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We have investigated the phase behavior of the ferromagnetic Heisenberg fluid using two ver-
sions of density-functional theory, viz., the mean-field and modified mean-field approximations. In
the latter, configurations in the average of the perturbative part of the energy are weighted by the
zero-density approximation of the pair distribution function. This is known to yield an improved
description of the phase diagram of dipolar fluids. Both theories predict, in addition to isotropic
liquid and vapor phases, a ferromagnetically ordered liquid phase at moderate to high (fluid) densi-
ties. The topology of the phase diagram depends sensitively on the relative strengths of the isotropic
and anisotropic parts of the intermolecular potential. For weakly anisotropic potentials, the order-
disorder transition is always continuous and terminates at a critical endpoint on (the liquid side
of) the liquid-vapor coexistence curve. Increasing the anisotropy above a certain threshold drives
the transition first order at low temperatures, thus leading to the appearance of a tricritical point
and a ferromagnetic liquid-isotropic liquid-vapor triple point. For strongly anisotropic potentials,
ordinary liquid-vapor phase separation is preempted by a direct (condensation-ordering) transition
between a low-density disordered phase and a ferromagnetic liquid that becomes continuous at a
tricritical point. Results are in agreement with earlier theoretical work and, moreover, are compati-
ble with recent Monte Carlo simulations of the same system. These provide evidence of a magnetic
critical point (with the Curie line ending at a critical endpoint on the vapor side of the liquid-vapor
coexistence curve). Owing to finite size effects, however, the existence of a tricritical point cannot
be ruled out. The latter is predicted, for the same model, by both theories. In this context, we
looked for coexistence between orientationally ordered fluid phases in generalized Heisenberg models
and found it, within mean-field theory, for a class of fluids characterized by soft repulsive isotropic
interactions, in addition to the hard-core and ferromagnetic Heisenberg potentials.
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I. INTRODUCTION

Recent computer simulations by Patey and co-workers
[1,2] and Weis and co-workers [3,4] have revealed that sys-
tems of strongly interacting dipolar soft or hard spheres
can exhibit a ferroelectric nematic phase at high densi-
ties. Results seem, however, to depend very sensitively on
the boundary conditions used in the simulations, which
aim to reproduce, as faithfully as possible, the effects
of long-range interactions in what is of necessity a finite
model system [5]. Moreover, there remains some uncer-
tainty as to the precise location of the ferroelectric phase
transition.

Although several theories have been proposed for the
true dipolar fluid with long-range interactions [6-12],
considerable conceptual difficulties remain. Indeed, there
is not even consensus among specialists on whether the
thermodynamic limit of a positionally disordered, but
orientationally ordered phase, exists (but see [13]). On
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a more practical level, the theoretical treatment of as
strongly anisotropic an interaction as the dipole-dipole
potential, beyond the simplest perturbative approaches,
constitutes a formidable challenge.

By contrast, the simpler Heisenberg fluid [14-19] is
much more easily studied by either theory or simulation,
while retaining a considerably rich behavior. Since the in-
termolecular potential is now short ranged, no complica-
tions arise in connection with the thermodynamic limit.
Furthermore, it includes no coupling between positional
and orientational degrees of freedom of the molecules,
thereby eliminating the possibility of chain formation as
obtained in zero-density dipolar fluids [20,21]. For the
Heisenberg model, Landau and density-functional theo-
ries can thus be constructed in the usual way.

Recently, Lomba and co-workers have performed
Monte Carlo (MC) simulations of both the ferromag-
netic and the antiferromagnetic Heisenberg fluid [22,23].
The former was found to exhibit a ferromagnetic order-
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disorder as well as a gas-liquid transition. The latter
transition seems to occur between a ferromagnetic liquid
and a ferromagnetic gas close to the gas-liquid critical
point, whereas it occurs between a ferromagnetic liquid
and a paramagnetic gas farther away from the critical
point. If real, this effect would in a sense be similar
to the novel solid-solid critical point seen in simulations
of simple atomic fluids interacting via very short-ranged
attractive potentials [24,25]. There is also evidence from
simulation for an order-disorder transition in the antifer-
romagnetic fluid, for which, however, no gas-liquid coex-
istence is found. The ordering transition is now between
an isotropic and a nematically ordered phase.

The same authors have also treated these systems by
means of integral equation (mean spherical approxima-
tion and reference hypernetted chain) methods. Both
equations capture the essentials of the order-disorder
transitions, but fail to elucidate the nature of gas-liquid
coexistence in either system. In this paper we calcu-
late the phase diagram of the ferromagnetic Heisenberg
fluid using the mean-field (MF) and modified mean-
field (MMF') approximations of density-functional theory
(DFT). The latter consists in weighting configurations in
the perturbative part of the energy by the zero-density
approximation of the radial distribution function [26].
This is known to describe angular correlations which are
missed in simple MF treatments [11,12,26-28]. Recently,
Groh and Dietrich [11,12] have investigated the phase
behavior of the Stockmayer fluid using MMF theory. Be-
sides predicting liquid-vapor coexistence, they found ev-
idence for a high density ferroelectric phase. Note, how-
ever, that owing to the long-ranged nature of the inter-
actions, their results appear to have the correct ther-
modynamic limit only for infinitely long needle-shaped
systems [12,13]. By contrast, the thermodynamic limit is
well established for the (short-ranged) Heisenberg fluid,
for which detailed computer simulation results are also
available, allowing a quantitative test of MMF-DFT for
ordered fluid phases.

This paper is organized as follows. In Sec. IT we formu-
late the MF and MMF theories of the Heisenberg fluid.
The different types of phase diagram they yield are pre-
sented in Sec. III, where we also show that our results
are compatible with recent simulation data. Two sets of
MC simulations have been performed: a first set [22] em-
ployed the full interaction potential to study the global
phase diagram; in a second set [29], the potential was
truncated at 2.50 and the magnetic transition line was
accurately located, taking into account finite size effects.
In Sec. IV we address the issue of criticality in the Heisen-
berg fluid, and derive explicit expressions for the location
of the critical and tricritical points which occur in these
systems. In this context we also derive the condition for
the existence of a fourth-order critical point (where the
sixth derivative of the free energy with respect to the
magnetization, at fixed temperature and chemical po-
tential, vanishes), which is a necessary condition for a
crossover between tricritical behavior and magnetic crit-
icality (i.e., criticality between ordered magnetic phases).
Within the MF theories studied in this paper, this condi-
tion can be fulfilled by a variant of the Heisenberg model
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which includes long-ranged isotropic repulsions. These
results also suggest that the existence of magnetic crit-
ical points may be expected in simple magnetic fluids.
Finally, in Sec. V we summarize our results.

II. DENSITY-FUNCTIONAL THEORIES OF THE
FERROMAGNETIC HEISENBERG FLUID

A. General density-functional formalism

The grand potential free energy 2 of a nonuniform,
one-component fluid is the minimum of the functional

2p(r,w)] = F [plr, )] + [ drdw ple,)Vess ()

—,u/drdw p(r,w), (1)

where p(r,w) is the density-orientational profile in the
presence of the external potential Vey(r,w) and p is the
chemical potential. r = (z,y,z) is the set of position
coordinates and w = (¢,0,x) the set of orientation co-
ordinates (Euler angles) of a molecule. F[p(r,w)] is a
unique functional of the density which is independent
of the external potentials and represents the intrinsic
Helmholtz free energy of the inhomogeneous fluid. If the
fluid is characterized by a pairwise intermolecular poten-
tial, ¢(ry,wq, T2, w2), it can be shown [30] that

/ da / dl‘]_dl‘zdwld(U2
Xg(r17 Wy,r2,wWz;

Xp(r13w1)¢p(r17w17r21w2)p(r2,w2)7 (2)

F lor,0)] =

ref [P r, w

interaction

¢p(r1,wi,r2,ws) — ¢res(r1,12).  (3)

In Eq. (2), Fret [p(r,w)] corresponds to a reference system
in which the particles interact via a pairwise potential
¢ref(r1,T2) and the density is constrained to be p(r,w).
This is treated in a local-density approximation, viz.,

Fret [p(r,w)] = / drdw feer(p(r, w))- (4)

where we have defined a “perturbative”

= ¢(1'17 w1, l‘z,wz)

g(r1,w1, T2, ws; a) is the pairwise distribution function for
a fluid with density p(r,w) and in which the intermolec-
ular potential is

¢a(r1,w17 l'z,(dz) = ¢ref(r11r2) + a[¢(r1,w1,r2,w2)

_¢ref(r17r2)]~ (5)

This is the familiar coupling-constant algorithm, where
« parametrizes a linear integration path between the ref-
erence system and the real system.

