interface of a polymer blend and a
silicon substrate. Figure 5(b) is typical of the surface
structure of an end-functionalized polymer film on a sub-
strate. Figure 5(d) simulates a Langmuir-Blodgett film.
In the following, the WSA, the DWBA and the BA will
be numerically compared and analyzed. In particular the
modified BA in Eq. (56) and the simplified DWBA in Eq.
(40) will also be evaluated.

1. BA and the modified BA

We have computed the reAectivities of the SLD pro61es
in Fig. 4 using Parratt's formula Eq. (l), the BA formula
Eq. (47), and the modified BA in Eq. (56) and the results
are plotted in Fig. 6. The plots 6(a) —6(d) correspond to
the SLD profiles 4(a) —4(d), respectively. The solid lines
are based on Parratt's formula, the dashed lines represent
the BA results using Eq. (47), and the black circles are

the results from the modified Ba result, Eq. (56). We ob-
serve that the BA is accurate at large Q for all four
profiles. However, as Q becomes smaller, the BA causes
significant errors, especially near the critical region, and
the BA diverges as Q approaches zero. By forcing the
BA to apply to a smooth and sharp surface, the modified
BA formula in Eq. (56) has improved the accuracy of the
BA significantly, and in particular, has eliminated the
divergence at low Q by forcing the refiectivity to be unity
at Q =0. In Figs. 6(a) —6(c), the modified BA gives very
accurate results from the critical edge down to large Q.
In Fig. 6(d), the modified BA is not very accurate near
the critical edge but is accurate for Q clearly removed
from the edge. For practical applications of reAectivity
data analysis, we conclude that the modified BA formula
Eq. (56) is accurate for data analysis for free-liquid sur-
faces.

Similar computations are shown in Fig. 7 for the
profiles in Fig. 5 with a respective correspondence be-
tween the profiles 5(a) —5(d) and the refiectivity curves
7(a) —7(d). The BA results (in dashed lines) again diverge
at Q =0 and are noticed to be very inaccurate. The
modified BA does eliminate the divergence at Q =0 but
does not improve the accuracy appreciably. Both the BA
and the modi6ed BA are not adequate for describing the
reAection from films on top of substrates, as seen in Fig.
7, and the cause is the general negligence of the phase
effect due to the film SLD. A universal error in all four
cases is the shift in phase of the BA or the modified BA
results relative to the exact Parratt results. This effect is
not obvious in our previous calculations for liquid sur-
faces because there are no strong rejections deep inside a
liquid. In comparison, the 61m-substrate interface in Fig.
5 causes significant reAection and the reAected wave from
the interface has to traverse a thick region of the film to
reach the incident space. The film SLD effectively
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FIG. 5. Four SLD profiles selected for the
evaluation of the ranges of validity for various
approximate formulas including the WSA, the
DWBA, the simplified DWBA, the BA, and
the modified BA. All four profiles represent a
thin film on top of a substrate. (a) is typical of
the diffused interface of a polymer bilayer on
top of a silicon substrate, and (c) shows the
SLD of the adsorption of polymers onto a solid
substrate. (b) is typical of the surface/interface
structure of film of end-functionalized poly-
mers. (c) Simulates typical Langmuir-Blodgett
films. The high SLD values in (d) signify that
the SLD is for x rays.
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FIG. 6. Comparison between the BA, the
modified BA and the exact result using
Parratt's formula for the four profiles in Fig. 4.
The subfigures (a)—(d) correspond to the
subfigures 4(a) —4(d), respectively. The solid
lines are the exact Parratt result for the
reQectivities. The dashed line is the standard
BA result for the reAectivities. The black cir-
cles are the reAectivities calculated from the
modified BA in Eq. (56).
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changes the phase of the wave significantly because the
path from the film-substrate interface and the air surface
is long enough to make the phase shift appreciable. We
also note that both the BA and the modified BA ap-
proach the exact result at large Q, so that they are useful
if only large-Q data are to be analyzed.

