
PHYSICAL REVIEW E VOLUME 52, NUMBER 2 AUGUST 1995

Regulation of ramified electrochemical growth by a difFusive wave
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The role of ion transport during ramified growth in a dilute, binary electrolyte is investigated
by obtaining a wave solution to effective equations derived by asymptotic analysis of the Nernst
transport equations. The concentration profile exhibits a diffusion layer ahead of the growing tips,
in agreement with experiment and theory. The non-Laplacian electric Geld is stronger in the diffusion
layer than in the bulk, and cations are accelerated through the layer toward the tips. The well-known
growth speed of the aggregate envelope, roughly equal to the speed of migrating anions in the bulk
emerges as the characteristic wave speed of our equations. The "copper ratio" is also predicted and
is linked to the regulation of growth by the diffusive wave. Finally, an estimate of the induction
time for ramified growth is derived, based on the idea that a critical diffusion layer width must be
at tained.

PACS number(s): 81.15.Pq, 66.10.—x, 68.70.+w, 66.30.@a

I. INTRODUCTION

The complex morphologies produced by the electro-
chemical deposition of metal ions from aqueous solu-
tion exemplify the subtle and intriguing behavior that
a many-body system can exhibit far from equilibrium
[1—13]. The case of a dilute, binary electrolyte in the
absence of an external mixing agent provides a particu-
larly rich system for experimental and theoretical study.
The typical experimental cell consists of a narrow (0.01—
0.10 mm) region of electrolyte, (0.01—0.10) M CuSO4 or
ZnSO4, confined between two insulating planes. At op-
posite ends of the cell (in either a radial or parallel geom-
etry), separated by 1—10 cm, are pure metal electrodes
of the same type as the cationic species. Deposition is
driven either by a constant applied potential of 1—30 V
or by a constant current density of 1—50 mA/cm . The
growth envelope advances with speeds of 0.1—50 pm/sec
(corresponding to small and large applied potentials, re-
spectively). Varying the applied potential (or current)
and concentration produces a wide range of growth mor-
phologies that have been studied extensively over the last
decade.

Theoretical analysis of the growth process typically
falls into three categories: stability analysis, Monte-Carlo
simulation, and the solution of model partial differen-
tial equations. The first involves modeling the stability
of a Hat interface to shed light on the onset of nonuni-
form growth [14—16], while the second involves simu-
lations akin to diffusion-limited aggregation to predict
growth morphology and microstructure [17—20]. Our in-
vestigation follows the third theoretical approach, which
involves the solution of various approximate equations
of ion transport and deposition kinetics [6,21—27]. An
important goal in solving the equations is to link funda-
mental properties of the electrolyte, such as ion charges
and mobilities, to properties of the growth process, such
as the speed of the aggregate envelope and perhaps even
aspects of the morphology of the deposit. The solution of

the transport equations also provides us with a detailed
description of ion concentrations and the electrostatic po-
tential (and thus the ion fluxes) that would be difBcult
to observe experimentally.

Our focus is on the role of transport ahead of the de-
posit in regulating the advance of established growth, a
subject that has been investigated both experimentally
and theoretically [1,12,22,23,28—33]. In order to be con-
sistent with previous Bndings, we would expect an an-
alytic solution to the transport equations to correctly
predict the growth speed of the aggregate envelope ob-
served by Fleury et al. [33] (and subsequently by others
[10,12,22,30]), which is explained by an ohmic transport
model. It is found that, especially at high current densi-
ties, the growth speed is roughly equal to the migration
speed of anions in the bulk electric Beld. In this paper, we
present an asymptotically accurate solution of the Nernst
transport equations that does indeed predict the growth
speed as well as experimentally observed concentration
proBles. Our results include neutrality of the electrolyte
(away from the double layers) as well as a non-Laplacian
potential.

The assumption of electroneutrality is often invoked
to justify Laplace's equation for the electrostatic poten-
tial. Indeed, the most common approximations in elec-
trochemistry, the so-called primary and secondary cur-
rent distributions, involve a Laplacian potential [21,25].
(The former assumes the electrodes to be equipoten-
tial surfaces, while the latter includes the Butler-Volmer
equation for deposition kinetics. ) The use of Laplace's
equation is appropriate for a binary electrolyte when ei-
ther the concentration is uniform (due to convective or
mechanical mixing) or the system has reached a steady
state, but, as emphasized by Newman [21], electroneu-
trality does not in general imply a Laplacian potential.
Newman's argument has recently been supported by the
asymptotic analysis of Bayly et al. [34]. The relevant as-
pects of their work are outlined in Sec. II and provide
the starting point for our analysis (in the form of effective
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partial difFerential equations).
Our interest in an accurate description of transport

during growth is motivated by experiments in which local
concentration measurements are made by optical meth-
ods [12,22,24,28,29,32]. Especially in the fractal growth
regime, a significant diffusion layer of concentration gra-
dients is observed to precede the growing tips. Moreover,
the formation of the diffusion layer is correlated with the
onset of nonuniform growth, and once set into motion the
concentration profile maintains its shape [29,32]. These
observations suggest that ramified growth is a wave phe-
nomenon, whose proper description must include a time-
dependent and nonuniform concentration and potential.
We emphasize the wave nature of the solution to avoid
any confusion caused by the term "moving steady state"
used elsewhere in the literature. (The term "dynamic dif-
fusion layer" used by Barkey et al. seems more accurate
[22,31].) In our analysis, the wave hypothesis is used to
extract a solution from the effective partial differential
equations presented in the next section, and the charac-
teristic wave speed is identified with the growth speed of
the aggregate envelope.

