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Metastability in fiuctuation-driven first-order transitions: Nucleation of lamellar phases
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The nucleation of a lamellar phase from a supercooled homogeneous phase in a fluctuation-driven
first-order transition is studied, based on a phenomenological free energy due to Brazovskii (Zh. Eksp.
Teor. Fiz. 68, 175 (1975) [Sov. Phys. JETP 41, 85 (1975)]). The absence of phase coexistence in the cor-
responding mean-field approximation makes application of the standard droplet theory of homogeneous
nucleation problematic. A self-consistent coarse-graining procedure is introduced to overcome this
difficulty, and the barrier height for nucleation of a critical droplet is estimated in the weak-coupling
limit. Contrary to earlier estimates, the critical droplet shape is shown to be anisotropic in general.
Some effects of distortions and defects in the lamellar structure are considered and are shown to affect
the critical droplet only very near coexistence, where the probability of nucleation vanishes. The
coarse-graining procedure introduced here follows from a novel application of the momentum-shell
renormalization-group method to systems in the Brazovskii class. Possible applications of the theory to
the microphase separation transition in diblock copolymers and to Rayleigh-Benard convection are
briefly discussed.

PACS number(s): 82.60.Nh, 05.40.+j, 64.60.Ak

I. INTRODUCTION

In 1975 Brazovskii [1] investigated isotropic or nearly
isotropic systems in which the Auctuation spectrum had a
minimum at a nonzero wave vector ~q~ =q =qo,
represented by a hypersphere in d-dimensional reciprocal
space. He found that in the symmetric case where
mean-field theory would predict a continuous transition
to a periodic ordered state with spatial period 2~/qo Auc-
tuation effects lead to a discontinuous or first order tran--
sition. In the case of weak fluctuations (small noise), the
transition point is close to its mean-field value and the
self-consistent Hartree approximation employed by Bra-
zovskii could be justified as the leading term in a sys-
tematic perturbation expansion. The physical origin of
the eQ'ect, which is essentially independent of system
dimensionality for d 2, lies in the large phase space for
one-dimensional Auctuations in the direction transverse
to the hypersphere.

Although initially proposed to describe weakly aniso-
tropic antiferromagnets and cholesteric liquid crystals,
the Brazovskii model was subsequently shown to apply to
the nematic to smectic-C transition in liquid crystals [2],
to pion condensates in neutron stars [3], to the onset of
Rayleigh-Benard convection [4,5], and most notably to
the microphase separation transition in symmetric di-
block copolymers [6—9]. It is in this last system that ex-
perimental confirmation of the theory was achieved [8] by
quantitatively estimating the mean-field parameters and
showing that the observed first-order transition was in-
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are averaged over and the remaining modes with

iq qo (A

(1.1a)

(l. lb)

are retained as fluctuating degrees of freedom. When
A~O all modes are averaged over and we recover the
bulk thermodynamic averages calculated by Brazovskii
[1]. For A) 0 we obtain an effective free energy VA for
modes with wave vectors in the band (l. lb), whose aver-

consistent with the predictions of mean-field theory, but
was well described by the Brazovskii theory.

Given this measure of success it is natural to ask about
the lifetime of the metastable isotropic phase as the sys-
tem is cooled below the thermodynamic transition point
[10]. From a theoretical point of view the problem is for-
mulated by classical homogeneous nucleation theory [11]
as well as by more sophisticated field-theoretic ap-
proaches [11,12], in terms of the free-energy barrier for
creation of a droplet of ordered phase inside the disor-
dered phase. The critical droplet is the one that balances
the free-energy cost of the interface between coexisting
phases with the gain from the bulk ordering. Mathemati-
cally, the barrier is calculated by first solving a saddle-
point or mean-field equation with the boundary condi-
tions that the system is disordered at infinity and ordered
at the origin, say. Now, for fi'uctuation driven first or-der-
transitions quite generally [13], there is no phase coex-
istence in mean-field theory so this first step of the calcu-
lation cannot be taken.

Our work addresses this issue by developing a coarse-
graining procedure whereby the modes with wave vectors
in the range
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age wave vector is qp but whose envelope can vary on a
scale L )A '. For A not too large the bulk phases de-
scribed by V~ do show phase coexistence in mean-field
theory, so a critical barrier height can be estimated from
classical nucleation theory for given A. We are then left
with the problem of determining the proper value of the
cutoff A, and for this we propose a self-consistent pro-
cedure whereby A is equal to the local rate of variation of
the envelope in the critical droplet solution.

In cases when the ordered state is spatially anisotropic
it is important to optimize the shape of the critical drop-
let, which will not be spherical due to the anisotropy of
the interface free energy. The standard way to carry out
this optimization is known as a Wulff construction [14]
and it arises in the present problem as well. The critical
droplet we are led to for a lamellar ordered state has the
form of a long needle with lamellae transverse to the nee-
dle axis. In addition, just as for ordering in liquid crys-
tals [15], we find that under some circumstances line de-
fects can be introduced into the structure and lead to de-
formations of the lamellae, which lower the critical bar-
rier height. Since these effects depend on gaining surface
free energy at the cost of line energy, defects are only
favorable very near coexistence where the critical droplet
has large dimensions and the barrier height itself is large.

In the Brazovskii theory there is a unique small param-
eter A, representing the smallness of the dimensionless
noise strength or, equivalently, of the dimensionless cou-
pling constant. The reduced temperature ~=~, &0 at
which the first-order transition takes place is of order

below the mean-field transition, which takes
place at ~=0. For a d-dimensional system the critical
free-energy barrier for creation of an anisotropic (Wulff)
droplet is found to be

(1.2a)

(2.1a)

4

(2.1b)

isotropic droplets in the domain (1.1a) and did not con-
sider either diffuse or anisotropic droplets, which, accord-
ing to our estimates, are the ones that are likely to be nu-
cleated.

In Sec. II the coarse-grained free energy is obtained,
first by a phenomenological argument that follows the
derivation of the expanded Brazovskii free energy in Ref.
[10] and then by using a momentum-shell renormaliza-
tion group. In Sec. III interface and droplet free energies
are estimated, based first on the coarse-grained free ener-
gy with fixed cutoff and then on a free energy with self-
consistently determined cutoff. The self-consistency is
shown not to affect the scaling of the nucleation barrier.
The anisotropy of the interface free energy, on the other
hand, is important and it leads to an anisotropic critical
droplet whose shape is determined by a Wulff construc-
tion. The contributions to the barrier height of defects
and distortions of the order inside the critical droplet are
estimated and it is shown that these effects are negligible,
except very close to coexistence, when the nucleation bar-
rier and critical droplet dimensions are very large. Sec-
tion III concludes with a brief discussion of experiments
and of ways to pursue the theory in more quantitative
directions. The derivations of the coarse-grained free en-
ergies are described in the Appendixes.