2. DWBA rtnd the simplified DWBA

We calculated the reAectivities of the profiles in Fig. 4
using Parratt's formula, the DWBA in Eq. (25), and the
simplified DWBA in Eq. (40), and plotted the results in
Fig. 8. The Parratt results are in solid lines, the DWBA

in dashed lines, and the simplified DWBA in dark circles.
The four plots 8(a)—8(d) respectively correspond to the
four profiles 4(a) —4(d). We observe that both the DWBA
and the simplified DWBA give indistinguishable results
for these four profiles and both are fairly accurate. This
means, for these liquid surfaces, the simplified DWBA
Eq. (40) can be used to replace the more complex regular
DWBA formula Eq. (25) without losing accuracy. We
also see that the DWBA result in Fig. 8(a) is more accu-
rate than the modified BA result in Fig. 6(a) below the
critical point but is less accurate than the modified BA
for Q greater than the critical point due to the point that
dips down there. In Fig. 8(b), the DWBA shows very
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FIG. 8. Comparison of the DWBA, the
simplified DWBA, and the exact result using
Parratt's formula for the four profiles in Fig. 4.
The subfigures (a) —(d) correspond to the
subfigures 4(a) —4(d), respectively. The solid
lines are the exact Parratt result for the
reflectivities. The dashed line is the regular
DWBA result Eq. (36) for the reflectivities.
The black circles are the reflectivities calculat-
ed from the simplified DWBA in Eq. (40). It is
seen that the DWBA and the simplified
DWBA are indistinguishable in accuracy for
these four SI.D profiles.
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high accuracy over the entire Q range. The modified BA
result in Fig. 6(b) is also very accurate in the critical re-
gion, but suffers a phase shift around Q =0.05 A '. For
this region, the DWBA is more accurate than the
modified BA. The DWBA result in Fig. 8(c) is fairly ac-
curate but is less accurate than the modified BA result in
Fig. 6(c) near the critical edge. Lastly, Fig. 8(d) also
shows that the DWBA provides a fair fit for Q &0.06
A ' but contains significant errors for Q &0.06 A '. It
is less accurate than the modified BA result in Fig. 6(d).
Overall, the DWBA formula (or the simplified DWBA
formula) is fairly accurate for liquid surfaces but is not
superior to the modified BA formula. As a result, it is

recommended that the modified BA formula Eq. (56) be
used for data analysis of reQectivities from free-liquid sur-
faces considering both its accuracy and simplicity of
form.

Similar calculations are carried out for the four profiles
in Fig. 5. The results are plotted in Fig. 9, with the solid
lines denoting the Parratt formula results, the dashed
lines the DWBA results and the black circles the
simplified DWBA results. We first observe that the
simplified DWBA is as accurate as the DWBA for all Q
values except around the critical region, where the form-
er is more accurate than the latter. The simplified
DWBA reduces the erroneous fluctuation of the
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FICx. 9. Comparison of the DWBA, the
simplified DWBA, and the exact result using
Parratt's formula for the four profiles in Fig. 5.
The subfigures (a)—(d) correspond to the
subfigures 5(a) —5(d), respectively. The solid
lines are the exact Parratt result for the
reflectivities. The dashed line is the regular
DWBA result Eq. (36) for the reflectivities.
The black circles are the reflectivities calculat-
ed from the simplified DWBA in Eq. (40). It is
seen that the simplified DWBA is more accu-
rate than the regular DWBA on the critical
plateau.

10

0.02 0.04 0.06
wave-vector transfer Q {4-i)

10
l

0 0.05 0.1

wave-vector transfer Q (4-i)



1948 XIAO-I.IN ZHOU 52

reAectivity in the DWBA in the critical region. Com-
bined with the findings in Fig. 8, we conclude that the
simplified DWBA is more accurate than the DWBA and
should be used owing to both its simpler form and its
higher accuracy compared to the regular DWBA. The
simplified DWBA is very accurate in Fig. 9(b) with a per-
fect fit with the exact result, and it is almost a perfect fit
in Fig. 9(d), except for a small error right below the edge.
In Figs. 9(a) and 9(c), the simplified DWBA is accurate
for Q &0.02 A ', but is not accurate near the critical
edge. Overall, a common feature of all four plots is that
the simplified (or the regular) DWBA accounts for the
phase of the oscillations in the reAectivities very well in
regions other than the vicinity of the critical edge.

In summary, we conclude that the simplified DWBA is
simpler and more accurate than the regular DWBA and
should be used for surface films on top of substrates,
while the modified BA should be used for free-liquid sur-
faces owing to its simple form and high accuracy.