Equation (2) is an eract result. Besides the local-
density approximation, Eq. (4), further approximations
will now be made to the pair distribution function, which
is in general not known. Note that, since we shall be
dealing with uniform systems, g depends on the position
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coordinates only through ri; =r; —rs.
In what follows we shall consider the simple Heisenberg
fluid characterized by the potential

_J 400, <0
bestr) = { 5 157 ©)
0, r<o
dp(ryw,w')y =< —I(r) — J(r)cos(w,w'), o <7 <7,
0, T > T,

(7)

where o is the hard sphere diameter, 7. is a cutoff (intro-
duced for the purpose of comparing our results with sim-
ulations), I(r) and J(r) are the isotropic and anisotropic
parts of the potential, respectively, and cos(w,w’) =
cosfcosf' + sinfsiné’ cos(¢p — ¢'). Within MF theory
only the integrated strengths of the interactions [i.e., the
volume integrals of I(r) and J(r)] contribute to the ther-
modynamics; consequently their detailed analytical form
is immaterial, provided that they decay faster than 1/r3
as r — oo [see Egs. (13) and (14)]. J > 0(< 0) cor-
responds to a ferromagnetic (antiferromagnetic) system.
In this paper we shall be concerned with the ferromag-
netic case only; in addition, all the results presented are
for r. = 0o unless otherwise stated.

The free energy density of the reference system is now
approximated by

Fret(p(r,w)) = fus(p(r)) + p(r)ksT(In[4r f(r,w)]), (8)

where f (r,w) is the orientational distribution function
(ODF) defined through p(r,w) = p(r)f(r,w), (4) =
J Af(r,w)dw and fus(p(r)) is the free energy density of a
hard-sphere system given by the “quasiexact” Carnahan-
Starling expression [31]

4¢ — 3¢2
1=z’

where A is the thermal de Broglie wavelength and ¢ =
Zpo® the packing fraction.

fulT,0) = 5 [ln(pAs) 14 (9)

B. The mean-field approximation

The simplest MF approximation amounts to taking g
to be given by its long-distance limit, i.e., g(r12, w1, ws) =
1. We then obtain, for the Helmholtz free energy
Flp(r,w)],

1
FmF [p(l‘,UJ)} = }-ref [p(l', w)] + 5 / dl‘1dl‘2dw1dw2

xp(ry,wi)¢p(riz, wi,ws)p(rz,wz). (10)

Substitution of Egs. (6), (7), and (8) into Eq. (10) then
yields, for the free energy density of an orientationally

ordered, but positionally disordered, phase,

Fue (o, [fmr(@)]) = fus(p) + pkpT (In[dn fur (w)])
1

1
_'“Iin 2 - "Jin 2 27 11
2 tP D) tP M1 (11)

where 7; is the (MF) polar order parameter, defined as

i / P (cos 0) fur (0) dw, (12)

Py (cos 0) being the first Legendre polynomial, and
Tt = / " I(r) dr, (13)
i = / " J(r) dr. (14)

Minimizing the free energy with respect to fMF(w) [33],
we obtain
exp (BJintpn1 cos 6)

Fur(w) = J exp (BJintpn1 cos 8) dw’ (15)

71 = coth (BJinepm) —

—_— 16
BJineom’ (16)
from which it follows, for the equilibrium pressure and
chemical potential,

1
p(P) = Phs(P) - 5,02 (Iint + Jintn%) ) (17)

| a9

/BJintpnl
sinh (8Jinton1)

where 8 = 1/kgT, m is the solution of Eq. (16), and
Phs(p) and pns(p) are, respectively, the pressure and the
chemical potential of the hard-sphere system. We note
that the MF Helmholtz free energy density may also be
written in terms of p and 7, [using f = —p + pp and
Egs. (17) and (18)]. When this expression is used, Eq.
(186) for the equilibrium polar order parameter is obtained
by minimizing fyg with respect to 71, at constant den-
sity (and temperature). We will return to this point in
Sec. IV, where the equations for the critical and multi-
critical points of the Heisenberg fluid are derived, within
this approximation.

1(p) = pns(p) — Iintp+ B ' 1n [

C. The modified mean-field approximation

The simplest way to include correlations due to
the perturbative part of the potential is to use for
g(ri2,wy,ws; a) the zero-density approximation,

g(l‘lz, w1y, ws; a) — e—ﬁ‘f‘a (riz,w ,Wz)’ (19)

which gives

Fumr [p(r, w)] = Fret [p(r, w)] + 2—15 /dl'ldl'zdwldwz e Prer(riz) [1 - 6—%"(”2’“’1’“2)} p(ri,wi) p(rz,w2).  (20)

Putting the various approximations for the reference free energy together and neglecting the external field, the



1918 J. M. TAVARES et al. 52

(variational) grand potential density can be written

F (p, [fMMF(w)]) — p [ drp(r)

%QMMF (P, [fMMF(w)]) =

|4
— Fualp) + PhaT (tnldm frn (0)]) ~ 0+ 3 i, (21)
[
where the interaction contribution (for a system with no where
isotropic attractive interactions) is given by o ,
sy =3 D ) Bi(). (31)
’ 2

1 pz “+oo 5
Vﬂint = —éﬁ L drdwldwz [eﬁ (r) cos(wy,w2) __ 1]

x frmr (w1) fumr (w2). (22)

To proceed further it is convenient to expand fumr (w)
in terms of Legendre polynomials:

27rfMMF(w) = QD CcOos 9)

Z w1 Pi(cos ), (23)
=0

21 + 1
o = / farnae (6) Pi(cos 0) duw

204+ 1

- , 24
5N (24)

where 7; are generalized order parameters, and similarly
for the exponential term in Eq. (22):

had ™
etcos(wi,wz) Z(Zn + 1)1/ ﬁ In+1/2(t) P, (COS 012) .
n=0
(25)

Here I,/ is a modified spherical Bessel function of the
first kind [32].

The interaction contribution in Eq. (21) can now be
expressed as

1 oo
Qint = Pz Z u <pl27 (26)
=0

where the coefficients u; are given by

2 il(t)
—B dr |:2l n 1 - 6170] 5 (27)

with use of the abbreviations

i(t) = \/;1; Iiya/2(2), (28)

t=pg8J(r). (29)

Finally, as remarked in [11,12], an alternative expression
for Eq. (26), useful to derive the equilibrium density dis-
tribution, is

uy =

1 pZ +1 +1
Lo =2 / dz / d'o(z) p(a') K(z,2'), (30)
\4 2 J4 1

=0

For fixed temperature T and chemical potential u the
equilibrium one-particle density satisfies the condition

1 6Q

V 6p(r,w) =0 (32)

which is equivalent to simultaneous minimization of 2
with respect to p and p(w) [33]:

1 09

V 'a_p =Y (33)
160
V @) (34)

where X is a Lagrange multiplier which ensures normal-
ization of the ODF. Equations (33) and (34) lead to

+1
pne() + 5 /_ o p(z) In [20(0)]

+2p ) wpi —p=0, (35)
=0

and
¢(z) = C exp [—ﬁp S @+1)we P(z)|, (36)
=0
where

1
JH 1l dz exp[~Bp 352,(2L +

is the normalization constant.
From Eq. (36) it follows that

DupPi(a)] )