II. COARSE-GRAINED BRAZOVSKII MDDKI,

A. Bulk behavior

Our starting point is a phenomenological model with
relaxational (model A) dynamics [17] and a Brazovskii
free energy, which we write as

(1.2b)
(g(x, t)g(x', t )) =25'"'(x —x')5(t —t ) . (2. 1c)

In contrast, an isotropic droplet has a barrier

~(]—d) i3 ( ~p)

, Irl —
Idol

(1.3a)

(1.3b)

from which we see that the anisotropic barrier is always
less than the isotropic one. An important conclusion of
(1.2a) is that for ~r~

—~r, ~

-A, the dimensionless barrier
[Bii,-i," "'~

] is still large for A, &&1 and d )2, i.e., the
probability of nucleation is low. On the other hand, this
is the point at which the droplet size becomes of the same
order as the interface width, and for lower quenches
( ~ r~ ) ~r, ~

) the droplet will not have a well-defined bound-
ary. Such droplets were called "ramified" by Unger and
Klein [16], but we prefer the term "diffuse. " We thus do
not expect spontaneous nucleation of well-defined Wulff
droplets.

Although our model and methods follow those of
Fredrickson and Binder [10], our conclusions are
different. These authors only estimated the barrier for

In the above equations the quantities qo, go are considered
to be of order unity and there is a single small parameter

A, «1 (2.2)

and a control parameter r. The static (long-time) solu-
tion has the bulk free energy

e(-,X)= —1 [(.-')], (2.3)

where the angular brackets in (2.3) denote an average
over the Gaussian noise g, which can be represented by a
functional integral [see below; the effective temperature,
or noise strength, has been scaled to unity in Eq. (2.1c)].
The relation between our model and various physical sys-
tems can be recovered by referring to Eq. (2) of Bra-
zovskii [1],Eqs. (2.3) and (4.1) of Fredrickson and Binder
[10), and Eqs. (A26) —(A29) of Hohenberg and Swift [5].
The essential point is that the small coupling constant A,

rejects the smallness of the noise strength in the original
systems.

According to the derivation of Brazovskii [1],for small
A. the self-consistent propagator in the disordered phase is
obtained from the Hartree diagram in Fig. 1(a) as
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(a) where

a=(qo Sdm)/4. (2') P~:m—a/2 (2.12)

(c)
1 3

4 3

2

4 4

and Sd is the surface area of the d-dimensional unit
sphere. The essential point is that in all d 2, the in-
tegral in Eqs. (2.5) and (2.7) has its dominant contribution
only near the surface of the d-dimensional sphere of ra-
dius qo and it is a one-dimensional integral in the radial
direction. The transverse dimensions only contribute to
the coefficient cx. As shown by Brazovskii, the free-
energy difFerence per unit volume bA& of Eq. (2.9) then
takes the form

g '(q ) =r+go(q qo )— (2.4)

FIG. 1. Low-order diagrams in the weak-coupling expansion
of the Brazovskii model (2.1b). (a) Hartree diagram contribut-
ing to r, or hz. (b) Second-order self-energy diagram entering X~
in Eq. (2.29). (c) Diagram contributing to 5&. The three ways of
distributing the arguments of u4(1, 2, 3,4) are shown. (d) Anoth-
er diagram contributing to A4. (e) Diagram contributing to 56.
The 15 ways of distributing the arguments of u6(1, 2, 3,4, 5, 6)
are now shown. (f) Another diagram contributing to 66.

r~
bC&= — —ar' + +ar„' + —AiAi

2A, 2k 4
(2.13)

r =r, = —2.03(aA, )
/ (2.14)

which is the bulk (first-order) transition point in the Har-
tree approximation. Let us introduce the reduced vari-
ables

where r(r) and rz(r) are given by (2.10) and (2.11) [as
mentioned in [5] some numerical coefficients that were in-
correct in Eq. (14) of [1] have been changed]. The free-
energy difference changes sign at

with

d "q

(2m ) r +P~(q qo)— (2.5)

( 1t (x) ) = Fee ' +c.c. , (2.6)

As shown below, the solution r(~) of Eq. (2.5) remains
positive for all ~, so the linear instability of the disordered
state, signaled by the vanishing of r in mean-Geld theory
(A, =O), has been completely eliminated in the Hartree ap-
proximation. For ~ & 0 there is a competing ordered solu-
tion with [1]

r =(aA, )
/ r,

r=(aA, )

(aA, )
'

lt/

(P) =de ' +c.c. ,

x=x/l,
qo=qol,

l =(2Poqo)(aA, )
' =g()(aA, )

(2.15a)

(2.15b)

(2.15c)

(2.15d)

(2.15e)

(2.15fl

(2.15g)

(2.15h)

a propagator leading to in terms of which Eqs. (2.1b), (2.5), (2.7), (2.13), and (2.14)
become

d"r„=&+ ~ f d q„,', , +a~~~',
(2~)" r~ +go(q qo )

and a field h conjugate to g, given by

h =7(r„——,'X~7)') . (2.&)

V=PS,
P= t'(az)4/3X-',

9=f d x rg +—g +——(4qo) '[(V' +qo)f]

(2.16)

(2.17)

The bulk free-energy difference per unit volume A4 be-
tween the disordered and the ordered states can be ob-
tained from the relation [1]

aC= f" d~'= f "2hd~ = f "2h
o Qg' 0 dr

(2.9)

r =r+m/(2r'/ ),
=&+~/(2& )

(2.18)

(2.19)

(2.20)

For small r, r„Eqs. (2.5) and (2.7) may be rewritten in
the form

2 2 ir 1/2 1/2 1 4
4/3

2
(r r)+ (r—/ —r —) ——

~

A—
~A 4

r =r+aX/'t/r

r„=7=+at/Qr„+A,
~
A ~',

(2.10)

(2.11) r, = —2.03(m/2) / = —2.74 .