3. The WSA, the simplified DNA and the modijied BA

In Figs. 10(a)—10(d) the refiectivities are plotted for the
profiles in Fig. 4 calculated from Parratt's formula (solid
lines), the WSA (black circles), and either the modified
BA or the simplified DWBA (dot-dashed lines). Similar
calculations for the profiles in Fig. 5 are shown in Figs.
11(a)—11(d). In Fig. 10, we compare the WSA result with
the modified BA result plotted in dashed lines. Note that
the dashed lines are not visible in some portions of the Q
range because they coincide with the Parratt result (solid
lines). In Fig. 10(a), the WSA is as accurate as the
modified BA for Q greater than the critical edge. It is
less accurate than the modified BA for a small region
right after the edge, but is more accurate than the
modified BA for the region below the critical edge. In
Fig. 10(b), the WSA is very accurate for Q &0.02 A

while the modified BA sufFers a phase shift in this region.
However, the WSA does contain approximately 10—20%
errors around the critical edge, as shown in the figure,
while the modified BA is very accurate. If the need in
data fitting is considered, this comparison puts both the
WSA and the modified BA at a comparable level of use-
fulness. A similar observation can be made from Fig.
10(c) regarding the relative accuracies of the WSA and
the modified BA. Finally, Fig. 10(d) shows that the WSA
is extremely accurate for Q greater than the critical edge,
while the modified BA has bigger errors in the critical re-
gion and some errors for Q &0.05 A '. From all four
figures, 10(a)—10(d), we conclude that the WSA is always
very accurate for Q away from the critical edge, whereas
the accuracy of the modified BA varies from situation to
situation. Thus the WSA is a little superior to the
modified BA, although they both sometimes give accu-
rate results.

In Figs. 11(a)—ll(d), the WSA is compared with the
simplified DWBA results (in dashed lines). Again we see
that the WSA is highly accurate for all Q except for the
region around the critical edge. The simplified DWBA
contains even bigger errors in the same critical region.
For example, in Fig. 11(a), the WSA is almost exact ex-
cept for one point at the critical edge, but the simplified
DWBA contain large errors until Q =0.03 A '. In Fig.
11(b), the simplified DWBA is very accurate and the
WSA is a little less accurate than it is at one point. In
Fig. 11(c), it is obvious that the WSA (circles) is more ac-
curate than the simplified DWBA (dashes) right after the
critical edge. The WSA is accurate from large Q all the
way down to the critical edge, while the simplified
DWBA starts to fail when Q falls below 0.02 A '. In
Fig. 11(d), the simplified DWBA is as accurate as the
WSA for Q &0.04 A ' but is more accurate than the
WSA for Q &0.04 A '. This is because the profile in
Fig. 5(d) is well approximated by an average film plus a
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FIG. 10. Comparison of the WSA, the
modified BA, and the exact result from
Parratt's formula for the four pro61es in Fig. 4.
The subfigures (a) —(d) correspond to the
subfigures 4(a)-4(d), respectively. The solid
lines are the exact Parratt result for the
reAectivities. The dashed line is the modified
BA result Eq. (56) for the reflectivities. The
black circles are the reflectivities calculated
from the WSA.
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deviation. The WSA loses some accuracy because the
neglected multiple reflection effect is significant between
the many sharp interfaces existing in the profile. Howev-
er, for the data fitting purpose, both approximations can
be used efficaciously considering that both approxima-
tions can fit the exact result for almost all oscillation
peaks in the figure. In conclusion, the WSA is almost as
good as the simplified DWBA and is sometimes better
than the simplified DWBA, thus the WSA is recommend-
ed for SLD profiles of the types represented by Fig. 5.
Note that, for Langmuir-Blodgett films, the simplified
DWBA is very useful and should be preferred for data
fitting use.

In summary, the WSA can be used for both free-liquid
surfaces and films on top of solid substrates, and the ac-
curacy is sufficient for experimental data analysis for the
entire region of Q. The modified BA is accurate for free-
liquid surfaces and the standard BA formula is only valid
for large Q or for very thin surface structure. The stan-
dard BA is less accurate than the modified BA for free-
liquid surfaces. For films on top of substrates, both the
modified BA and the standard BA are inaccurate and
cannot be used. For free-liquid surfaces, the simplified
DWBA and the regular DWBA give indistinguishable re-
sults, but the results are not more accurate than the
modified BA results. For films on top of substrates, the
simplified DWBA is more accurate than the regular
DWBA and both, in turn, are more accurate than the
modified BA. Therefore, we recommend either using the
WSA for both liquid surfaces and films on substrates or
use the modified BA for free liquids plus the simplified
DWBA for films on substrates. However, the modified
BA and the simplified DWBA may be preferred in
specific applications because the WSA may not be the
easiest formula to use despite its wide range of validity
and higher accuracy. For example, the modified BA may
be most efficient for data analysis for free-liquid surfaces

and the simplified DWBA may be most convenient and
accurate for Langmuir-Blodgett films.