+1

dz p(z)In [2¢(x)] = In (2C) = 280 Y _w ¢}, (38)
- =0
so that Eq. (35) can be rewritten as
1
pina(p) + 10 (20) — u = 0. (39)

B

Finally the projections ¢; satisfy the integral equations
(27]
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_ 2 +1 f_+11 dz P(z) exp[—pB Y 12, (21 + 1) u; 1 Pi(z))

2 f—+11 dz exp [—pB 372, (21 + 1) w1 o1 Pi())

(1 #0), (40)

(41)

We have examined the possibility of coexistence between an isotropic gas at density p; and a magnetic liquid at
density py. The coexistence conditions are obtained by requiring the equality of the pressures and chemical potentials

of the two phases at fixed temperature, namely [11,12]

Q Q
V[Tvﬂfvpi?‘p: 1/2] = V[Thu'.f’pfv‘p(m)]’ (42)
oN
el = 43
Bp p=pi,p=1/2 ( )
89‘
hafinlel =0, 44
Op lp=ps,0(z) ( )
5_91 - (45)
0 lp=ps,0(2)

Making explicit these relations and eliminating g, the common chemical potential of the coexisting phases, it follows
that the unknowns p;, ps, and ¢; (I > 1) are solutions of the equations [11,12]

1 oo
fus(pi) — pittns(pi) — ZP? uo = fus(ps) — prins(ps) — PF D w o, (46)
=0
1 1 +1
Ens(ps) + FPito = pns(ps) + Sp5uo + 5 [ln 2—In dz ¢f(w)] ; (47)
-1

and

+1 +1
o 2131/_1 dmpl(w),pf(m)//_l dzips(z). (48)

In Egs. (47) and (48) we have introduced the notation

Py(z) = exp [—ﬁpf Z(2l + 1Dwpi Py (w)] . (49)

=1

(Note that the sum starts at I = 1.)

III. RESULTS AND DISCUSSION

Figures 1-3 illustrate the different types of phase di-
agrams obtained from MF theory for different values of
R = Jint/Iint, which are identical with those originally
calculated by Hemmer and Imbro [15]. Three types of
transitions have been identified in these phase diagrams:
a continuous order-disorder transition between ferromag-
netic and isotropic dense fluid phases, and two first-order
condensation transitions. The discontinuous transitions
are characterized by a finite density jump and involve
either two disordered fluids (“ordinary” isotropic con-
densation) or an isotropic gas and a magnetic liquid
(condensation-ordering transition, where both the den-
sity and the magnetization change). At sufficiently low
temperatures, a condensation-ordering transition occurs.
(In reality, if R is small enough, corresponding to very

[
weakly anisotropic potentials, this transition will be pre-

empted by the solid phase [15]. In this work, however,
we have only considered fluid phases, which we believe to
be stable with respect to the solid for densities p* < 0.8.
This includes the various types of fluid phase diagrams
presented here and in the following sections, for which

1.2

1.1 R:03

Curie line //
1.0
0.9
T/T, os

0.7

0.6

0.5
0.0 0.2 0.4 0.6 0.8 1.0

p*

FIG. 1. MF phase diagram of the ferromagnetic Heisenberg
fluid for R = 0.3. p* = po®, and T/T. are the reduced density
and temperature, respectively, where T, is the temperature
of the (isotropic) liquid-vapor critical point. FL, ferromag-
netic liquid; IL, isotropic liquid; IG, isotropic gas; solid lines,
first-order transitions; dashed line, continuous ordering tran-
sition (Curie line); ci, (isotropic) critical point; cep, critical
endpoint.
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1.2 R:05

’ . .
s+ Curie line
/

1.1 ’
Cj

1.0
T T FL
/Te

0.8

0.7

0.6
0.0 0.2 0.4 0.6 0.8 1.0

p*

FIG. 2. MF phase diagram of the ferromagnetic Heisen-
berg fluid for R = 0.5 (same reduced units as in Fig. 1). FL,
ferromagnetic liquid; IL, isotropic liquid; IG, isotropic gas;
solid lines, first-order transitions; dashed line, continuous or-
dering transition (Curie line); c;, (isotropic) critical point; t.,
tricritical point.

R > 0.3. The stability of these magnetic fluids is consis-
tent with computer simulation results and with the phase
diagrams of Ref. [15], which include solid-fluid coexis-
tence. Similarly, the continuous order-disorder transition
(where the magnetization density becomes finite) occurs,
at sufficiently high temperatures and densities, for any
value of R. The temperature at which the line of contin-
uous order-disorder transitions meets the condensation-
ordering phase boundary depends sensitively on R. Fur-
thermore, the nature and stability of this point depends
on the relative strength of the anisotropic interactions
(see Ref. [15]).

1.6
1.5 R=0.7 /Curie line
14 /
1.3 ’
T/T,"?

1.1

G FL

1.0

0.9

0.8
0.0 0.2 0.4 0.6 0.8 1.0

p*
FIG. 3. MF phase diagram of the ferromagnetic Heisenberg
fluid for R = 0.7. Symbols and units as in Fig. 2.
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For weakly anisotropic fluids (R < 0.38) the contin-
uous order-disorder transition (which is known as the
Curie line) ends at a critical endpoint, cep, on the con-
densation phase boundary. (The critical endpoint is thus
obtained by the simultaneous solution of the equations
for liquid-vapor coexistence and the Curie line.) The
corresponding temperature, T.ep, separates a regime of
isotropic liquid-vapor condensation (T > T,ep) from a
regime of condensation-ordering transitions (T < Tcep).
At temperatures below Tcep (i.e., inside the condensa-
tion phase boundary), the Curie line is globally unsta-
ble (see Sec. IV). This type of diagram is illustrated
in Fig. 1 (type I diagram) [34]. For stronger magnetic
anisotropies, 0.38 < R < 0.63, the critical endpoint be-
comes locally unstable (see Sec. IV) and a tricritical point
occurs at a temperature Ti., where the Curie line ter-
minates. For a system with R = 0.38 this point is lo-
cated exactly on the condensation phase boundary. The
tricritical temperature increases with the anisotropy R,
and this point separates two regimes of magnetic tran-
sitions. Above Ti. the magnetic transition is continu-
ous (Curie line), while below Ti. it becomes first or-
der. In this case, the transition is characterized by a
finite jump in the magnetization accompanied by a sim-
ilar jump in the density, as illustrated in Fig. 2 (type II
diagram). This is what we call a condensation-ordering
transition (see also Sec. IV). In a pressure-temperature
diagram the two condensation lines, which correspond to
isotropic-condensation and condensation-ordering transi-
tions, meet at a triple point at a temperature T},, where
a dilute isotropic gas, an isotropic liquid, and a denser
magnetic liquid coexist (the densities of these phases are
shown in the temperature-density diagram of Fig. 2, for
a system with R = 0.5). (The triple point is obtained
by simultaneously solving the four equations for the con-
stancy of the pressure and chemical potential of the three
coexisting phases).

As R increases, the triple-point temperature also in-
creases. For a system with anisotropy ratio R = 0.63 the
triple-point temperature is equal to the isotropic liquid-
vapor critical point. For systems with R > 0.63, the
isotropic critical point occurs at a temperature which is
below Ti; and thus it is no longer globally stable (type III
phase diagram, see Fig. 3). In this regime there is a sin-
gle first-order transition, namely a condensation-ordering
transition. This transition ends at a tricritical temper-
ature Ti., above which only a continuous order-disorder
transition remains. This type of phase diagram, char-
acterized by first-order coexistence between an isotropic
vapor and a magnetic liquid ending at a tricritical point,
persists up to R = oo, i.e., for systems with no isotropic
attractive interactions.

We further note that the MF phase diagram of a fluid
with R = oo is compatible with the simulation results
of Lomba and co-workers for the same model (see Fig.
4). These results are, however, not too precise as to the
location of the critical point, nor are they conclusive as
to its nature, presumably due to finite size effects.