(2.21)

(2.22)
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In the scaling of Eq. (2.15) the coupling constant in (2.18)
is of order unity and the only small parameter appears in
the coefticient of the gradient qo -A,

It is instructive to expand the free-energy difterence
5@ in the order parameter A~, retaining only the first
three terms. The Hartree result (2.21) can be considered
as a function of the independent variables r and

~

A
~

via
Eqs. (2.19) and (2.20) and expanded in the form

ZC =el W I'+-,'ul a I'+ —,', wl a I'+O (
I
a I'),

with r =r (r) given by the solution of Eq. (2.19) and

u =(1 rr/4r —)/(I+sr/4r ~ ),
(9~/4r 512)/( 1+~/4@3/2)3

(2.23)

(2.24)

(2.25)

r =r, =9u /16w,

which occurs for

(2.26)

These functions are plotted in Fig. 2, from which it is
seen that u becomes negative for ~(0, thus creating the
first-order transition.

The approximate free-energy difference (2.23) vanishes
for r =&+X,

X=XH+X2+O(A, ),
(2.28)

(2.29)

Eq. (2.22).
Equation (2.23) is precisely the same (when allowance

is made for slightly different scalings) as Eq. (2.22) of [10],
which was arrived at by using a "Hartree potential"
I H[(g) ] in place of the "bare" free-energy functional
(2.18). While we believe that the proper physical inter-
pretation of this potential is in terms of a partially
coarse-grained potential V~(P) (as explained in Sec. II B),
for the purpose of calculating the bulk thermodynamic
properties the coarse graining can be carried out to arbi-
trarily long wavelengths (A=O) and the potential b, N of
Eq. (2.23) agrees with I II[(g) ] of Ref. [10].

Let us inquire into the domain of validity of the Har-
tree approximation (2.21). As mentioned by Brazovskii
[1] and by Swift and Hohenberg [4], a simple estimate is
obtained by finding the parameter region where the
correction term in the self-energy [Fig. 1(b)] becomes of
the same order as the terms retained in Eq. (2.5) [Fig.
l(a)]. Let us write Eq. (2.5) generally as

w=w, = —2.51, (2.27)
with X~ -A/r '

th, e term retained in Eq. (2.5) and

which is close to the "exact" Hartree value ~, = —2.74 in (2.30)

the contribution from the diagram in Fig. 1(b). In order
for the perturbation expansion in A. to be valid we require

X -A, /~r &F, (2.31)

r(0) 1

leading to r )A,
~ . In this domain the Hartree r, given

by Eq. (2.10), scales as r —(A, /~r~) (i.e., r && r ) and Eq.
(2.31) implies

(2.32)

0.5

u(0)
0

—0.5

We use the subscript G in (2.32) in analogy to the
Ginzburg criterion for validity of mean-field theory in
critical phenomena [18]. Here, since we are dealing with
a Jirst-order transition, the theory is self-consistent as
long as

(2.33)

(c) ',

which holds for

(2.34)

w(0)
We thus see that the strict self-consistency only holds for
impractically small coupling strength. We may also note
that a less stringent criterion was invoked by Brazovskii
[1],namely,

0
—3

I

—2 &z(&&=&H,

which replaces Eq. (2.32) with

(2.35)

FIG. 2. Coefficients of the bulk free energy (2.23) plotted as a
function of ~. (a) The coefficient r, obtained by solving Eq.
(2.19). (b) The coefficient u, from Eq. (2.24). (c) The coefficient
w, from Eq. (2.25). The bulk coefficients correspond to the limit
A=0 of the coefficients of Eqs. (2.45)—(2.48).

and Eq. (2.34) with

X'"«1 .

(2.36)

(2.37)
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B. Nonuniform systems

In order to study phase competition and nucleation we
must be able to describe situations where the envelope 3
of the order parameter (f) of Eq. (2.15d) can vary in
space, as, for instance, at the interface between ordered
and disordered domains. For this purpose we introduce a
coarse-graining procedure, whereby modes with wave vec-
tors larger than some cutofF [19] A are averaged over us-
ing the Hartree approximation of Brazovskii, and modes
with wave vectors less than A are retained as fluctuating
modes in averages such as Eq. (2.3). In particular, let us
suppose that the starting free energy (2.18) involves
modes with wave vectors in the range 0+q ~2Ap=2qp,
1.e.,

0& q
—

qol &Ao, (2.38)

-p[ n+—(.)]=f &[V, ]exp[ —n&[y, ]], (2.39)

where the subindex to the integral indicates the inclusion
of all modes f(q) with wave vectors in the range (2.38)
with upper cutoff Ap. We now define a coarse-graEned
free energy VA obtained by eliminating the modes in the
slice A & lq

—
qo l

& Ao. This corresponds to setting

exp[ 13C'(~) j = f N[4q ]exp I PVA[gq ] l—,
7

with

(2.40)

e"pl. ~~ ]=1 +[I ]exp[ 13&[q ]l (2.41)

With these definitions we show below that

(2.42)

and

with Ao=qo. The average in Eq. (2.3) is then a functional
integral

$„(A,r)—: dk

[r(A, r)+k ]" (2.48)

These quantities are evaluated by first solving the tran-
scendental equation (2.45) for r(A, q ) and then inserting
the result into Pz and P3 to obtain u (A, r) and w ( A, r)

The derivation of Appendix 8 and the result in Eqs.
(2.45)—(2.48) are closely related to those of Fredrickson
and Binder [10], but the physical content is rather
different. We are separating out the short-wavelength
modes involved in generating the first-order transition
and the possibility of phase coexistence [u (A) &0], from
the long-wavelength modes involved in building inter-
faces and other large distortions of the order parameter.
The "Hartree potential" I 0 of Fredrickson and Binder is
essentially VA 0=4&, which is no longer a functional of a
fiuctuating order parameter P(q), where lq

—
qol &A.

This potential depends only on the average order parame-
ter (g)(q =qo), which is only a function of r in a uni-
form system. It thus seems to us that PA rather than I H
is the proper starting point for the evaluation of droplet
free energies and metastability lifetimes, though as shown
in Sec. IIC our actual results do not differ significantly
from those obtained using I"~. To make a quantitative
estimate of the droplet free energy by means of VA[g],
Eq. (2.44), we must specify the value of A and this is done
in Sec. III B.

We should also mention that in principle the coarse-
graining procedure applies to the full dynamics of Eq.
(2.1a), not just to the static averages such as Eq. (2.3).
Since our treatment of metastability does not go beyond
the estimation of "energy" barriers [21],we have not pur-
sued this question here. Clearly, however, a more corn-
plete theory would have to take into account the effects
of coarse graining on the dynamics and on the "entropic"
corrections to the barriers height coming from Auctua-
tions about the saddle point [11,12].