III. NONLINEARITY IN THE
REFLECTANCE-SLD RELATIONSHIP

This section analyzes various aspects of nonlinearity in
the relationship between the reflectance r and the SLD
profile p(z). The origin of nonlinearity will be discussed
first. Then, a criterion will be established to divide a
reflectivity curve into a nonlinear region and a linear re-
gion. An analysis will be given regarding how the SLD
profile affects different regions and various characteristics
of a reflectivity curve, such as the total reflection plateau,
oscillation amplitude, and oscillation period.

A. Physical origin of nonlinearity

The origin of nonlinearity can be appreciated by com-
paring Parratt's formula with the BA which is purely
linear. Remember that the BA is obtained in Sec. II D by
making several omissions. Each omission corresponds to
one source of nonlinearity. The first omission is the
second term in the denominator of Parratt's recurrence
formula. This term is due to multiple reflections between
the interface at z =z„and the medium beneath z =z„+i.
Another omission is the effect of p + &

on the phase in the
exponential term exp(2ik„+, b z„+,). Since k„+,= ( k o

4~p„+&)'~, the —phase depends on the SLD in a non-
linear fashion. Physically, the interaction of the wave
with the medium SLD changes the phase speed of the
wave and the change depends on the SLD nonlinearly.
Thus the second source of nonlinearity is the dependence
of the phase speed on the medium SLD, which is includ-
ed in the WSA. The third approximation in reaching the
BA is Eq. (50), where the nonlinear dependence of the
Fresnel reflectance on the SLD is omitted. The actual
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dependence should be

4~(p —p, )

(k~, +k )
(57)

b.P= 2 f Iko —k(z)]dz (58)

wavelets rejected at two locations separated by a dis-
tance d can be written as

which shows that the Fresnel reAectance does not only
depend on the step change of the SLD, but also on the
magnitude of the SLD relative to ko. In the continuous
limit, the denominator in Eq. (57) becomes 4k . The
WSA formula obviously has included this part of non-
linearity completely.

B. Determination of the nonlinear region in a
reAectivity curve

We use the WSA formula to determine the division
point which separates a linear region from a nonlinear re-
gion in a reAectivity curve. The phase shift for two

where the integration is over the medium between the
two locations. Such a phase shift will cause a difference
in the reAectivity of the film compared to the Born ap-
proximation result. The reAectivity of these two inter-
faces alone can be calculated from the WSA formula as

lr, I'= IR, I'+ IR, I'+2 Re[R, R 2 ] cos 2 f k (z)dz

(59)

where R, and R2 are the Fresnel reAectances of the two
interfaces, respectively. Neglecting the SLD in the phase
of the cosine term will cause a relative error in reAectivity
given by

leap
I'

r r

2 Rel R,R z ] cos 2f k (z)dz —cos 2f kodz
I.

IR, I'+ IR, I'+2 eel R,R 2 ] cos 2 f k (z)dz
(60)

As the third term in the denominator is always less than
the sum of the first two terms, the relative change of the
reAectivity has an upper limit

k & ko for positive SLD p(z), which is true for most ma-
terials, i.e.,

~lrol'
cos 2f k(z)dz —cos 2 f kodz

2

for p+0,
ko

for p (0,
k ko

(64)

(65)

For this error to be small, we demand it be less than a
value v. to obtain

7T ( 7T g (
2 2

or Pl —P2'
k, k2

(66)

Ip'd* I,
1 fpdz,

(62)

where d* is the thickness of the structural region of the
film and p' is the average SLD in this region. For a free-
liquid surface, d* can be calculated by locating the region
in which the slope of the SLD is no less than &r times
the maximum slope of the SLD in the entire surface. For
a film on top of a substrate, d'=d and p*=p, the aver-
age SLD in the whole film. In an experiment, if the ap-
proximate thickness and average SLD p are known, one
can estimate the regions of linear and nonlinear
reAectivities by Eq. (62).