The MMF phase diagram of the same model for R =
oo, and where the coupling between spins is given by a
Yukawa interaction,



52 PHASE DIAGRAM AND CRITICAL BEHAVIOR OF THE. . . 1921

4.0
R=00

3.5

PN
Curie line

3.0
2.5
2.0 /

1.5

1.0

0.5
0.0 0.2 0.4

% 06 0.8 1.0

p

FIG. 4. MF phase diagram of the ferromagnetic Heisen-
berg fluid for the potential of Ref. [22] [Egs. (6) and (7)
with I(r) = 0, and (50)]. Temperature in reduced units of
T = kpT/J; other symbols as in Fig. 3. The squares are
Gibbs ensemble MC data from Ref. [22].

e—z(r—a’)
Jry=J 7o) (50)

with z = o~!, was obtained by solving the set of Egs.
(46)—(49) and is shown in Fig. 5. These results corre-
spond to retaining coefficients ¢; up to [ = 6 in the ex-
pansion of the ODF, Eq. (23). We have checked that
the inclusion of more terms does not change the phase
boundaries. MMF-DFT predicts a phase diagram which
is qualitatively the same as that of MF theory, namely
first-order coexistence between a low-density isotropic
vapor and a high-density ferromagnetic liquid, ending

1

35 /
*
3F R =00
. 25F * R
(™
2r o \ a )
—_ % a
— ooy
1.5 r ) N
~_
1 ~
0.5 n L s
0 0.2 0.4 0.6 0.8 1

p

FIG. 5. MMF phase diagram of the ferromagnetic Heisen-
berg fluid (same potential as in Fig. 4). Solid lines, first-order
phase transitions; dashed line, Curie line. The squares are
the Gibbs ensemble MC data, and the diamonds the RHNC
results, of Ref. [22]. For error bars on the GEMC results, see
Ref. [22]. Temperature and density are in reduced units of
T* = kgT/J and p* = po®, respectively.

at a tricritical point where the Curie line also termi-
nates. The MMF tricritical temperature is found to be
Ty = 2.06, which is somewhat higher than the MF pre-
diction, Ty, = 1.876 (reduced temperatures are defined as
T* = kgT/J). Above this temperature one finds a line
of order-disorder critical points separating the isotropic
and ferromagnetic phases (Curie line). We note that
the absolute stability conditions for the isotropic phase,
within the zero-density approximation, ¢(12) = g(12) =
e P#(12) ysed in MMF theory, can be written as

1+1
1+2+

pBu; > 0, (51)

for all I > 1. These relations are always satisfied for
l > 2, so the density above which the isotropic phase is
unstable is the solution of

p= _?)ﬂTzl(T_i’ (52)
where
r [ 2 L cos r
U1=—£ g TdrﬂJ(r)[ h (BJ(r))
__sinh (BJI(r))
—ﬂJ(r) ] . (53)

The limit of stability of the isotropic phase with respect
to ferromagnetic fluctuations coincides with the line of
critical points (Curie line) obtained from Egs. (36), (39),
(40), and (41), since the order-disorder transition is con-
tinuous above the tricritical temperature (see Fig. 5 [35]).
In Sec. IV we discuss the stability (spinodals) of the vari-
ous fluid phases, in connection with the derivation of the
critical and multicritical behavior of the Heisenberg fluid.

Simulation results for the liquid-vapor coexistence
curve, obtained using Gibbs ensemble Monte Carlo
(GEMC) [36], are included in Fig. 5. The coexistence
vapor densities obtained by DFT are very close to the
simulation data points except at the highest temperature
considered in the simulations (7™ = 1.903), where the
theoretical density is too low. On the other hand, liquid
densities are systematically underestimated. The overall
agreement between simulated and theoretical curves is,
however, quite remarkable, in view of the drastic approx-
imations involved in the theory.

The simulation results of Ref. [22] indicate that the
Curie line ends at a critical endpoint on the vapor side
of the liquid-vapor coexistence curve, or at a tricriti-
cal point. The former scenario implies the existence of
an order-order critical point between two ferromagnetic
phases. In the range of temperatures above the critical
endpoint, the phase diagram would then describe coex-
istence between a magnetic liquid and a magnetic gas.
Neither DFT, suitably modified to describe coexistence
between ordered phases, nor Hemmer and Imbro’s MF
theory [15] predict such phase diagrams for any value of
(positive) R (see, however, Sec. IV). Although Ref. [22]
provides some evidence for the coexistence of two mag-
netic phases, this could turn out to be a finite size effect.
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Furthermore, the simulations are not very accurate in the
critical region, and thus the nature of the point where
the Curie line terminates cannot be ascertained from the
available Monte Carlo results. In order to settle this is-
sue, new simulations are in progress which approach the
critical point more closely. These simulations include free
energy calculations as well as a careful analysis of finite
size effects, which are particularly important in the crit-
ical region.

In Fig. 5 we also compare MMF theory with the refer-
ence hypernetted chain equation (RHNC) for the contin-
uous order-disorder transition [22]. In RHNC, as well as
in other integral equation theories, the location of con-
tinuous transitions is determined from the divergence of
the corresponding isothermal susceptibility. In general,
this yields the spinodals (or lines where the stability of a
bulk phase is lost with respect to a given type of fluctu-
ations), which coincide with the phase boundaries when
the transition is continuous (see also Sec. IV). For the
Curie line the diverging susceptibility is magnetic. The
agreement between the Curie lines obtained with this so-
phisticated theory and MMF is rather good. As men-
tioned in the previous paragraph, for the model given by
Egs. (6), (7), and (50) only qualitative MC estimates of
the order-disorder transition were obtained, and are thus
of little value in testing the theoretical results. The line
of Curie points has, however, been determined with great
precision [29] by a MC method based on finite size scal-
ing analysis of the fourth-order magnetization cumulant
[37] combined with histogram techniques [38] for an in-
teraction potential similar to that of Egs. (6), (7), and
(50), with a cutoff distance r, = 2.50. (The choice of
a cutoff guarantees identical potentials for the various
system sizes considered in the MC calculations.) These
results are compared in Fig. 6 with MMF-DFT predic-
tions for the same (truncated) potential. The agreement
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FIG. 6. MMF phase diagram of the truncated ferromag-
netic Heisenberg fluid [same potential as in Figs. 4 and 5 but
with J(r) = 0 for » > 2.50]. Solid lines, first-order phase
transitions; dashed line, Curie line. The diamonds are MC
results from Ref. [29]. The error bars are of the same size as
the symbols. Temperature and density are in reduced units
of T* = kgT/J and p* = po>, respectively.

is again remarkably good. The large change in slope en-
tailed upon truncation of the potential and the drop in
the tricritical point temperature (from T* = 2.06-1.39)
are captured fairly accurately by MMF. (A similar drop
of the critical point temperature is observed for the spher-
ically symmetric Yukawa potential upon restricting the
range of the potential [39,40].) The slope of the MMF-
DFT Curie line is, however, somewhat small when com-
pared with MC results.