Recent interest in modeling details of transport dur-
ing ramified growth was sparked by Chazalviel with his
steady-state solution to the Nernst transport equations
[23]. By keeping the cation and anion concentration as
separate variables, the formation of space charges is de-
scribed. The model equations (without the steady-state
approximation used for an analytic solution), however,
admit a numerical solution only for unrealistically tiny
concentrations (10 M) [20,23]. The reason for numer-
ical instability at realistic concentrations is that space
charges can only exist in thin layers (on the order of mi-
crometers or less) near the electrodes. Thus, by applying
the equations to the entire cell the numerical method is
forced to resolve dynamics on an overly wide range of
length and time scales (fast dynamics in the tiny space
charge layers with slow dynamics in the bulk). The same
problem was anticipated by Newman in his study of lam-
inar difFusion layers [25]. These results suggest that the
more systematic approach of singular perturbation the-
ory is required to describe dynamics in the various regions
of the electrolyte, as presented in the next section. The
asymptotic analysis captures the essence of the Chaza-
lviel's "regional approximation. "

In summary, we present a wave solution to the effec-
tive equations of Newman [21] and Bayly et al. [34] to
describe transport during established ramified growth.
For a tractable problem that still contains the essen-
tial physics, we specialize to planar electrodes with large
enough current to produce fairly dense and homogeneous
growth. Under such conditions, a wave solution to the
effective equations yields the growth speed, concentra-
tion and potential profiles, and ion cruxes. Finally, the
induction time for the onset of ramified growth is also
estimated using physical arguments.

II. DIMENSIONLESS TR,A.1VSPOKT EQU'ATIONS

We begin by outlining the derivation of efFective equa-
tions for transport in a dilute, binary electrolyte from

(2.1)

where V, n, p~, and x~ are the electrostatic potential,
fluid velocity, ion mobilities (in units of velocity per elec-
tric field), and diffusion coefFicients [21,23,34,35]. The
potential satisfies Poisson's equation,

—V . (~V'V) = z+eN+ —z eN (2.2)

where z~ are the ion charge numbers and c is the di-
electric coeKcient of water. The incompressible Navier-
Stokes equations determine the velocity n of the solvent.
Because quid motion is uniform suKciently far away from
the electrodes [26], even during ramified growth, we will
ignore the Navier-Stokes equations in the interest of in-
vestigating the role of bulk transport during growth. The
mobilities and diffusion coeKcients are connected by the
Einstein relation,

(2.3)

where k is Boltzmann's constant and T the absolute tem-
perature. For dilute solutions, the diffusion coeKcients
are assumed constant and electric fields outside the dou-
ble layer are small enough to take the dielectric coefficient
to be constant as well [21,36].

The first step in the analysis is to scale all variables by
introducing corresponding dimensionless variables (de-
noted by tilde accents) expected to be of order unity.
Concentration is scaled by the number density of salt
N„ f in the bulk electrolyte before any potential is ap-
plied. We assume for convenience of notation that there
is only one cation per salt molecule. Distance is scaled to
a reference length L„ f characteristic of the region of in-
terest. For modeling transport across the cell, a natural
choice for L„ f is the distance between the electrodes.
The reference diffusion coefBcient is the average of the
cation and anion values weighted by the mobilities of the
opposite species [21,24,25,34],

@+K + P K+
&ref = )P++ P—

(2.4)

and potential is scaled by the thermal voltage, V„,y ——

kT/e Finally, the difFusiv. e scales are used for time, ve-
locity, and current,

Nernst transport equations. For details of the analysis
and discussion of the results the reader is referred to the
paper of Bayly et al. [34]. Although their analysis in-
cludes matching with the space charge layers, we only
address the derivation of the bulk equations, since we
will be ignoring the details of transport near the growth.
The bulk equations turn out to be the same as those
derived by Newman through direct manipulation of the
transport equations [21].

The fundamental equations for the cation and an-
ion concentrations, N+ and N, respectively, ignoring
gravitational and magnetic eR'ects, are the convection-
migration-diffusion equations (ion number conservation),
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trey—
2L„,~ &ref =

&re/

&re/ Jr ef —eNr ef&r ef qL„y (2.5)

2

()~) (2.6)

respectively.
The dimensionless conservation equations do not in-

volve any coefBcients. The basis for the asymptotic anal-
ysis, however, is the appearance of a huge parameter,

of quasi-neutrality [24]. Newman derives the potential
equation by simply requiring that V Z = 0 [21]. Note
that the electrostatic potential obeys Laplace's equation,
if the concentration is uniform. If we make a quasistatic
approximation (or let K+ ——r ), then the equation re-
duces to V' (CV V) = 0, which itself reduces to Laplace's
equation if and only if the concentration is uniform.

Analysis is simplified by a change of variables from
the electrostatic potential to the anion electrochemical
potential,

multiplying the charge in the dimensionless Poisson equa-
tion,

g(m, t) = (v(~) —v „g,) — Inc(e, t)
z

(2.12)

—V' V=A z+N+ —z (2.7)
In terms of C and y, the anion Aux takes the fairly simple
form,

where E (~, t) = k C(~, t)V'y(~, t)+~C(~, t)
z

(2.13)
kTc

e'Nrem
(2.8) (Throughout the paper "flux" should be strictly inter-

preted as "flux density. ") The cation flux is
is the Debye screening length. For &actal growth, the cell
size is on the order of centimeters (and the observed dif-
fusion layer width is several millimeters) [29], while the
Debye screening length is on the order of micrometers
or less, so that a typical value of A is 10 (L„,y = 1
cm, N„,y = 0.01 M, T = 300 K). Because the presence
of even minuscule space charges spread over macroscopic
distances produces enormous electric Gelds that cannot
be supported by the system (expect for very short "re-
laxation" times), we conclude that macroscopic regions
of the electrolyte (with reference length )) AD) have an
overwhelming tendency toward electroneutrality.