C. Nonlinear e8'ect on amplitude, phase,
and total re8ection of reAectivity curve

The difference between the WSA and the BA lies in the
amplitude and the propagation factor. In the amplitude,
the linear BA contains at term 1/ko, while the WSA con-
tains 1/k . If everything else is equal, then the ampli-
tude of the WSA is larger than that of the BA because

2f k(z)dz &2ko(z+d),—d
(67)

a phase lag for p) 0,

2f k (z)dz )2ko(z+d), (68)

a phase advance for p&0. When k(z) becomes imagi-
nary for positive SLD, the exponential term in the WSA
becomes

Equation (64) states that the amplitude is higher than the
Born approximation for positive SLD and Eq. (65) says
that it is smaller than the BA for negative SLD. Equa-
tion (66) states that if the SLD increases from p, to pz,
the amplitude increases accordingly.

In the exponential propagation factor in Eq. (9), the
phase is an integral of 2k. In the linear BA in Eq. (54),
the phase is an integral of 2ko. For positive SLD, k & ko
so that the actual wave according to the WSA lags in
phase behind the BA approximate wave. For negative
SLD, the actual wave gains in phase (i.e., phase advance)
compared to the BA approximate wave. In summary, we
find
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A = exp 2i J k (z)dz
r

= exp —2 4' —ko dz (69)

which is now an attenuation factor. The larger the z, the
smaller the value of the factor. It represents an evanes-
cent wave which decays into the surface film. When ko is
much smaller than 4~p, the exponential term becomes
negligible. As a result, only one term in the WSA is
significant, which is the Fresnel reAectance due to the
front surface at z = —d, at which the exponential term in
Eq. (9) becomes one. Since the modulus of the Fresnel
reAectance becomes unity when k becomes imaginary, the
reAectivity calculated from the WSA becomes unity, cor-
responding to total reAection.

IV. CONCLUSION

A comprehensive analysis is given about the functional
relationship between neutron or x-ray reAectance and the
scattering-length-density profile of a surface film.
Derivations are presented to obtain the differential equa-
tion for the reAectance, the WSA, the DWBA, and the
BA from Parratt's formula. Such derivations have
unified existing reAection theories under Parratt s formu-
la. In particular, the derivations have revealed that the
differential equation is the continuous counterpart of
Parratt's formula, the WSA is an approximation that
neglects the multiple reAection effect but retains the
dependence of the phase speed and the Fresnel
reAectance on the film SLD, the DWBA approximates
multiple reAections and the SLD dependence of the phase
speed and Fresnel reAectance with those inside an aver-
age film, and the BA neglects all of multiple reAections
and the SLD dependence of the phase speed and the
Fresnel reAectance. A simplified DWBA formula, Eq.
(40), is derived from the WSA and shown to be simpler
and more accurate than the regular DWBA.

Numerical analysis was carried out for a range of SLD
profiles to evaluate the validity and utility of various ap-
proximations. It was found that the BA is accurate only
for large Q for all SLD profiles. For free-liquid surfaces,
the modified BA is demonstrated to be very accurate and
is highly recommended for its simple form. For films on
top of substrates, the modified BA is very inaccurate.
The DWBA result is in genera1 accurate for liquid sur-
faces, too, but is 1ess good than the modified BA. Howev-
er, it is fairly accurate for films on top of solid substrates.
However, the simplified DWBA Eq. (40) was shown to be
even simpler yet more accurate than the regular DWBA
near the critical region, thus it can be used to replace the
regular DWBA. The WSA is found to be valid for both

free-liquid surfaces and films on top of substrates, cover-
ing the ranges of validity of both the modified BA and the
simplified DWBA. However, the WSA may not always
be the easiest to use for certain applications. For in-
stance, the modified BA is very simple and very accurate
for the thin surface region of a simple liquid and may be
preferred to the WSA. Another example is Langmuir-
Blodgett films, for which the simplified DWBA is even
more accurate than the WSA near the critical region and
may be preferred. However, for analyzing the functional
relationship between the SLD profile and the reAectivity
curve either to gain understanding or to develop or im-
prove model-independent methods for data inversion, it is
much more convenient to use the WSA. For example,
the phase and amplitude effect of nonlinearity on a
reAectivity curve as discussed in Sec. III is most con-
veniently studied through the WSA formula.

Based on the above derivations and understanding, the
nonlinearity in the reAectance-SLD relationship is ana-
lyzed systematically. It is determined that the nonlineari-
ty comes from three sources: multiple reAections, the
nonlinear dependence of the Fresnel reAectance on the
SLD, and the dependence of the phase speed on the SLD.
It found that the effect of nonlinearity on reAectivity de-
creases as Q increases because the film SLD p influences
reflection through k =(kc —4mp)'~ with k&&=Q/2. This
suggests that nonlinearity may be negligible when Q be-
comes sufficiently large. To determine how large Q has
to be for nonlinearity to be negligible, a dividing point Qp
is quantitatively obtained in Eq. (62). In the linear region

Q & Qc, the BA is valid approximately with error less
than r. In the nonlinear region Q (Qo, the BA contains
errors greater than ~ and cannot be used.