IV. CRITICALITY IN THE HEISENBERG FLUID
A. Stability of bulk phases and spinodals

Using Egs. (17) and (18), the MF Helmholtz free en-
ergy density is rewritten as

1 1
floym) = fus(p) — 3 P + EJintpz"]% + pkpTa(x),
(54)

where

a(z) = ln( .7; ) ) (55)

sinh =

and we have introduced the variable z = BJ;,4pn:. The
equilibrium chemical potential, u, and the external mag-
netic field, H, are obtained by partial differentiation of
the free energy density, Eq. (54), with respect to p and

-
8fhs(p)

_ 8f(p7 "71) _ : : 2
.u'(pa 771) - (T ” - Tp~ int P + JthTh
+kpTa(x) + kpTz o (), (56)

af(pa 7]1)

H(p,m) = ( an,

) = et Im + & (@)],  (57)

where the prime denotes differentiation with respect to
the function’s argument. In zero magnetic field, Eq. (57)
is equivalent to Eq. (16) for the equilibrium polar order
parameter, 77;. The equilibrium thermodynamic fields,
u# and H, may also be determined by requiring that the
grand potential functional 2 be stationary with respect
to density fluctuations, i.e.,

lAﬂzl onN

=S i Ap =0,
% V£ p " 0 (58)

with the densities p; = p and p, = 7, or

198 _ 59)

Vop (
and

1 90

Vom (60)

Local stability of the bulk phases further requires that
this stationary point be a minimum, i.e., that the second
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variation of the grand potential functional be strictly pos-
itive,

_AZ

T v Z Bp,

Equation (61) is satisfied when the matrix of second
derivatives of  with respect to the densities p and 7;
has positive eigenvalues. When one of these eigenvalues
vanishes, the bulk phase is unstable with respect to fluc-
tuations in p and/or n; associated with the eigenvector
corresponding to that zero eigenvalue. This will occur

Apl Ap; > 0. (61)

when
det M =0, (62)
J
[1 + Jth 1 32fhs Imt
kBT int 89 int

At equilibrium in zero magnetic field, it follows from Eq.
57 that n; = —a/(z), which upon substitution into the
previous equation yields the simple result

Jmtp n 1 82 fhs Iint ’ 2
1 — ) =0.
[ T O\ T o T g ) TN =0

(66)

The solution(s) of Eq. 66 is (are) the mean-field spin-
odal(s) of the Heisenberg fluid. This spinodal has several
branches, associated with instabilities of the bulk phases
with respect to different density fluctuations.

In the isotropic phases 77; = 0 and so is a(z) and all its
odd-order derivatives. In this case, there are two different
solutions to Eq. (66). The first of these is given by

1 82 fhs Iint

Jint Op? Jint

=0, (67)

which for a finite Ji, is the usual MF liquid-vapor spin-
odal of an isotropic fluid with attractive interactions of
strength Ijne.

A second solution of Eq. (66) with 77 = 0 corresponds
to

Jlntp
1 =
+ a0 =0, (68)

which, using Eq. (55) to calculate the second derivative
of a(x) at x = 0, becomes

_ 3kgT
Jint ’

This is the well known result for the MF Curie line.
Finally, the zeros of Eq. (66) when 7; # 0 correspond
to instabilities caused by fluctuations in both p and 7;.
One such spinodal is associated with a first-order tran-
sition from a disordered vapor to a magnetic liquid (for
R > 0.38, below the tricritical temperature). We call this
a condensation-ordering transition, since both density

(69)

1923
where M is the stability matrix, defined as
1 9%Q
i = — . 63
7V 0pi0p; (63)

Using Egs. (62) and (63), we find that the grand potential
Q becomes locally unstable when

(32f(p,171)> <52f(p,771)) _ (52f(p,m))2 —0
dp? ™ oz B dpdm, ’

(64)

which is easily calculated for the Heisenberg fluid within
MF theory, as

o) { =G - 32 - @@)? 1 - Ee @) | - s @) 0 (65)

and magnetization change at the corresponding phase
boundary. Additionally, the system may (at least in prin-
ciple) exhibit condensation between two magnetic fluids.
We call this an order-order transition, since the two fluid
phases exhibit orientational order. This is a novel transi-
tion for the ferromagnetic Heisenberg fluid, evidence for
which has been suggested by the simulations of Ref. [22].

The solutions of Eq. (66) were found numerically by
solving it simultaneously with the equilibrium conditions,
Egs. (56) and (57), in zero magnetic field and fixed T,
as a function of the density. We note that the density
is restricted to be larger than the Curie density [i.e., the
solution of Eq. (69)], in order that nonzero (equilibrium)
values of 7; may be obtained. We solved the equations
for the whole range of (positive) R’s, over a wide range
of temperatures, and found at most one zero with finite
magnetization. This implies that for this system (at least
within the MF approximation), no first-order transitions
may occur between ordered fluid phases, and thus the
possibility of a magnetic (order-order) critical point [22]
seems to be excluded, in agreement with the results of
Hemmer and Imbro [15] (we will return to this point in
Sec. IVC).

B. Criticality

If the stability matrix M has a zero eigenvalue, higher
order derivatives need to be considered to establish the
local stability of the system. If this is stable, a zero eigen-
value of M corresponds to criticality [41]. Suppose the
determinantal equation, Eq. (62), has a simple zero for
the critical values of the densities p; and p2. Then a
special direction in density space is defined by the eigen-
vector v = (v1,vz) of M corresponding to that zero eigen-
value [42]. Consider deviations from the critical densities
in the direction of v in density space, measured by the
small parameter §:

P = pc+ (v1,v2) 6. (70)
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An expansion which is analogous to a Landau expansion
in ¢ is given by
1 1 o 6" Cn(pec)
7Ue) = 3;9pe) +?;3T’ (71)

where C,(p) is the nth derivative of Q (divided by the
volume V') in the direction of v. Note that the expansion,
Eq. (71), of 2/V about the critical point begins with
the n = 3 term. The equilibrium conditions, Eqs. (59)
and (60), imply that the term linear in § vanishes (Q is
stationary with respect to both p and 7;). In addition,
at criticality, the term quadratic in é also vanishes, since
v is the eigenvector corresponding to the zero eigenvalue.
A necessary condition for a stable critical point is that
the third derivative of Q/V in the direction of v vanishes,

1 8%Q
Vo -0 (72)

otherwise instead of a minimum the system would have
a saddle point.

The Heisenberg fluid may exhibit three classes of crit-
ical points, which are associated with the different zeros
of the determinant, Eq. (66). The first class corresponds
to the solution of Eq. (67). In this case the stability
matrix has a single nonzero element, namely Ms;. The
eigenvector corresponding to this zero eigenvalue is the
solution of

Cs

Mzz V2 = 0, (73)

from which the normalized eigenvector is v = (1,0). Re-
calling that p; = p, we conclude that the instability is
driven by (number) density fluctuations, and thus the
order parameter of the corresponding phase transition is
simply the density difference Ap. Condition 72 is now
written

83.f(pa771) _ a3fhs(p) _
T ) T ey T 0, (74)
m
which is the usual MF condition for the liquid-vapor crit-
ical point of an isotropic fluid. Note that, within the
simplest MF approximation, the anisotropic interactions
do not contribute to the thermodynamic functions of the
isotropic phases, and consequently the liquid-vapor crit-
ical point is independent of Ji,¢ (this is not true in an
exact theory and is no longer the case in MMF-DFT).
The second class of critical points of the Heisenberg
fluid corresponds to the solution of Eq. (66) given by
Eq. (69). Now Mji; is the only nonzero element of the
stability matrix, and the eigenvector corresponding to
the zero eigenvalue of M is given by

MU_ v = 0, (75)

from which the normalized eigenvector is v = (0,1).
Clearly, the instability is driven, in this case, by fluctua-
tions in the magnetization density, and the order param-
eter of the corresponding critical point is the magnetic
density or polar order parameter, ;. The condition for
criticality, Eq. (72), is now

(asfa(:;%m)>p —o, (76)

which is identically zero when 7; = 0. This is an order-
disorder (Curie) critical point: the fluid is isotropic in
the high-temperature, low-density phase, and magnetic
otherwise.

Finally, if there is a root of Eq. (66) with nonzero n;
for which condition 72 is satisfied, the system exhibits
an order-order (or magnetic) critical point. We have
checked, within MF theory, that these two conditions
are not simultaneously satisfied for any (positive) ratio
R of magnetic to isotropic interactions. Thus, no MF
magnetic critical point is to be expected for Heisenberg
fluids characterized by positive R.