Because a tiny parameter A multiplies the highest
derivative in our equations, the perturbative problem is
singular, and asymptotic analysis must involve matching
expansions valid in the bulk with separate expansions
valid in the boundary layers [37]. By expanding vari-
ables in the bulk in powers of A, it turns out, not
surprisingly, that the zeroth order behavior of the sys-
tem is electroneutrality, so that we can define a single
concentration variable,

C(a, t) = z+N+(m, t) = z N (a, t), (2.9)

which is the positive (and negative) charge density. The
first order behavior of the system involves a convection-
diffusion equation for the concentration

OC

Ot
(~, t) + u . VC(a, t) = V'C(~, t), (2.10)

and an elliptic equation for the potential,

V [C(~, t)V'V(~, t)] =
~

+
~

V'C(~, t),(Z+K++Z K )
(2.11)

which expresses charge conservation. The "ambipolar
diffusion equation" for the concentration is derived by
Rosso et al. by eliminating the potential in the ion con-
servation equations, Eq. (2.1), using the assumption

P+ (~, t) = —a+ C(~, t) Vy(~, t)

+
~

V'C(, t) + - ( ' ), (2.14)
z+z )

'
z+

and the form of the potential equation is unaffected by
the change of variables,

V' C ~, t V'y ~, t = 6V' C x, t . (2.15)

Equations (2.10) and (2.15) are the efFective transport
equations we must solve. To further simplify the equa-
tions, we introduce the dimensionless coeKcients

K++ z+CX=, P=z+K++Z K, +=1+
z

(2.16)

The useful relationship, z 6, o. = 1, can be ob-
tained from the reference scaling for diffusion coefBcients,
Eq. (2.4). With these definitions the current (taken to
be positive when directed in —x direction) is

2 (~, t) = —PC(~, t) V'~(~, t) —pa+ V'C(~, t), (2.17)

and we note again that the potential equation expresses
the requirement that V' - Z = 0.

The argument for electroneutrality breaks down at
length scales small enough to make A = 1. Space charge
is confined to microscopic boundary layers (of width

AL)) separating the bulk electrolyte &om electrode sur-
faces. The space charge region is sometimes called the
"difFuse part of the electric double layer" [21], but should
not be confused with the macroscopic "diffusion layer"
defined below as part of the neutral region. The corn-
plexity of growth morphology and the nonlinear effective
boundary conditions expressing double layer chemistry
motivate us to separate the region of integration from the
growth. Thus, in our crude approximation of dynamics
near the growth, the asymptotic matching with the space
charge layers described by Bayly et al. is irrelevant [34].
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III. EQUATIONS FOR. THE WAVE FORM

For simplicity, we consider only growth processes with
planar symmetry across most of the cell ahead of the
growing tips so that transport dynamics can be analyzed
in one spatial dimension. Our &arne of reference for Quid
motion and ion flux is the &arne of the bulk water solvent,
which slowly retreats &om the cathode at a constant
speed v g, (in the lab frame), the speed of the uni-
formly dissolving anode surface. Due to the planar sym-
metry of the system in the bulk it is reasonable to assume
that the cathode hull (CH), the convex hull of the growth,
is a plane parallel to the planes of the initial electrode
surfaces. The situation is best realized by dense parallel
growth [33], and excludes the extreme case of "dense ra-
dial growth [9]".The cathode hull moves at a velocity v

with respect to the water (v + v g » v g & 0).
Our picture of the growth process is that a diffusive

wave is sweeping through the bulk electrolyte leaving
a ramified metal deposit in its wake. In the back re-
gion of the wave front (the "active region" discussed be-
low) current, flowing uniformly in the bulk electrolyte, is
compressed onto the narrow deposit tips it leaves behind
(thus making them grow faster than the anode dissolves).
While it may seem impossible at first to have wave prop-
agation in a dissipative system, the diffusion equation
does, in fact, allow a wave solution as long as the region
of integration is semi-infinite and the boundary surface
is advancing at precisely the wave speed [15,22,31,38].

The first step in understanding the growth process is
to resolve the concentration and potential profiles of the
wave &ont in the moving &arne of the cathode hull. The
wave structure is simplest (one dimensional) just ahead of
the growing tips where dynamics have approximate pla-
nar symmetry and where the water velocity is uniform.
Let the outer cathode hull (OCH) denote a plane parallel
to the cathode hull beyond which complete planar sym-
metry is assumed. Although current compression occurs
in the region behind the OCH, where dynamics are het-
erogeneous in three dimensions, we will see that transport
dynamics in the wave region, beyond the OCH, control
the growth speed of the cathode hull (because they con-
trol the flux of ions entering the region of current com-
pression) .

Let ( = 2: —vt label position in the moving frame
perpendicular to the initial electrode surfaces, with ( = 0
at the OCH and increasing in the direction of the anode

(( & 0 defines the wave region). In the moving frame
the advection-difFusion equation, Eq. (2.10), takes on the
familiar form [9,22],

the wave &arne involve fictitious advective fluxes due to
&arne motion

(3.3)

(In our notation, fluxes without superscripts are in the
frame of the solvent, while superscript to denotes fluxes in
the wave frame. ) Because the electrolyte is neutral, the
current is the same in the solvent and wave frames. Prom
the expressions for the Quxes in the wave frame, we can
show explicitly that Eq. (3.2) requires that the current
is constant, thus preserving electroneutrality during time
evolution.