In the nonlinear region, the nonlinear effect changes
the amplitude of a reAectivity curve such that a larger
SLD usually corresponds to a higher amplitude in the
reAectivity curve. It affects the phase of a reAectivity
curve such that, compared to the BA result, a positive
SLD causes a phase lag while a negative SLD causes a
phase advance in a reAectivity curve. Numerical calcula-
tions were carried out and confirmed the above observa-
tions. It was also found that the exponential phase factor
in the WSA accounts for evanescence and total reAection
when k becomes imaginary. The results obtained in this
paper may be usefu1 for developing new methods or im-

proving existing methods for reAectivity data analysis.

ACKNOWLEDGMENTS

This work was supported by the Massachusetts Insti-
tute of Technology Sloan Funds. The author would like
to acknowledge insightful discussions with Professor S.-
H. Chen.

[1]G. P. Felcher and T. P. Russell, Phys. 8 173, 1 (1991).
[2] D. S. Sivia, W. A. Hamilton, and CJ. S. Smith, Phys. 8 173,

121 (1991).
[3] B. E. Warren, X-Ray Di+raction (Addison-Wesley, Read-

ing, MA, 1969).

[4] X.-L. Zhou and S.-H. Chen, Phys. Rev. E 47, 3174 (1993).
[5] X.-L. Zhou, Gr. P. Felcher, and S.-H. Chen, Phys. 8 173,

167 (1991).
[6] X.-L. Zhou, S.-H. Chen, and G. P. Felcher, J. Phys.

Chem. 95, 9025 (1991).



1952 XIAO-LIN ZHOU 52

[7] X.-L. Zhou, S.-H. Chen, and G. P. Felcher, Phys. Rev. A
46, 1839 (1991).

[8] J. Als-Nielsen, Z. Phys. Condens. Matter B 61, 411 (1985).
[9] P. S. Pershan and J. Als-Nielsen, Phys. Rev. Lett. 52, 759

(1984).
[10]J. Penfold and R. K. Thomas, J. Phys. Condens. Matter 2,

1369 (1990).
[11]J. Lekner, Theory ofRefiection (Nijhoff, Boston, 1987).
[12]T. Russell, Mater. Sci. Rep. 5, 171 (1990).
[13]G. H. Vineyard, Phys. Rev. B 26, 4146 (1982).
[14] S.-H. Chen, X.-L. Zhou, and B. L. Carvalho, Progr. Col-

loid Polyrn. Sci. 93, 85 (1993).
[15]S. K. Sinha, E. B. Sirota, S. Garoff, and H. Stanley, Phys.

Rev. B 38, 2297 (1988).
[16]M. K. Sanyal, S. K. Sinha, A. Gibaud, K. Huang, B. Car-

valho, M. Rafailovich, J. Sokolov, X. Zhao, and W. Zhao,

Europhys. Lett. 21, 691 (1993).
[17]V. F. Sears, Phys. Rev. B 48, 477 (1993).
[18]X.-L. Zhou and L. He, Phys. Rev. E 49, 5345 (1994).
[19]L. G. Parratt, Phys. Rev. 9S, 359 (1954).
[20] X.-L. Zhou and S.-H. Chen, Phys. Rep. (to be published).
[21]J. Jacobsson, in Progress in Optics, edited by E. Wolf

(North-Holland, Amsterdam, 1966), pp. 249 —259.
[22] X.-L. Zhou, L.-T. Lee, S.-H. Chen, and R. Strey, Phys.

Rev. A 46, 6479 (1992).
[23] K. A. Dawson, Phys. Rev. A 35, 1766 (1987).
[24] G. Swislow, D. Schwartz, B. M. Ocko, P. S. Pershan and

J. D. Litster, Phys. Rev. A 43, 6815 (1991).
[25] A. Menelle, T. P. Russell, and S. H. Anastasiadis, Phys.

Rev. Lett. 68, 67 (1992).
[26] G. P. Felcher, A. Karim, and T. P. Russell, J. Non-Cryst.

Solids 131, 703 (1991).