So far we have derived the necessary conditions for
the existence of (various types of) critical points. Fur-
ther conditions are required to guarantee their local and
global stability. The condition for local stability is eas-
ily written in terms of the coefficients of an appropriate
Landau expansion. By contrast, global stability requires
that the local minimum be the absolute one, which can-
not be written in terms of a local expansion. Indeed, this
condition requires the knowledge of all the stationary so-
lutions of the grand potential functional, for the given set
of thermodynamic fields, which is often a rather difficult
task. Here we have simplified this task, by considering
fluid phases only.

C. Landau expansions

Close to a critical point, a Landau expansion can be
derived for the free energy in terms of the corresponding
order parameter, as was originally proposed by Landau
[43] and later developed by Bogolubov [44]. This (phe-
nomenological) approach was applied to tricritical phe-
nomena by Griffiths [45], and the connection between
such an expansion and the MF theory of microscopic
models of metamagnets has been reviewed by Kincaid
and Cohen [46].

The order parameters of two of the critical points dis-
cussed in the previous paragraphs were easily identified
with the density difference, Ap = p — p., and the magne-
tization, ;. We define (by suitable Legendre transforms)
the free energy densities (of two fields, and one density
or order parameter)

1
gp(Ta H7 P) = vQ(Tv H7 /l') + pp, (77)

1
g'fh(T,ﬂwnl) = VQ(T7H7H)+H771' (78)

The fields ¢ and H can be eliminated from the right-hand
side of Egs. (77) and (78) using the equilibrium condi-
tions, Egs. (56) and (57). To construct the Landau free
energy close to the isotropic liquid-vapor critical point,
we expand g, in a power series in Ap about p = p.. The
coefficients of the expansion are partial derivatives of the
Helmholtz free energy density f(p,7n:) with respect to p,
at fixed temperature and magnetic field H = 0. Since in
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the isotropic phase H = 0 implies n; = G, the calculation
of these coeflicients is quite trivial.

In an analogous fashion, we can construct a Landau
free energy close to the Curie critical point by expanding
gn, in a power series in 7; about 7, = 0. The coeffi-
cients of the expansion are now partial derivatives of the
Helmholtz free energy density f(p,n1) with respect to 7y,
at fixed temperature and chemical potential y, which are
evaluated at 7; = 0. By symmetry, the expansion of g,,
contains no odd powers of 7;, thus we can write

0 1 aan .
9 (Typy ) = gy (T, 12,0) + - ( ;n) n2n.
M n ; (Zn)! 817% T 1

(79)

Many of the thermodynamic properties of the Heisenberg
fluid including its (order-disorder) phase diagram can be
deduced from the free energy g,, obtained from Eq. (79).
The behavior of the free energy is determined by the be-
havior of the coefficients of the expansion as functions
of T and u, which in turn depend on the parameters of
the Hamiltonian, I;yy and Jin [46]. For the Heisenberg
fluid this depends critically on the parameter R. In [46]
a full discussion can be found of the phases and phase
diagrams that may occur in a metamagnet, including a
series of graphs which illustrate the behavior of g. Here
we restrict our attention to the critical order-disorder
transitions (Curie line and tricritical points) discussed
in Sec. III.

The Curie line is given by the condition that the second
derivative of g, with respect to 7,, at fixed T and g,
vanish when 7; = 0. Using Eq. (78) the first derivative
of g,, is easily shown to be

8g,,)
99m ) _ H, 80
(am ) (80)
N

(52), - (52 +5(2), ()
ont J, on} J, om ), \ 9pdn3
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where the field H is to be evaluated with the help of
the equilibrium conditions, Egs. (56) and (57). Now the
second derivative of g,, with respect to 7y, at constant p,
can be written in terms of derivatives of H and p [Egs.
(56) and (57)] with respect to the densities p and 7y, as

(), = (), = ), (on), (5)
on? /), om /), om/, om ), \0p /),
(s1)

where the derivative of p with respect to 7, at constant
u, is given by

-1
(ﬁ) . (éli) (8_"> . (82)
om/, on),\0p/,,
Note that Eq. (82) vanishes when n; = 0. It is then
straightforward to check that, by setting (g—g) = 0,
m

the result for the Curie line, Eq. (69) is (again) obtained.
Local stability of the order-disorder critical points re-
quires that the fourth derivative of g,, with respect to 7;
be positive.

D. Tricritical line

Not all the solutions of Eq. (69) correspond to stable
critical points. Some fall below the condensation phase
boundary and are thus globally unstable, while a second
class is locally unstable. The point at which local stabil-
ity is lost is the tricritical point. The fourth derivative of
gn,, or the third derivative of H, with respect to 7, at
fixed T and p, is given by

(on), Gram) = (), (57)
o ), \9p*0m om ), \9p /),

8%p 0°H dp ) (6%) (62H> (83;)) (BH)
+3( =% —— ) +3( == = + (=% =) , 83
(677% ) u (3/30771 ) (8171 J\ont ), \op? ), o), \9%p ), (83)

which, when n; = 0, simplifies to

O3H 8H azp) ( 52H )
=) =535 ) +3(a35) (=== ) (84

( on3 >u ( on3 )p (‘977% M O0pdm (84)

Using the MF expressions for the derivatives of H and u

with respect to the densities, evaluated on the Curie line,
Eq. (69), the third derivative of H, Eq. (84), becomes

9°H .| 6 82 fis -t
= - - Iin .
( on} ),L 27(ksT) 5Jint ( dp? t)

(85)

Positive values of Eq. (85) correspond to stable Curie
(order-disorder) criticality. Tricritical behavior is ob-

[
tained when the right-hand side of Eq. (85) vanishes
[45,46], i.e.,

82 fhs
dp?

5
= Iint + EJint- (86)

Since the density is given by Eq. (69), the (scaled) tricrit-
ical temperature is uniquely determined by R. Thus for a
given R, the Curie critical point is locally stable in the re-
gion where the right-hand side of Eq. (85) is positive. The
tricritical line (as a function of R) is given by the solution
of Eq. (86). Note, however, that for weakly anisotropic
systems the tricritical point given by Eq. (86) will fall
below the isotropic-liquid-vapor coexistence curve, thus
becoming globally unstable. This implies, as was found
numerically, that there is a lower threshold of anisotropy
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ratios R below which tricriticality does not occur. This
threshold is not given by the expansion of g,, since the
latter is a local expansion.

The MF equation for the tricritical line may also be
derived by several alternative methods. Omne which is
similar to the above, but requires much less algebra, is
the following [41]: we consider variations in p and m;
about the Curie point, of the type

(p, 771) = (PCuriea 0) + (0, 1) d+ (37’ y) 62, (87)

where v = (0, 1) is the direction along which the second
and third derivatives of f vanish, and u = (z,y) is an as
yet arbitrary direction in density space. The correspond-
ing grand potential free energy density can be written
as

1, _ 1 . 4 6
VQ(Pﬂh) - ‘/QCune""D‘S +0(6 )a (88)

where the coefficient D is given by

_ 19
T 4! Ov4

10
2 Ou?

1 83f

D 2 Judv?’

(89)

evaluated at the Curie critical point. The differential op-
erators on the right-hand side of Eq. (89) are derivatives
of the Helmholtz free energy density in the directions of
v and u. Evaluating these derivatives on the Curie line
and minimizing D with respect to z and y, we find that
the direction in density space which minimizes D is given
by

3 82 fis -
Tmin = '2_ kBT (a—,{;—_ - Iint> ) (90)
and arbitrary y. We obtain for Dy,
9 6 8% fn -
min = < (ksT)? - * —Iin . (91
D= G ba)* |7 = (gt i) |- 1)

By setting Dumn = 0, we find (again) the equation for the
line of tricritical points, Eq. (86).

A third derivation of the tricritical line, which has a
clear physical meaning, follows from the requirement that
the derivative of the MF pressure with respect to p vanish
in the limit of zero magnetization (7, = 0) on the ordered
side of the order-disorder transition. Using Eq. (17) for
the pressure and Eq. (16) for the equilibrium polar order
parameter, the above limit can be evaluated explicitly,
and we find once more Eq. (86) for the MF tricritical
line.