~A=AO ' (2.43)

Moreover, in Appendix 8 we show that if the integrals
implied by Eq. (2.40) are carried out using the Hartree
approximation of Brazovskii and if the resulting VA is ex-
panded in g, then we obtain

VA[g]= f d"x r(A)g +—u(—A)g~+ —w(A)$6
[p, ~] 2 4| 6!

T

+ [(v +q )g]
4qp

(2.44)

r(A, r)=r+$, (A, r),
u (A, r) = [1—Pz(A, r)]/[1+hz(A, ~)],
w (A, ~) = 12/3(A, v )/[1+hz(A, ~)]

with [20]

(2.45)

(2.46)

(2.47)

where the subindex to the integral again indicates that
P(x) has variations involving wave vectors in the range
0 &

l q
—

qo l
& A. The coefficients are given by [19]

C. Properties of the coarse-grained free energy

The model (2.44) —(2.48) defines a free energy VA,
which was designed to interpolate between the bare free
energy V of Eq. (2.18) for [20] A=AO= ~ and the bulk
average free energy b,4 of Eq. (2.23) for A=0. Indeed, it
follows from Eq. (2.48) that for A=Ao= ao, P„(~ )—:0,
so PA just reproduces the bare free energy 9' of Eq.
(2.18). On the other hand, from Eq. (2.48) for A=O we
have P&(0)=~/2r' (0), Pz(0)=n/4r (0), and
P&=3~/16r (0), so r(0), u (0), and w(0) agree with the
quantities r, u, and w, respectively, defined in Eqs. (2.19),
(2.24), and (2.25). Moreover, for A=O there is only one
mode left in the free energy in Eq. (2.44), namely, the
average order parameter, for which we make the ansatz
(2.15d). The free energy per unit volume then becomes
precisely the expanded Hartree expression given by Eq.
(2.23).

For intermediate A values we may evaluate r(A, r),
u (A, r), and w (A, r) numerically from Eqs. (2.45)—(2.48).
The theory is of physical interest for values of A which
are low enough so that r( , A)&r0, implying that the
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r(A, r) =r(0, r)(1+Ar) =r(1+Ar),
u (A, r) =u (O, r) =u,
w(A, r)=w(0, r)=w,

(2.49a)

(2.49b)

(2.49c)

results that are valid for

disordered phase is metastable. In that case it turns out
that to good accuracy we can represent the coefficients in
the form

/=0 for r &r, . Having obtained an effective free-energy
Vz with u &0, we first estimate the barrier height for a
critical droplet with fixed A, deferring to the next subsec-
tion the question of the proper choice of A. As is done in
standard nucleation theory [11,12], we seek a saddle-
point solution for V~, i.e., a localized solution of the
differential equation

2 2Z 1 3 1

(4qo )
(V' +qo) Q+r(A)g+ —u(A)Q +—w(A)$ =0,

31

0&A& —~ ', «0. (2.50) (3.1)

D. Momentum-shell renormalization group

It is natural to ask whether the coarse-grained free en-
ergy obtained in the preceding subsection could not be
derived in a more standard way, using Wilson's
momentum-shell renormalization group [22,23], for ex-
ample. It turns out that because the ordering in the Bra-
zovskii model (2.1b) involves condensation onto the sur-
face of a sphere in reciprocal space, the usual methods
are difFicult to implement and various authors have found
it necessary to introduce modifications of the model in or-
der to obtain renormalization-group recursion relations
[24,25]. However, recent work on the renormalization
group for Fermi liquids at low temperatures, where the
wave vectors of the important modes also lie on a sphere,
suggests that a direct perturbation expansion might
work. By making use of some of the techniques
developed by Shankar [26) for the Fermi liquid we have
been able to derive recursion relations for the Brazovskii
model (2.1b), keeping essentially the same type of Hartree
diagrams as in earlier work. The derivation is summa-
rized in Appendix A and the result is again of the form
(2.44), where now r(A), u(A), and w(A) are defined by
differential recursion relations, which are quoted in Eqs.
(A24). Solutions of these equations yield coefficients that
are close to those of the simple approximation
(2.45) —(2.48) for r & 0 and show a similar dependence on
A and v. for ~&0. There is, however, an important
difference in that the solutions of the differential recur-
sion relations (A24) are not defined for all A and r due to
singularities for r &0, where r (A, r)+A =0. In particu-
lar the quantity r(0, r) vanishes at a finite r, & r„unlike
the solution of (2.45) which remains positive for all r.
These singularities make it difficult to use the renormal-
ization group to estimate droplet free energies for
sufficiently negative ~, so we shall rather use the phenom-
enological coefficients (2.45)—(2.48), which are defined for
all A and ~. Nevertheless, the recursion relations are well
behaved for larger r (including part of the metastable
range) and they are of intrinsic interest, so we have
presented their derivation in Appendix A.

III. DROPLET THEORY OF NUCLEATION

A. Phenomenological theory

We shall be interested in estimating the free-energy
barrier [21] for nucleation of a critical droplet of the or-
dered phase (2.15d) embedded in the disordered phase

with g =0 for x
~

~~ and QW0 in the interior. In this
equation the coefficients r, u, w are O(1) and are given by
Eqs. (2.46) —(2.49) and qo-A, '~ ))1. Given a solution

g, of the above saddle-point equation, the classical nu-
cleation barrier [21] is

(32)

I. Interfaces

We begin by considering only ordered states of the
form

P(x, y)= A (x, y)e ' +c.c. , (3.3)

describing small distortions of a pattern consisting of
parallel planes (or lines in two dimensions), with the wave
vector in the x direction, say. Then for solutions whose
envelope A (x, y) varies slowly in space the latter can be
shown to satisfy the well-known amplitude equation [27]

[& +(il2qo)B„']'A (x,y)=2rA +u~ A 'A + —,'w A~"A,

(3.4)

where y here denotes the (d —1)-dimensional vector
transverse to the direction x of alignment of the struc-
ture. For bulk states, with A =const and for
u & (4rw /3)' the equ—ation has two types of solutions,
disordered ( A =0) and ordered ( A =+A o ) with

AD=3[(u 4rwl3)'~ —u]lw . — (3.5)

Although we have now reduced the calculation to a
straightforward problem in differential equations, which
could certainly be attacked numerically, Eq. (3.1) is still
quite difBcult to solve accurately and we shall rather at-
tempt to estimate the value of Bz analytically, in particu-
lar its dependence on the parameters, which are qo, r, u,
and w (in the remainder of this subsection we consider
these parameters to be basic and suppress their depen-
dence on A, , A, and r). The difficulty in finding a general
solution of Eq. (3.1) arises from the existence of three
widely different characteristic lengths. The first is the
wavelength qo

' of the ordered phase, which in the
present scaling (2.15) is vanishingly small. Then there is
the thickness of the interface between the ordered and the
disordered phases, which is of order unity (see below,
however), and finally, the droplet size, which diverges at
coexistence where the bulk free energies of the two
phases are equal.
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Their free energies become equal when r =r„with r,
given by (2.26), though now r, u, w denote
r(A), u(A), w(A) rather than r(0), u(0), w(0), as in that
equation.