IV. BGUNDARY CGNDITIGNS

It is observed that the concentration remains uniform
across most of the cell during the course of a ramified
growth experiment [28,29]. Indeed, deposits typically
advance on the scale of minutes or less, while the dif-
fusion time across the cell is on the order of hours. Since
the concentration evolves according to a pure di6'usion
equation, we expect that the concentration will always
be equal to the initial bulk value across most of the cell
with gradients confined to a narrow difFusion layer near
the OCH. (As stated earlier, the difFusion layer is still
much wider than the space charge layer. ) In terms of the
scaled variables, we are led to the boundary condition

lim C(() = z+.
(moo

(4 1)

dV . dy J
Es„ii, = lim = lim (4.2)

yielding the boundary condition

The semi-infinite region of integration, along with the
moving boundary, is mathematically essential for the re-
alization of a di8'usive wave.

Because the concentration is uniform in the bulk,
Laplace's equation determines the bulk potential. As-
suming planar symmetry, this implies that the potential
is linear and the electric fleld constant (directed toward
the cathode). The lack of difFusion in the bulk implies
that the bulk current must be driven exclusively by a
uniform electric field,

dC d2C

d( d(2 ' lim PC(() (() = J, (4.3)

while the potential equation, Eq. (2.15), becomes

d 6 - dy)t O'C

d( d( d(

Cation and anion fluxes in the &am@ of the water sol-
vent, E+ and E, respectively, are found by dropping
the advective terms in Eqs. (2.13) and (2.14). Fluxes in

where J is the applied current for galvanostatic experi-
ments (J & 0 for current toward the cathode in the —x
direction). For potentiostatic experiments, J is a free
parameter in these equations that can be determined by
transport dynamics and chemical reactions at the anode.

Because we know that the anions do not deposit, we
should be able to determine the Qux of anions in the wave
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&arne at the OCH, F, so that we have the boundary
condition

F = +8 NlcIr (1 —7.),z
(4.7)

; C(0)"„'(0)+.- (') =F:.
z

(4.4)

(F ) 0 for Hux toward cathode. ) In ramified growth,
the only surfaces of active deposition are at the tips most
exposed to the bulk electrolyte. The remaining surfaces
behind the cathode hull are inactive due to screening of
the electric field and concentration gradients by the tips
and to fluid motion, which carries ions to the tips [26].

To separate the inactive region &om the active region
of current compression and deposition, we define the in-
ner cathode hull (ICH), a plane behind the growth tips
that is parallel to the CH. Like the OCH, the exact place-
ment of the ICH is not well defined since both are simply
theoretical constructs. See Fig. 1 for a diagram of the
various regions of the electrolyte in our model.

Assuming that the anion population of the active re-
gion (between the ICH and the OCH) remains constant
in time, the squeezing of anion flux &om the bulk into the
narrower region between the tips must cause an increase
in anion flux in the wave &arne,

that we need to specify the Grst boundary condition at
the OCH.

To complete the bookkeeping of ions crossing the active
region, we have the conservation of cations,

(1 7 )6NI~~ 7 Rd~p = F+~~H& (4 8)

where Bg,„is the flux of depositing cations at the surface
of the active growth tips. While, of course, the deposi-
tion flux may vary along the surface, we assume it to be
uniformly distributed across the effective tip area given
by 7. Equation (4.8) is used to determine r in Sec. VII.

We now have two second order equations with three
boundary conditions. At least one more condition is
needed at the OCH. Its derivation must in some way
incorporate the current compression and deposition re-
action kinetics in the active region and will be addressed
in Sec. VII. The net effect of the fourth boundary condi-
tion, however, is only to determine the additive constant
in the potential, so we can proceed without it for now.

V. THE ROLE OP ANIONS

(1 —~) F IcH —— F~, — (4.5)

where we have thus defined the tip fraction 0 ( z (
1, an effective area of the ICH plane occupied by the
cross section of the ramified growth. By construction,
the anion (and cation) flux is zero in the lab frame at the
ICH, so,

- ~(()"'(~)—
z

(5.1)

A wave solution to our equations, Eqs. (3.1) and (3.2),
has the property that the anion flux in the moving &arne
must be uniform across the wave region

'LU +
(U + +anode) NICH &NICH 1z

(4.6)

where we have assumed one cation per salt molecule and
approximated v )) v g, . Now we have the flux,

v=z K E~~A+ F~ ~

z+
(5.2)

independent of the boundary conditions used. The wave
speed is determined by substituting the bulk electric field
into Eq. (5.1),

ICH CH OCH

1

I

I

p

wave ,
'region

growth tips

—(b) --+-- —(c) —-~-- (d)

FIG. 1. The regions of the electrolyte in our model of ram-
ified growth: (a) the inactive region, (b) the active region, (c)
the difFusion layer, and (d) the bulk. The region of integra-
tion ($ ) 0) is labeled as the wave region. The cathode hull

(CH) and inner (ICH) and outer (OCH) cathode hulls are also
shown. Lines of current are shown indicating compression in
the active region.

Z K EQ~$ Jg

1 —NlcII (1 —&)
(5 3)

The first term is the migration speed of anions in the
bulk, and the second is a correction when the growth tips
are spaced widely enough to allow significant penetration
of ions into the inactive region.

The wave speed is a fundamental property of the trans-
port equations and does not depend on our approxima-
tion of the active region. As such, it may seem that our
result violates the symmetry between anions. and cations
in transport. Indeed, it is only boundary conditions ex-
pressing double layer kinetics that favor cation deposition
and introduce asymmetry between the ionic species. As
far as the transport equations are concerned, there is no
reason to exclude the possibility of anions depositing and
cations remaining inactive. In fact, such a solution exists
as well. In the next section it is shown that the cation
flux F+ is also constant in the wave frame. By an anal-
ogous argument, the wave speed would be equal to the
cation bulk migration speed if F+ ——0 [see Eq. (6.8)].