‘We note, in passing, that the MF equation for the tri-
critical line of the Heisenberg fluid can also be obtained
from Eq. (7.24) of Ref. [12] by restricting the expansion,
Eq. (23), for the orientational distribution function to
terms up to I = 1.

Lastly, in Fig. 7 we plot the results for the tricritical
density obtained from solving Eq. (86), as a function of
R. Note that for positive R’s the line of tricritical points
has a limiting lower density p* = 0.224, which occurs for
R = oo. The stability of the tricritical points is further
discussed in the next subsection.
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FIG. 7. MF tricritical line of the ferromagnetic Heisenberg
fluid vs R. The limiting (reduced) density (for |R| — o0) is
p* = 0.224. The short-dashed line marks the fourth-order
critical point, where the system crosses over from tricriti-
cal behavior to a regime where an order-order critical point
may exist; note that it occurs for a negative value of R and
pan = 0.211.

E. Magnetic critical points

The calculation of the sixth derivative of g,, is long
and tedious, but its knowledge is required not only to
check that the tricritical points derived earlier are locally
stable but, more importantly, to establish if there is a set
of parameters for which they become unstable. At this
point the system will cross over from tricritical behavior
to a regime where an order-order critical point may be

found [46,47]. After somewhat lengthy algebra, (%?)
"

at m; = 0 is found to be
8°H 8°H 9? 0*H
(5), = (5),* 2 (54), (o)
oy u oy p ony “ pOn;
2\ 2 3
(a2, (a0
O/ u \0p*0m:
i), (7o)
+5( == —), 92
(3771‘ . \9pOm (92)
which, after calculating the derivatives within MF and

evaluating them at a point which satisfies simultaneously
Egs. (69) and (86), becomes

85HY _ 972(kpT)? (1  18kpT 8°fun, (93)
omi ),  5Jin 7 5J2, 0p3 )

This derivative is positive at all points which are simul-
taneous solutions of Egs. (69) and (86), for systems char-
acterized by positive ratios R of anisotropic to isotropic
interaction strengths, thus confirming the local stability
of the MF tricritical points found in Sec. III including
the result for R = oo.

The third derivative of fi,s(p), however, changes sign as
a function of the density and consequently it is possible
that Eq. (93) has a zero which also satisfies Egs. (69) and
(86) for a different set of parameters. This occurs at a
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value of Jin¢ which is the solution of

3 2
0 fhs — _i Jint , (94)
9p3 126 kgT

which, when coupled with Egs. (69) and (86), defines the
density and the ratio R of anisotropic to isotropic in-
teractions at which this fourth-order critical point may
occur. These three equations have indeed a solution, and
this (fourth-order critical) point is also plotted in Fig. 7,
where it is seen to occur at a finite negative value of R and
at a density p* = 0.211. Since our Eq. (69) is only valid
for positive J (i.e., ferromagnetic interactions), this im-
plies that, within MF theory, a fourth-order critical point
may occur for a ferromagnetic Heisenberg fluid with ad-
ditional long-ranged repulsive interactions. This higher-
order critical point [46] has been given particular names
which are, however, a matter of some controversy [47].
Since that discussion is not particularly relevant in the
context of this paper, we avoided the use of any of those
names. »

Within the MF approximation, we thus find that the
tricritical point is locally stable over the whole range of
positive R’s for which it occurs, becoming unstable at a
finite negative value of the ratio of anisotropic to isotropic
interaction strengths R. For sufficiently strong isotropic
repulsions (for |R| < |Ra4tnl|), the critical behavior of the
Heisenberg fluid is characterized by an order-order (mag-
netic) critical point [46,47]. A typical phase diagram in
this regime is shown in Fig. 8. In these systems, the Curie
line ends at a critical endpoint on the low-density branch
of the first-order phase diagram and, for temperatures
between the critical endpoint and the magnetic critical
point, phase coexistence is between two magnetic fluids.
A systematic investigation of the MF phase diagram for
the whole range of negative R’s, and of the existence of

Curie line
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T/ T,
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FIG. 8. MF phase diagram of the ferromagnetic Heisen-
berg fluid in the magnetic criticality regime (R = —5). p* is
as before, but T, is now the temperature of the (magnetic)
liquid-vapor critical point, ¢,». Solid lines, first-order phase
transitions; dashed line, Curie line; IG, isotropic gas; FG,
ferromagnetic gas; FL, ferromagnetic liquid. The Curie line
terminates at a critical endpoint (cep) on the vapor side of
the liquid-vapor coexistence curve, as seen in the simulations
of Ref. [22].
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magnetic critical points for similar systems within MMF
theory, is currently being conducted. The existence of
such points in generalized Heisenberg fluids, however, is
significant in the context of the simulations of Ref. [22]
since, in contrast to the theoretical results of MF and
MMF theory for a system with R = oo, it indicates that
magnetic critical points may be expected for Heisenberg
fluids with sufficiently “strong” anisotropic interactions.
Whether the missing anisotropic correlations neglected
by MF and MMF theories are enough to induce a mag-
netic critical point in the system with R = oo, as sug-
gested in Ref. [22], remains an open question. We are
currently addressing this problem both by refining the
simulation results and by using more sophisticated theo-
ries.

We finish this section by indicating an alternative
method to derive the fourth-order critical point, which
is computationally simpler. Furthermore, it provides a
means of checking the previous, rather lengthy, deriva-
tion. We start, as in the preceding section, by considering
variations in p and 7; of the type

(p7 7]1) = (ptricritical, 0) + (07 1) d+ ("Emimy) 62’ (95)

where v = (0, 1) is the direction along which the second,
third, and fifth derivatives of f vanish, and u = (Zmin,¥y)
is a direction in density space. T, is given by Eq. (90),
and y is as yet arbitrary. The corresponding grand po-
tential free energy density can be written as

1 1
VQ(/’, 771) = Vntricritical +D &° +0 (58) ’ (96)

where the coefficient D is given by
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1 85f

D= 4! Judvt’

(97)

evaluated at a point on the tricritical line, and the dif-
ferential operators on the right-hand side of Eq. (97) are
derivatives of the Helmholtz free energy density in the
directions of v and u. Evaluating the MF derivatives for
the Heisenberg fluid on the tricritical line and minimiz-
ing D with respect to y [z is given by Eq. (90)], we find
that the direction in density space which minimizes D is
given by (Zmin,0). We obtain for Dy,

33 1 18 8%
3 k)2 (L =) .
1007, (k8T) (7 5T, 98 )

int

Din =

(98)

By setting Dmin = 0, we find (again) the equation for the
fourth-order critical point, Eq. (94).

V. CONCLUSIONS

In this paper we have studied the phase diagram and
the criticality of the Heisenberg fluid using MF and
MMF-DFT. The latter is a more sophisticated version of
MF theory, which weighs configurations in the average of
the perturbative part of the energy by the zero-density
approximation of the pair distribution function. For a
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fluid characterized by anisotropic attractive interactions
(R = o0), both theories predict a phase diagram with
a first-order (condensation) transition between a disor-
dered gas and an ordered (magnetic) liquid, which ends
at a tricritical point where the Curie line (order-disorder
transition) also terminates. The MMF-DFT phase dia-
gram is in semiquantitative agreement with the results
of recent Monte Carlo simulations, Ref. [22], which may,
however, suggest a different type of criticality.