Let us now consider interfaces between the ordered and
the disordered states. Clearly there are two types of sim-
ple interfaces, longitudinal and transverse. A /ongitudi-
nal interface is a solution of Eq. (3.4) in which A only de-
pends on x with A =0 for x —+ —~ and A = A0 for
x~+ ao, say (see Fig. 3). This is a quintic Ginzburg-
Landau equation as discussed, for example, by Fredrick-
son and Binder [10];the interface thickness is of order

y 1E

0—

(b)

FIG. 4. Same as in Fig. 3, but for a transverse interface, with
lamellae for y &0 and a disordered state for y (0. The trans-
verse interface is thinner than the longitudinal one (g1 «g~~).

(2r)
—1/2 (3.6a)

and the interface free energy (per unit area) is of order

(3.6b)

bA& = —f115,

5=(r, r)/r, ,—

fo =81 I u I '/32w'

(3.7)

(3.8)

(3.9)

[If fo is defined by Eq. (3.9) then (3.7) is strictly correct
only for 5~0, but it is quite accurate up to 5= 1, and we
shall use Eqs. (3.7) —(3.9) for all 5 in our estimates. ]

A transverse interface, on the other hand (Fig. 4), is a
solution of

where fo is related to the bulk free-energy difference (per
unit volume)

following subsections (this was missed by Fredrickson
and Binder [10]).

2. Critical droplets: Isotropic case

Let us now estimate the free energy of a critical droplet
solution of Eq. (3.1). Near coexistence (i.e., for 5«1),
the dimensions of the droplet are very large and we can
use the standard separation [12] of V into bulk and sur-
face contributions to estimate its free energy. We first
consider an isotropic droplet, i.e., one made up of con-
centric lamellae (we refer to three-dimensional structures
in our discussion, but the results are applicable in d =2
also). Then the edge of the droplet is a purely longitudi-
nal interface [see Fig. 5(a)] and the energy of a droplet of
radius R can be written in the standard way as

0= r) A (y)+2rA +u~lA~ A +—
w~ A~ A,1 4 2 1

2 3' 6
(3.10) AV(R)=R'" "ol R f 5— (3.13)

which goes to 3o for y ~+ ~ and to zero for y —+ —~,
say. The interface thickness is now of order

The critical droplet is the one with maximum free energy
(as a function of R ), namely, it has radius

[8 2
]

1/4 g1/6r —1/4 (3.11)
(3.14)

(which is small at fixed r for A, « 1) and the interface en-
ergy is

and corresponds to a free-energy barrier

B;„=hfdf /5d —1 [r d/2~u~3/w2]/5d —I (3.15)

(3.12)

It is this anisotropy in the interface energies that leads to
a preference for nonspherical droplets, as detailed in the

As usual the radius of the critical droplet and the barrier
height diverge at coexistence, r~r„6~0. On the other
hand, as the undercooling 5 grows the radius decreases
and when 5-1 the droplet size R is of the same order as
the interface thickness

g~~
and the above estimate based on

a separation between bulk and surface free energies be-

(AD

Rg

(a)

R))

FIG. 3. Schematic diagram of a longitudinal interface be-
tween the lamellar (x )0) and the disordered state (x &0). (a)
Sketch of the lamellae. (b) Order parameter

~
A~ vs ~. The

width of the interface is gl.

FIG. 5. Schematic diagram of critical droplets. (a) Isotropic
droplet with concentric lamellae. (b) Anisotropic Wu16'droplet,
consisting of lamellae perpendicular to x.
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+—uA + (3.18)

Let us make a change of variables

A =(r/iud)'/ A,
p=r p,

whereby (3.17) and (3.18) become, for u &0,

28 A+(4/p)B A —2A+A —
—,', (1—5)A =0,

V...=sdr" "'"~u~ 'V...[A ],

(3.19a)

(3.19b)

(3.20)

(3.21)

comes questionable. As pointed out by Unger and Klein
[16] in an analogous situation, the critical barrier height
may still be large at that point and it is useful to extend
the calculation to the case 6-1. We shall call these
"diffuse" droplets in preference to the term "ramified"
used by Unger and Klein.

Let us first recast the above calculation in terms of the
free energy V~, Eq. (2.44), and the associated Euler-
Lagrange equation (3.1). For an isotropic configuration
made up of concentric lamellae the wave vector of the or-
dered state is radial, so the order parameter may be taken
in the form

g = A (p )e +c.c. , (3.16)

with real A, where p is the radial coordinate (we neglect
all transverse variation for this simple estimate). The
equation for the droplet takes the form

—2B A ——B A+2rA+uA +—A =0 (3.17)
P p P 6

in leading order where terms neglected are of order
(pqo) '8~A, qo '8 A, or higher. The corresponding free
energy is to leading order (in three dimensions)

r

V;„[A]=S3Jdpp (8 A+p 'A) +rA

A(P=O) no longer reaches the bulk value Ao(5) corre-
sponding to (3.5). There is still expected to be a unique
solution of Eq. (3.18) satisfying the boundary conditions,
and since all coefftcients in (3.18) are of order unity, the
barrier is given by 8;„=V;„[A]—1. This corresponds
to the ramified (diffuse) droplets of Unger and Klein [16],
for which the separation between bulk and surface is not
applicable, but a well-defined barrier can still be calculat-
ed from Eq. (3.20). Thus for arbitrary 5 we have

8 —r' '
~u~ '8;„(5), (3.24)

with 8;„(5) an O(1) function proportional to 5' for
5 «1.