If we use our crude expression Eq. (4.7) for the anion
flux, then the result for the wave speed is
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VI. RESOLUTION OF THE WAVE FORM

The difFusion equation, Eq. (3.1), can be easily inte-
grated using the boundary condition, Eq. (4.1), to get
the concentration field,

C(O = ze (1 —Ke "1), (o.i)

where K is a constant of integration. The concentration
is uniform in the bulk with gradients confined to a dif-
fusion layer near the growth whose width A (sometimes
called the "Nernst layer width" [15] or "difFusion length"
[9]) is inversely proportional to the wave speed and pro-
portional to the efFective diffusion coeflicient (from the
scaling). Although the difFusive-wave concentration pro-
file ahead of established growth is well known [22,31,32],
there does not seem to be a consensus in the literature
on the potential profile.

The potential equation, Eq. (3.2), can be integrated
to show that the current is also uniform across the wave
region,

&&4) d (&)+~~+
d (&) = J.dy dC

(6.2)

(Note that since the current and anion flux are uniform
in the moving frame, the cation flux in the moving frame
must also be uniform. ) When the solution for the concen-
tration is substituted into Eqs. (5.1) and (6.2), which im-
pose the boundary conditions on the anion Aux at ( = 0
and on the current at ( -+ oo, respectively, the following
relationship is obtained:

In cases where the ion concentration in the inactive re-
gion between tips is negligible, the wave speed is simply
the migration speed of anions in the bulk electric field.
Fleury et al. [1,33] arrive at the same result for galvano-
static cells by experimental observation and physical in-
tuition: in order to avoid the accumulation of space
charge, it is necessary for the wave front to advance at
precisely the speed with which anions are removed from
the region of the growth by the bulk electric field. A
more mathematical derivation is presented by Barkey et
al. to model potentiostatic cells with circular geometry
[22], and they also predict the effect of nonzero concen-
tration between the tips. The model of Fleury et al. has
also been generalized by Trigueros et al. to account for
the presence of additional inert ionic species [12].

E (() = e (1 —11'e " —(1 —e) Nzczz),z
(6.5)

E+ (() = —z+K+Eb ib —Kve (o.o)

are obtained by adding fictitious fluxes due to frame mo-
tion to the constant fluxes in the wave frame,

z+5'-(() = ——(i —r) A,~„~,
z

(6.7)

Il+ (() = —(v + z+2,+Eh„i),)N„f. (6.8)

(Note that K,y
= 1 is omitted elsewhere in the paper. )

Using the cation flux, we can calculate the fraction of the
current carried by the cations in the solvent frame,

—+++(() & s —&1+
~+)

—1

+ 1+ "+ 1 —NICE Ke-.~. 6.9

should be determined by the equations and not left as a
free parameter, we must recognize that one artificial de-
gree of freedom is added to the system by the placement
of the OCH. By keeping the active region outside the re-
gion of integration, we lose information that we cannot
hope to regain without working harder.

The chemical potential is obtained by integrating
Eq. (6.2) from 0 to ( and using Eq. (6.3) to simplify
the result,

1' i —Ke-"& 'I

y(() = Eb„i),( —ni (1 —7.) Nice ln
1 —K

(6 4)

and the electrostatic potential is obtained by adding
V „g, +,—lnC((). Since NlcJI (( 1 for most growth

morphologies, the chemical potential is nearly linear
across the entire wave region, while the electrostatic po-
tential has an additional steep logarithmic dependence
in the diffusion layer. Observe that there turns out to
be no new integration constant; the only undetermined
parameter is N~~H ——1 —K, the same constant from
integration of the concentration. This implies a relation-
ship between the concentration and potential at the OCH
that precludes the necessity of an additional boundary
condition.

The ion fluxes in the solvent frame,

J Q'W

O.'Z+V = —+ ) (o.3)
P r

which shows that Eq. (5.1) and Eq. (6.2) are not inde-
pendent. Therefore, one condition is extraneous since it
does not determine a constant of integration, and a new
condition is needed. This should not be surprising, how-
ever, since one condition was needed to And the wave
speed.

The required new condition can be produced by simply
specifying the salt concentration N~c~ at the OCH, be-
cause K = 1 —N~c~. While it might seem that N~~~

In the case N~c~ ——Nl~~ ——0, this reduces to

z+P +(()—
J (o.io)

P++ P—
(o.ii)

Since the transference numbers are the fractions of the

where t+ and t are the cation and anion transference
numbers, respectively [21],
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bulk migratory current carried by the two ion species, we
see that as the diffusion layer is entered &om the bulk,
the cations slowly take over the anionic contribution to
the current until the current is exclusively cationic at the
OCH.

A detailed picture of ion dynamics in the wave region
emerges &om the consideration of ion velocities in the
solvent frame,

Jca vcH
bulk Vanode

(7.1)

goal is to understand how transport ahead of the tips
inHuences growth by regulating the arrival of cations. As
far as bulk transport is concerned, the net effect of the
active region is simply to compress current entering &om
the bulk by a factor,

(1 —r) Nr~H
1 —Ke —"~ )

v =v
I

1—

z K Ebul lc ( Ke —"&
1 ——

1 —Ke "~ ( 1 —(1 —r) Nlca)
z+K+Eb~lk + Kvt

V+
1 —Ke —

&

(6.12)

(6.13)

(6.14)

v = vc~ —v „g, = (f —1)v „g,. (7.2)

The speed of the retreating anode surface, assuming uni-
form dissolution, is

(the speeds are in the lab frame). We have used the fact
that because the anode dissolves uniformly, the current
density in the bulk is the same as at the anode surface.
The wave speed is related to f by,

If NIc~ ——0, then throughout the wave region the anions
move at a constant velocity toward the anode equal to
the migration velocity in the bulk electric field (which
is also the wave velocity). If NI~~ & 0, then while
the bulk speed is unchanged, it is now smaller than the
wave speed. Near the growth tips, the anions move even
slower than the bulk speed, but still toward the anode
(since we expect NINTH & 1). The interpretation is that
when NIcH ) 0 the tips are overtaking some anions that
ultimately end up sitting motionless in the inactive re-
gion behind the tips. Cations in the bulk move toward
the cathode at the migration velocity in the bulk electric
field. Closer to the tips, however, cations are sucked in
toward the growth at a greater speed due to the increase
in electric field.