In order to throw some light on the critical behavior of
this class of fluids, we used simple MF theory to study the
global phase diagram of these systems as a function of the
ratio of anisotropic to isotropic interaction strengths, R.
For positive R’s the results of Ref. [15] are reproduced.
These include three different types of phase diagram. For
weakly anisotropic potentials, the order-disorder transi-
tion is always continuous and terminates at a critical end-
point on (the liquid side of) the liquid-vapor coexistence
curve. Increasing the anisotropy above a certain thresh-
old drives this magnetic transition first order at lower
temperatures, thus leading to the appearance of a tri-
critical point and a ferromagnetic liquid-isotropic liquid-
vapor triple point. For strongly anisotropic potentials,
ordinary liquid-vapor phase separation is preempted by a
direct transition between a low-density disordered phase
and a ferromagnetic liquid which becomes continuous at
a tricritical point. We have studied the stability of the
Heisenberg fluid by deriving explicit expressions for the
MF spinodal, which was found to possess three differ-
ent branches: isotropic condensation, a Curie line, and
a third branch corresponding to simultaneous condensa-
tion and ordering transitions. The last branch may, in
principle, involve one or two ordered phases. For sys-
tems with positive R, i.e., ferromagnetic systems with
additional isotropic interactions, only the first possibility
was found to occur, indicating the absence of an order-
order (magnetic) critical point in these fluids (at least
within this approximation).

We have also derived explicit expressions for the
isotropic and Curie critical points and studied their lo-
cal and global stability. The Curie critical endpoint be-
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comes locally unstable at a tricritical transition. The line
of tricritical transitions was also derived and its stability
was further analyzed. It was found that MF tricriticality,
when it occurs above the condensation curve, is stable for
the whole range of positive R. We have also found that
the tricritical line survives for systems with negative R,
i.e., ferromagnetic systems with additional (long-range)
isotropic repulsions. As the strength of the isotropic re-
pulsions is further increased, a fourth-order critical point
is found where the sixth derivative of the free energy with
respect to the magnetization, at fixed temperature and
chemical potential, vanishes. Here, the tricritical line
becomes locally unstable, and the phase diagram of sys-
tems with stronger isotropic repulsions is characterized
by a Curie critical endpoint on the vapor side of the co-
existence curve, as well as a magnetic critical point, i.e.,
criticality between two ordered magnetic phases. The lat-
ter coexist for a range of temperatures between the Curie
critical endpoint and the magnetic (order-order) critical
point. These results also suggest that the existence of
magnetic critical points may be expected in simple mag-
netic fluids, but whether or not this is the criticality of
the fluid with no isotropic interactions, R = oo, remains
an open question.

The possibility of finding magnetic colloids with suffi-
ciently strong ferromagnetic interactions (including col-
loids with additional repulsive isotropic interactions) to
exhibit a magnetic critical point seems (to us) remote but
not out of reach.

ACKNOWLEDGMENTS

J.M.T. acknowledges the financial support of JNICT/
Programa Ciéncia in the form of studentship no.
BM/3278/92-RM. M.T.G. is grateful to JNICT for sup-
port through the project PBIC/C/CEN/1844/92. We
thank Dr. B. Groh and Professor S. Dietrich for send-
ing us unpublished results. The Laboratoire de Physique
Theérique et Hautes Energies is Laboratoire associée au
Centre National de la Recherche Scientifique-URA 63.

[1] D. Wei and G. N. Patey, Phys. Rev. Lett. 68, 2043
(1992).

[2] D. Wei and G. N. Patey, Phys. Rev. A 46, 7783 (1992).

[3] J. J. Weis, D. Levesque, and G. J. Zarragoicoechea, Phys.
Rev. Lett. 69, 913 (1992).

[4] J.J. Weis and D. Levesque, Phys. Rev. E 48, 3728 (1993).

[5] See, e.g., M. P. Allen and D. J. Tildesley, Computer
Simulation of Liquids (Oxford University Press, Oxford,
1987), and references therein.

[6] K. Sano and M. Doi, J. Phys. Soc. Jpn. 52, 2810 (1982).

[7]) M. Widom and H. Zhang, in Complezx Fluids, edited by
E. Sirota, D. Weitz, T. Witten, and J. N. Israelachvili,
MRS Symposia Proceedings No. 248 (Materials Research
Society, Pittsburgh, 1992), p. 235.

[8] D. Wei, G. N. Patey, and A. Perera, Phys. Rev. E 47,

506 (1993).
[9] H. Zhang and M. Widom, J. Magn. Magn. Mater. 122,
119 (1993).
[10] H. Zhang and M. Widom, Phys. Rev. E 49, R3591 (1994).
[11] B. Groh and S. Dietrich, Phys. Rev. Lett. 72, 2422
(1994).
2] B. Groh and S. Dietrich, Phys. Rev. E 50, 3814 (1994).
3] M. Widom and H. Zhang, 74, 2616 (1995).
4] J. S. Hgye and G. Stell, Phys. Rev. Lett. 36, 1569 (1976).
5] P. C. Hemmer and D. Imbro, Phys. Rev. A 16, 380
(1977).
[16] L. Feijoo, C.-W. Woo, and V. T. Rajan, Phys. Rev. B
22, 2404 (1980).
[17] R. M. Stratt, Phys. Rev. Lett. 53, 1305 (1984).
[18] P. de Smedt, P. Nielaba, J. L. Lebowitz, J. Talbot, and

1
1
1
1



52 PHASE DIAGRAM AND CRITICAL BEHAVIOR OF THE . .. 1929

L. Dooms, Phys. Rev. A 38, 1381 (1988).

[19] D. Marx, P. Nielaba, and K. Binder, Phys. Rev. Lett. 67,
3124 (1991).

[20] J. J. Weis and D. Levesque, Phys. Rev. Lett. 71, 2729
(1993).

[21] M. E. van Leeuwen and B. Smit, Phys. Rev. Lett. 71,
3991 (1994).

[22] E. Lomba, J. J. Weis, N. G. Almarza, F. Bresme, and G.
Stell, Phys. Rev. E 49, 5169 (1994).

[23] E. Lomba, J. J. Weis, and G. Stell, Phys. Rev. E 50,
3853 (1994).

[24] P. Bolhuis and D. Frenkel, Phys. Rev. Lett. 72, 2211
(1994).

[25] P. Bolhuis, M. Hagen, and D. Frenkel, Phys. Rev. E 50,
4880 (1994).

[26] P. 1. Teixeira and M. M. Telo da Gama, J. Phys. Condens.
Matter 3, 111 (1991).

[27] P. Frodl and S. Dietrich, Phys. Rev. A 45, 7330 (1992).

(28] P. Frodl and S. Dietrich, Phys. Rev. E 48, 3741 (1993).

[29] M. J. P. Nijmeijer and J. J. Weis (unpublished).

[30] R. Evans, Adv. Phys. 28, 143 (1979).

[31] N. F. Carnahan and K. E. Starling, J. Chem. Phys 51,
635 (1969).

[32] M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions (Dover, New York, 1972).

[33] M. M. Telo da Gama, Molec. Phys. 52, 585 (1984).

[34] The continuous transition is the locus of points where

Eq. (16) acquires a nontrivial (71 # 0) solution. This is
given by BJincp = 3.

[35] The MF result for the magnetic instability, BJintp = 3, is
recovered upon expanding Eq. (53) to lowest order and
using Eq. (52).

[36] A. Z. Panagiotopoulos, Molec. Phys. 61, 122 (1989).

[37] K. Binder, Z. Phys. B 43, 119 (1981).

[38] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett.
61, 2635 (1988).

[39] M. H. J. Hagen and D. Frenkel, J. Chem. Phys. 101,
4093 (1994).

[40] E. Lomba and N. G. Almarza, J. Chem. Phys. 100, 8367
(1994).

[41] A similar analysis was carried out for ternary mixtures
by S. Krinsky and D. Mukamel, Phys. Rev. B 11, 399
(1975).

[42] If there is a double zero, no single direction is defined.
Instead of Eq. (71), one would obtain an expansion anal-
ogous to a Landau expansion in two order parameters.

[43] L. D. Landau, in Collected Papers of L. D. Landau, edited
by D. ter Haar (Pergamon, Oxford, 1965).

[44] N. N. Bogolubov, Physica 26, S1 (1960).

[45] R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).

[46] J. M. Kincaid and E. G. D. Cohen, Phys. Rep. 22, 57
(1975).

[47] D. Roux, C. Coulon, and M. E. Cates, J. Phys. Chem.
96, 4174 (1992).