3. Anisotropic droplets: Wul+construction

All of the above estimates were based on the assump-
tion of an isotropic solution (3.14) of the saddle-point
equation (3.1), with concentric lamellae (or rolls in d =2).
Since, however, the cost o~ of a transverse interface is
less than that of a longitudinal interface o.

~j

for small A,

[see Eq. (3.12)], we may guess that an anisotropic solution
of (3.1) will lead to a lower barrier. The simplest such
solution has parallel lamellae with a wave vector in the x
direction, say, as in Eqs. (3.3) and (3.4).

Let us first consider the classical nucleation regime
5 « 1 and seek a solution of Eq. (3.1) which vanishes for
x, ~y~ —m oo and reaches the bulk value (3.5) in the center
[see Fig. 5(b)]. Because of the anisotropy of the interface
energy we must optimize not only the size but also the
sAape of the droplet, using the well-known Wulff con-
struction [14]. In order to do this we consider a paralleli-
piped of length yo.

~~

in the x direction and yo. ~ in the
(d —1) transverse (y) directions, with y an unknown
constant to be determined (see Fig. 6). The volume of the
figure is Q=y"o.~

'o.
~~

so

y =(n, /~,d b)"" .
-

ll

(3.25)

and for d =3

V...[A]= J'dip'[(a A+@ 'A)'+A'
—

—,
' A + —,', (1 —5) A (3.22)

V, =2~11(y~l)"-'+2(d —1)al(yell)(y~L)' '

fl( d —1) /d( g gd
—1

)
1/d (3.26)

Then the total free-energy contribution from all the sur-
faces is (see Fig. 6)

where (3.8) was used. (An analogous formula for V can
be derived for arbitrary d. )

We now seek a (critical droplet) solution of Eq. (3.20)
which vanishes for p~~ and is nonzero for p=O, with
8 A =0 for p=O. The only parameter left in Eqs. (3.20)
and (3.22) is 5, and for 5«1 the solution reaches the
bulk value A = AD=8 [see Eq. (3.5)] at P=O. The posi-
tion R of the interface results from a balance between the
surface and bulk terms in V, Eq. (3.22), and an argument
analogous to that following in Eq. (3.13) leads to the re-
sults R -5 ',8,„=V,„[A]-5 2 for 5«1. From Eq.
(3.21) we then see that

Q=Q~-R~
with

(3.27)

R ~-4w/5-~ w/f05-(kll~ki (3.28)

while the bulk contribution is Pz = —foQ5 [in deriving
Eq. (3.26), Eqs. (3.6) and (3.12) were used]. We now max-
imize the total energy V=Vs+9's with respect to the
unknown volume 0, and find the Wulff values

1SO 1SO (3.23)

(3.15) since folwhich agrees with
5« l, r =r, —~u~'/u.

Let us now consider the case 6-1 when R —1 and FIG. 6. The parallelipiped entering the Wu16 construction.
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and a total free-energy barrier

g gd
—lf /5d —1 gd f /5d —1

The longitudinal and transverse dimensions are

'Y w

«i)w )—'w~( k-i/5

i.e., there is an anisotropy

(R~~) /(R ) -q'/ -A,

(3.29)

(3.30a)

(3.30b)

(3.31)

which diverges for A, « 1. Note also that the droplet be-
comes diffuse (R~-g~ and R

~~

-g~~) for 5-1,just as in the
isotropic case (3.14).

In order to relate the above estimate to the fundamen-
tal equation (3.1), we note that for real A Eq. (3.4) takes
the form

(3 A —(4q 0 )
' V'y A =2r A + u A + —,

' w A (3.32)

+—QA + NA
1 4 1

4 36
(3.33)

We seek a solution which vanishes for ~x~, ~y ~ ~ and
reaches a nonzero value over a finite region surrounding
the origin. Equation (3.32) is derived from a free energy

V,„;[A]=f dx dy. (() A) + (V„A) +rA1

4q,'

B. Self-consistent theory

Having estimated the barrier height for the simplest
isotropic and anisotropic critical droplets using the phe-
nomenological model (2.44) with given qo, r, u, and w, we
now address the issue of the proper choice of the coarse-
graining scale A. The reason for introducing a coarse-
grained free energy in the first place was that we needed
to allow for variations of the order parameter on length
scales of the order of the interface width g and larger.
Thus, in order to estimate the longitudinal surface free
energy 0.

~~

we need to impose the constraint

A (3.40)

It is apparent from Fig. 7 that if q is confined to a shell of
thickness 2A around the point qox, then for qo »1 the
transverse momentum q ~

=
q~ is limited by

A~=(2qoA)' . Thus, since g~=(2qog~~)' the constraint
(3.40) automatically ensures that

(3.41)

which is also a necessary condition for evaluating o.
~ con-

sistently from V~. In order to estimate bulk contribu-
tions to the droplet free energy, on the other hand, we
need to let A~O, as in Eq. (2.23). These difFerent con-
straints can be implemented concurrently by using a type
of local-density or Thomas-Fermi approximation, where-
by A is adjusted self consistent-ly to be equal to the local
longitudinal rate of variation of the envelope A (x,y)

We now introduce the scaling of Eq. (3.19a) and A=A„(x):—A '() (3.42)

x =r '~'x,
We thus seek an extremum of the free-energy functional

—(/4(2 )
—1 /2y

which changes Eqs. (3.32) and (3.33) into

(3.34b)
9';„;[A;A]=f dx dy, (B A) + (+2 A)2

4q,'
t

() A t3 A =—2A A+—
—,', (1—5)A

V = ( ~/4~u~ ((2q )( ~/ V

V,„;=f dx dy[(B A ) +(() A )

(3.35)

(3.36)
+r(A)A +—u(A)A

4

+ w(A)A
36

(3.43)

+A —
—,'A + —,', (1—5)A I . (3.37)

In the classical nucleation region 5«1 the solution of
Eq. (3.35) depends sensitively on 5, and the WulfF con-
struction leading to Eq. (3.29) tells us that in the scaling
of Eq. (3.34) we have V,„;-5' ", R~~-R~-5 '. The
solution becomes diffuse (R ~(-R~ —1) when 5-1 and in
that case once again V,„;—1. The free energy barrier
(3.29) may now be written as

g gd
—1f /5d —(

((—d)/2r —((+d)/4
~
u

~

3/~ 25d —(
qo

with A determined self-consistently at each point via Eq.
(3.42). It can be shown that the Euler-Lagrange equation
is no longer precisely given by Eq. (3.4) but rather by

(2qcA)"
~

—" "' 'r" "' '/iui5" ' 5«l (3.38)

where we have again used the fact that for 6 « 1,
r —r, —~u~ /w. More generally we write, as in Eq. (3.24),

(( —d~»r(7 —
d~/4~u~

—'g (5)

with B~(5 )- I for 5- 1, B~-5' " for 5 ((1.