VII. CURRENT COMPRESSION AND THE
METAL RATIO

Ramified growth occurs because the spatially uniform
current in the wave region beyond the OCH is compressed
in the active region leading to a Gux density of deposit-
ing cations at the growth tips that is much greater than
the Qux density of d.issolving metal atoms at the anode.
There are a wide variety of mechanisms that can play
a role in current compression. In the regime of steady
electromigration or diffusion, exposed structures screen
the I aplacian field and thus attract incoming cations
[3,9,16,18—20,38]. Spatial variations in overpotential and
deposition reaction rates on the growth surface [18] and
the surface diffusion of adsorbed metal atoms [14] can
also inQuence current compression. A minor role may
also be played by surface tension and lattice anisotropy
in the regime of validity of our model [ll]. There is grow-
ing theoretical and. experimental evidence, however, that
Quid motion is the primary mechanism for current com-
pression in established growth, especially at large applied.
currents [1,26,39]. Cations are swept toward the tips
along "funnels" created by pairs of counter-rotating vor-
tices in the solvent that are driven by electroconvection.

While the details of current compression are of primary
concern for understanding the growth morphology, our

Vanode
Z+Nme~al

(7.3)

where N, q l is the number density of metal ions in the
electrodes. Equating the current leaving the anode with
that entering the cathode and observing that the area
of the growing tips is much smaller than the area of the
anode for established growth, we conclude that f )) 1.
Combining the preceding equations with Eqs. (4.2) and
(5.3), we obtain an equation for f,

N

1 + —+ 1 — 1 —7 Nrc~
(7.4)

Note that f and r are related, since current compression
must surely be related to the surface area of the active
tips. If w = 1, then growth is uniform, and hence we
expect no current compression, f = 1. If 7 « 1, then
current must be greatly compressed in the active region,
f »1.

To arrive at the relationship between f and 7, observe
that knowing f gives us the current at the tips (just out-
side the space charge layer) which can be equated to the
deposition Aux rate,

Jc~ = fJ = z+&~.i, (7.5)

Substituting for I4,„ in Eq. (4.8) and using the (con-
stant) cation Aux in the wave frame, Eq. (6.8), yields,

(7.6)

(7.7)

We could have derived this result heuristically as follows.
Since no current passes between the active growth tips,
the uniformly distributed current at the OCH is com-
pressed into an area that is smaller by a &action w after
passing through the active region. Current conservation
across the active region then implies that f = r

Now we can eliminate v in the expression for the cur-
rent compression factor,
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vanode Nmetal
&~ &metal ~

vcHN~e f
(7.8)

Specializing to dense growth (NrcH = 0), we recover
Fleury's result,

Similarly, we can use our knowledge of f, to eliminate the
parameter w &om all our previous results. The only re-
maining unknown in the expression for f is the parameter
NI~H. The concentration in the inactive region between
the tips is an acceptable control parameter in any theory
that does not track growth &om its onset, and is used by
Barkey et al. [22].

The information about ion conservation captured by
the current compression factor can be expressed in an-
other way. Fleury and co-workers deGne the "copper ra-
tio," which we will call the "metal ratio" M for generality,
to be the ratio of the mass of the deposit to the mass of
cations at the bulk concentration that would occupy the
same volume as the deposit (between the initial cathode
surface and the cathode hull) [1,33]. By charge conserva-
tion, the mass of the deposit must equal the total mass
of the anode metal that has dissolved, so,

Due to quasineutrality, the anion concentration is simply,
N (() = —'N+((). The electrostatic potential provides
a constant electric field in the bulk with an increase in
the difFusion layer,

z—) 4 &—) Ei"+"-XN-X)

xvNicaln
~ N
(N+(() )
&NocII ) (8 6)

[Recall that Noc~ = N+(0).] The cation and anion
fluxes in the frame of the solvent are,

Vg

++(() = p+N. f—@b II. v (N f NOCH) e

(8 7)

V(() = V „g.+ Es ~I,(+ ln
~

(z+N'+ (())
I + Vog))

(8 5)

where Vo(() is the change in potential due to a nonzero
concentration in the inactive region,

See Ref. [1] for an interpretation of M.
(g) = vN (() —(1 —~) +NlcH. (8.8)

The growth speed is

&+&Nmetal
= p &a~iI,

~

1 —(-1 —~)

where

VIII. SUMMARY OF RESULTS WITH
DIMENSIONS

(8.1)

For many cases of ramiGed growth, especially dense
growth at large currents, the preceding formulas can be
simpliGed by setting NicH ——0. The inclusion of NlcH
allows us to see how the difFusion layer adjusts to cases
of sparse growth at low currents. The results are valid
for both galvanostatic and potentiostatic cells.

By considering various limits of the solution, we can
better understand approximations made in other models.
The relevant dimensionless parameter is the ratio of the
reference and difFusion lengths,

(N ...,
('+ —.'- )

g™+ Nice I (N y
—Nlc JI) (8.2) VI„ f

&v ef
(8 9)

is the current compression factor and v = f ~ the tip
fraction. The metal ratio is M = N~et~~/(fN„y). The
bulk electric Geld is related to the current by

J
Ebul A:—

z+e (p+ + p ) N, t'
(8.3)

N+ (() = N„,y
—(N„~ —Nock') e (8.4)

(Recall the convention that there is one cation per salt
molecule, which, if relaxed, would simply mean that we
take the number density of cations in the bulk to be our
reference concentration N„ f rather than the salt con-
centration. ) The cation concentration (number density)
exhibits a difFusion layer ahead of the tips,

A similar parameter called the Peclet number is used in
the study of laminar diffusion layers [25]. However, in
that case, the velocity is due to forced convection of the
solvent, not difFusive wave propagation. In the limit of
small growth speed (b (( 1), the concentration is roughly
linear, N+ Nock' + (Nee f NocH)v(/K y, (satisfy-
ing Laplace's equation), while the potential is dominated
by the 6rst logarithmic term. (In that limit, however,
one must consider the efFect of the difFusion layer in-
teracting with the accumulation layer at the anode, the
Hecker effect [1,4,9,40].) In the opposite limit of large
growth speeds (b )) 1), the diffusion layer is very small,
and beyond it the concentration is uniform, N+ N f,
with a linear potential (satisfying Laplace's equation).
There may also be situations where the concentration
drop across the difFusion layer is negligible and dynamics
are controlled by processes in the active region (as in the
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analysis of Fleury et a/. In that case, N~c I N„,y, and
once again the concentration is uniform, and the poten-
tial satisfies Laplace s equation in our region of integra-
tion.

The relationship between the current and the potential
difference across the cell is contained in the relationship
between J and Noc~ (in turn related to Voc Jt), which
can only be determined by matching our solution to so-
lutions for the active region and the accumulation region
near the anode. The constant N~~H must be determined
by matching the diffusion layer solution with a solution
for the active region, and is infIuenced by the exact place-
ment of the OCH. Such matching would relate N~~H to
V, t~ ~, (which is contained in an efFective boundary con-
dition expressing deposition reaction kinetics [34]).

IX. THE ONSET OF RAMIFIED GROWTH

We have argued that ramified growth is regulated by
a diffusive wave in the electrolyte ahead of the tips. The
wave solution exists if and only if the diffusion layer has
the critical width,

(J) &ref +~ef
v p Eb Ik

where the wave speed v is determined by the current.
Note that we have set NI~II ——0 because at the onset of
growth the inactive region does not yet exist. In galvano-
static cells, the critical width is predetermined by funda-
mental parameters of the system. The situation is more
complicated, however, in potentiostatic cells because cur-
rent (and hence Es„il,) variation causes the critical width
to be time dependent.

When the potential or current is applied, thus initi-
ating deposition, the concentration, originally uniform,

forms a difFusion layer of increasing width A(t) against
the cathode surface due to the deposition of cations and
the migratory expulsion of anions [24]. According to our
theory, sustained ramified growth is forbidden as long as
A(t) ( A„and, therefore, deposition is uniform at first.
Once the diffusion layer attains the critical width A

transport dynamics permit the sustained magnification of
surface instabilities and the ramified growth wave is cre-
ated and set into motion. Concentration evolution dur-
ing in a typical experiment in the &actal growth regime
is depicted qualitatively in Fig. 2.

Because anions depart the vicinity of the cathode at
a rate determined exclusively by the current, we have
arrived at an intriguing result: the onset of ramified
growth, while driven by a wide variety of mechanisms
described in Sec. VII and in the surface instability litera-
ture, is regulated by the steady migration of anions in the
bulk. By solving the effective equations, Eqs. (2.10) and
(2.15), (with boundary conditions &om Ref. [34]) in one
dimension from the moment when the current is applied
and the concentration is uniform, we could determine the
time it takes for the diffusion layer to attain the critical
width, which, according to our theory, is approximately
the induction time t, . The equations have been solved
for t ( tp (when the concentration drops to zero at the
cathode) in the case of a galvanostatic cell [24,41]. There
is evidence that gravity-induced fluid motion (and possi-
bly also electroconvection) plays an important role in the
early stages of the experiments [24,32], so an accurate de-
scription must involve the full set of effective equations,
including fluid motion [34].

Although obtaining a complete description of the ini-
tial concentration evolution is a formidable analytical or
numerical. task, we can get a reasonable estimate of t by
using a few simplifying assumptions suggested by theory
and experiment. The time scale in the space charge layer
is so small that the layer is always in quasi-equilibrium
with the neutral electrolyte [34]. Moreover, although
there is a significant potential difference across the space

N

N„,f

NocH

(a)

FIG. 2. The evolution of the cation (and
anion) concentration from the beginning of
the experiment: (a) at t = 0 the concen-
tration is uniform, (b) after a small time

tp a narrow depletion layer of width Ap

(1) is formed, (c) at t = t the difFusion layer
reaches the critical width A, (2), and insta-
bilities can be sustained and magni6ed, and

(d) the difFusive wave propagates with the
critical layer width.

cathode
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charge layer at the cathode [23,33], the number of ions
responsible for the space charge is much smaller than the
number involved in creating the diffusion layer (because
ALl « A, ). Therefore, we are led to neglect the accu-
mulation of charge in the space charge layer so that the
change in anion concentration in the difFusion layer is
determined by bulk migration alone,

d

dt
Z+~—(+1 t)d+ ~t ef V' tbul—k ~

z
(9.2)

The function K (z, t) should come from a solution to the
e8'ective equations, but for simplicity we will use the ex-
perimentally determined concentration profile preceding
the onset of &actal growth measured by Cork, Pritchard,
and Tam [29].