(3.39' FIG. 7. A portion of the Brazovskii sphere in reciprocal
space showing the relationship between the longitudinal cutoff
A and the transverse cuto6'(2qoA)' ))A for A «qo.
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8 A —(4qo) 'V'rA =2r(A)A +u(A)A + —,(w(A)A

(3.44)

The self-consistency relation (3.47) becomes

A=A„-(p)=A '8 A . (3.55)

with

r(A) = r (A)+Adr/d A,
u(A) =u (A)+Adu/dA,

w(A)=w(A)+Adw/dA .

(3.45a)

(3.45b)

(3.45c)

Referring to Eqs. (2.49) we see that du /d A and dw/dA
are small, while dr Id A —r, so we set

r(A) =r (0)[1+2Ar],
u(A) =u (A) =u,
w(A)=w(A)=w .

(3.46a)

(3.46b)

(3.46c)

The self-consistent droplet is given by the solution of
Eq. (3.44), subject to the constraint (3.42), or equivalently
by the saddle point of (3.43), subject to the same con-
straint. For the isotropic droplet Eq. (3.42) is replaced by

Once again all coefficients in (3.50) are of order unity for
5-1, so Eq. (3.23) becomes

g sc (4 —d)/2~ u
~

—lg sc (g) (3.56)

where r, u, and 6 refer to A=O and B;',', —1 is obtained
by solving (3.50) subject to the constraint (3.55).

En the anisotropic case the arguments go through in
the same way and they lead to the replacement of (3.29)
for 5«1 by

(3.57)

r(A=/,
,

')=O. lr(A=O) (3.58a)

g(((r(A=/() ))gJ ( (A=/(~ ))

Xfo(r(A=R
11

'))5

Now for 5((1, R
11

'-ti~0 and once again Eqs. (2.49)
and (3.6a) lead to

A„(p)= A -'a, A (3.47) (3.58b)

—3.2/11 r(0))=3.2$ (3.49)

i.e., the self-consistency increases the barrier by a factor
of order unity. More generally, for arbitrary 5, we intro-
duce the scaling (3.19), but where now r and u stand for
r(A=O) and u(A=O). Then Eqs. (3.20) and (3.22) be-
come, respectively,

28 A +(2/p)B A —2r(A)A + A —
—,', (1—5) A =0

(3.50)

and

&;.[A]=fdye'I(a A+p 'A)2+r(A)A'-

with

—
—,'A + —,', (1—5)A (3.51)

and the gradient terms in (3.43) and (3.44) are replaced by
[(} A +(2/p)A] and [() A +(2/p)B A], respectively, as
in Eqs. (3.17) and (3.18).

We have not solved these equations numerically, but
we may once again use dimensional arguments to esti-
mate the eft'ect of the self-consistency on the barrier
height. In the isotropic case and for 5 « 1 we argue that
the main change compared to Eq. (3.15) is to select
A=/(~ ' in evaluating the surface term, whereas we may
take A=R '-5-0 in the bulk term. Thus the barrier is
changed to

(&(g,
,

'))fo("(0))/~ (3.48)

Now from Eq. (3.46a) and the relation g(((r)-9 ' we

may show that

Thus the self-consistent anisotropic barrier is increased
with respect to (3.29) by a factor of order unity and Eq.
(3.38) still holds, with r, u, and 5 now referred to A=O.

For 5 of order unity the scaling of Eqs. (3.19a) and
(3.34) go through with r =r(A=O) and Eqs. (3.35) and
(3.37) are replaced by

8 A —8 A =2r(A)A —A + —,', (1—5)A

9';„,[ A ]= f dx dy[(B, A )'+((3' A )'+ r(A) A'

——'A +—'(1—5) A ]

(3.59)

(3.60)

with the self-consistency relation

A=A„-(x) = A -'a„A, (3.61)

and r(A) and r(A) given by Eqs. (3.53) and (3.54), respec-
tively. Then the self-consistent estimate of the anisotrop-
ic barrier has the same form as Eq. (3.39),

gsc (( d)/2 (7 d)/41 — —lgsc(g)—8' ~Q (3.62)

but now r, 5, and u refer to A=O and B~(5)—1 is ob-
tained by solving the self-consistent equations
(3.59)—(3.61).

The final results may then be expressed in terms of the
original variables of Eq. (2.1b), namely, r and A., by using
the formulas of Sec. II A. We defer a detailed examina-
tion of the results until Sec. III D below, but it should al-
ready be clear that the anisotropic barrier (3.62) will al-
ways be smaller than the isotropic one (3.56) due to the
factor q Q

" —k " « 1 and the higher power of
r ( 1 in Eq. (3.62).

5=[r(A=0) —r, ]Ir, =(r r, )/r, , —

r(A) =1+2Ar (/2r

r(A)=1+Ar' 'r .

(3.52)

(3.53)
C. Defects and distortions

The calculation of the anisotropic barrier was based on
the simplest ansatz designed to take advantage of the
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favorable transverse interface energy o.z, namely, parallel
lamellae with the wave vector q=qIIx, as in Eq. (3.3). It
should be clear, however, that under certain cir-
cumstances a lower-energy configuration can be achieved
by distorting the lamellae in regions where they form (un-
favorable) longitudinal interfaces, in order to gain addi-
tional surface free energy. In general such distortions
tend to produce defects, whose free energy cost is linear
in the size of the structure, so distortions are typically
favored for large droplets.

Our discussion of defects and distortions draws heavily
on the work of Cross [28] and of Fournier and Durand
[15]. In particular, the latter authors showed that for
smectic liquid crystals it is advantageous to introduce de-
fects in the form of focal conies and to pack these into
overall spherical shapes in the asymptotic limit of an
infinite droplet (Fig. 8). As shown below, the same argu-
ments hold for the present system, but it turns out that
focal conic defects are only favorable in a small region
near coexistence (5«1, r~r„R ~~ ). Similarly, we
have considered overall distortions of the anisotropic
droplet into an annulus in order to eliminate the costly
longitudinal interfaces at the tips (see Fig. 9). This intro-
duces dislocations in the bulk of the structure, however,
and according to our estimates it is not favorable for any
value of ~.