After the experiment begins, the concentration in the
immediate vicinity of the cathode falls from the bulk
value ( 0.5 M) to nearly zero in a brief time tp

(&1 sec), forming a diffusion layer of width Ap ( 0.1
mm), roughly independent of applied potential (1—10 V)
and gap spacing (25—102 pm). For t ) tp, however,
the concentration profile seems well approximated by the
self-similar form,

tt (. t) =Tttt„.t 1 —e '(')) .'+
z

(9.3)

Substitution of Eq. (9.3) into Eq. (9.2) yields,

A(t) = Ap + lLl Eb„lk(r)dr.
tp

(9.4)

Ap K~~y= t;+tp- +
P —Ebul k (IJ Ebul k)—(9 5)

For galvanostatic cells, Eb„lk is constant [see Eq. (8.3)],
so for t & tp the depletion layer width grows linearly
at the speed of the anions (as it must to avoid charge
accumulation). However, the potentiostatic data we are
using also indicates linear growth of the depletion layer
[29], so we will proceed with the assumption that Ebulk is
constant. Equating with the critical length A, we obtain
an estimate for the induction time,

It is interesting to note the reappearance of the constants
p and M encountered elsewhere in our analysis.

In order to compare with the experimental data, we ap-
proximate Eb„lk = rAV/I, where AV is the applied po-
tential difFerence, L the length of the cell, and 0 ( r & 1
accounts for potential drops in the double layers. Us-
ing the standard values for the CuSO4 mobilities, p+ ——

5.76 x 10 crn /Vsec and p = 8.64 x 10 4 cm2/Vsec
[42], with AV = 6.0 V, I = 2.54 cm, Ap ——30 pm, and
tp ——1 sec, we estimate t, —t, = 1.2 sec for r = 1. For
these conditions (see Fig. 3(c) of Ref. [29]), t, —t; 30
sec, and t, is on the order of seconds. If r = 0.5, then
we estimate t —t; = 5.8 sec. The discrepancy between
our estimate and the observed value is probably due to
the assumption of constant bulk field or the functional
form of K (z, t) being poor. The data does, however,
seem loosely consistent with the dependence of t —t; on
AV. A thorough test of our formulas should come from
current data for a galvanostatic cell.

Rosso et al. provide a detailed theoretical and exper-
imental description of the early moments of a galvano-
static CuSO4 experiment, during the time t ( tp when
the depletion layer is forming [24]. Their data indicates
a departure from the assumed concentration profile of
Eq. (9.3) in that a slowly decaying tail is present due to
gravity-induced convection, and the time tp is consider-
ably larger than in the Cork et al. experiment. They do
not, however, give concentration data for times t ) tp.
If we use their data, K„y = 0.1 M, j = 40 mA/cm
tp = 10 sec, and Ap ——0.1 mm, then our formula pre-
dicts t —t, = 25 sec, which might be consistent with the
observed value of t = 65 sec.

Regardless of the accuracy of our estimates, the deriva-
tion is primarily intended to illustrate how the idea of a
critical dift'usion layer width as a prerequisite for rami-
fied growth can be used to estimate the induction time.
An analytical or numerical solution of the full transport
equations could produce the correct result and would
shed light on the validity of our assumptions. An inter-
esting aspect of the derivation is the crucial role of the
anions in regulating the formation of the difFusion layer.
Barkey et al. present a surface instability calculation in
which the diffusion layer width also directly infiuences
the instability itself [15]. Thus, we see that the anions,
whose role in controlling the speed of established growth
is well understood, also play a role in regulating the onset
of ramified growth.

t. -t;=t. +I1+ +
I

~+I1+ '
ll

+lu, + l ( z+ ) z+eN„.y

(z+eK.,t 5
(9.6)

where t, accounts for any extra time needed for the mag-
nification of surface instabilities once the critical dift'usion

layer width has been attained. Since E'b ~I, is not mea-
sured experimentally, we express the time to form the
critical diffusion layer width in terms of the current,

3C. CONCLUSION

We have solved for the concentration and. potential pro-
files of the diffusion layer during ramified growth, and
have derived from them ion fiuxes and speeds. The so-
lution is fairly general, allowing for difFerent ion charges,
mobilities and difFusion coeKcients, nonzero concentra-
tion between the growth tips, and both potentiostatic
and galvanostatic conditions. By considering the conser-
vation of ions across the cell during wave propagation, we
have determined the current compression factor, metal



S2 REGULATION OF RAMIFIED ELECTROCHEMICAL GROWTH BY. . . 1913

ratio, and tip &action. Finally, an estimate of the induc-
tion time for ramiBed growth has been given.

A complete analytic solution for ramified growth can
be obtained by matching our solution for the dift'usion
layer to solutions for the active region near the growth
and the region near the anode, where concentration
builds up during deposition. Such a solution could pre-
dict electrical properties of the entire cell. Particular
care must be taken in matching with the active region
because it is the source of interesting eKects like current
oscillations during potentiostatic experiments [7,13, in
addition to its primary role in morphology selection [17].
Fleury et al. present an analytic solution for the electric
Beld and Quid velocity in the active region that describes
the experimentally observed funnels, but we cannot eas-
ily match our solutions because they assume constant
concentration (No~~ = K„y) and do not provide the
constant in the electrostatic potential. The latter must
be derived &om a careful description of deposition kinet-
ics. The Fleury solution could be modiBed to include

efFective boundary conditions on the concentration, po-
tential and fluid velocity [34], which themselves express
matching with the spac. charge layers, in order to deter-
mine exactly how space charge drives the vortices that
comprise the funnels. The primary aim in matching var-
ious regions to obtain a complete solution for ramiBed
growth in a binary electrolyte would be to directly link
morphological characteristics of the growth (e.g. , the fil-
ament spacing in dense-parallel growth) to fundamental
properties of the electrolyte (e.g. , Ic~, p~, and z~) as
well as the current and applied potential.
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