Unless otherwise noted we will consider three-
dimensional systems in this section, though similar argu-
ments can be given for d =2, or any other d & 3. Follow-
ing Cross [28] let us write the gradient term in the free
energy (2.18) in the form

FIG. 9. Possible distortions of the Wulff droplet to eliminate
longitudinal interfaces. (a) An annular shape with no defects;
(b) same as (a), but with the bend relieved by the introduction of
dislocations.

Fc ~w (3.67)

in these units.
Let us now consider the effect of inserting a focal conic

into the Wulff droplet, as sketched in Figs. 8(a) and 8(b),
and let us denote by I. the average radius of curvature of
the bend in the structure. This length also corresponds
to the length of the core of the disclination defect line,
which has an average cross section /II. Then, as argued
by Fournier and Durand [15], the introduction of the fo-
cal conic yields a bulk energy cost of bending of order
xL per unit volume (or vL overall) and a term
xL ln(L//II) to account for the core of the defect. The
surface energy, on the other hand, is decreased by an
amount -Ao.L, where

Vo =— f d x[(V +qo)it/]
8qo

where

=—f d xi'( Vn) +4(5q) ],2

g= Ae'~+c. c. ,

Vg=(qI3+5q)n

and the bending constant is given by

(3.63)

(3.64)

(3.65)
%IF

—9'Fc-IrL [c,+c2ln(L/g'I~)]+bcrL (3.68)

where c, and c2 are constants of order unity. The above
quantity vanishes for a size I.of order

is the difference in surface tension between the structures
in Figs. 8(b) and 5(b), respectively. Now according to the
calculation in Sec. III A 3 we have cr IF-fo(gIIgi)'
whereas for the structure with a focal conic most of the
interface is transverse, so oFc-fogi«o s, . The free-
energy difference between the two structures scales as

(3.66) Lo=sl Ao ~-Irlo Ir, (3.69)

which means that it is favorable to introduce focal conies
into the Wulff droplets for R IF =o IFIfo5) Lo, i.e., for

5 (5Fc-
oLO

2W
0 (3.70)

I

H
I

H

I

I

(a)

I

I

(b) (c)

FIG. 8. Schematic representation of focal conic defects. (a)
and (b) represent a single focal conic introduced into the Wulff
droplet; (c) is a biconical domain in which focal conies are jux-
taposed; (d) is a focal conic spherical network of cones
representing the equilibrium shape for arbitrarily large droplets.
(From Ref. [15].1

g3/52 q
—3/2 /52 5 ( —2/3 (3.71)

rather than (3.38).

where we have used the relations rrII -/IF —(/II)gi
Eqs. (3.66) and (3.11), and the fact that in the present
scaling and near coexistence (5&(1) all the coefficients
r —r„u, w, fo, w —2 —r /u are of order unity and only
factors of 6 and qo-i, ' »1 need to be considered. In
the range (3.70) the barrier is then determined by o i, i.e.,
it scales as
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The above calculation assumed that the Wulff droplet
was unchanged in shape and size and only the texture of
the lamellae was modified. Following Ref. [15], we may
consider a composite droplet consisting of a spherical ar-
ray of conical domains, each one of which contains a fo-
cal conic defect [see Fig. 8(d)]. Such a shape was found
to predominate for large droplets in the case of smectic
liquid crystals [15]. The surface free energy is now still
transverse and it is achieved over a spherical surface
(o iR ), since the cost is entirely in line energy ( -R lnR)
and is negligible for large R. Thus the free energy is
given by

&D-qoR2 . (3.79)

9' -5q' R +q ' RR2 —RR 5 (3.80)

The same Procedure as above then yields i7, -(qo5)
R&, -qo, and a barrier

(q i/25) —i (3.81)

Each dislocation costs energy fog'~~~(i per unit length of
core and has length R2, so the bulk energy cost of the
dislocations is -fo5g~~giR 2qo. Thus the structure in Fig.
9(b) has energy

7, b
—oiR —5foR

leading to

(3.72) The above estimates are only valid if R2 & R „i.e., g, & 1,
which means

(3.82)
R, h-gi/5 . (3.73)

This is more favorable than the single conic of Figs. 8(a)
and 8(b) for R, h )Lo, i.e.,

In the next subsection we put together all the estimates to
find the most favorable structure for each region of 5 (or
r).

5@h ~i/foL o ~Ti~ w qo
—5/6 (3.74) D. Results

The barrier for this droplet has the same scaling as the
one with a single focal conic, but presumably with a
smaller coefficient in the range (3.74),

Bs h qo ~, Bs h &Bpc, 6&qo (3.75)

Finally, let us estimate the free-energy barrier for
creation of an annular droplet (Fig. 9), which lowers the
surface energy at the cost of splay and/or defect energy
in the bulk. We 6rst consider an undefected structure in
which the bending of the lamellae leads to a change in the
local wave vector and a bulk energy cost given by the last
term in Eq. (3.63). If we denote the radius by R, and the
width by R2 «R &, then the change in wave vector from
the inner to the outer rim is 5q -qoR2/R

&
and the ener-

gy cost is (5q) RzR, -qoRz/R, . The surface energy is
entirely transverse, so the total energy of the annulus is

In Eqs. (3.56), (3.62), (3.75), (3.78), and (3.81) we have
presented estimates for the barrier heights of the droplets
shown in Figs. 5(a), 5(b), 8(b), 8(d), and 9(b), expressed in
the scaled units of Eq. (2.15), as a function of qo-A,
and the bulk parameters «, u, ur, 5=(«, «)/«, (evalu—ated
at A=O), which depend on r. Near the bulk transition
(5&(1) only the parameters 5&(1 and qo-A, '~3&&1

survive since «-«„u, and io are O(1) and

5=(«, —«)/«, =(lrl —lr, I)/lr, I

Far below the transition («~0, 5~1, lel )& 1, I rl &)
I r, I )

we have

V,„„„-qoR,/R, +qo R iR2 R,—R 25, (3.76) (3.83b)
where near coexistence («-«„5« 1) we may again set

fo —1, oi-gi-qo '~ . In order to find the critical size
and shape we need to maximize (3.76) at fixed ratio

il=R2/R, (3.77)

and then minimize the result with respect to the ratio g.
We find il, -5'~ qo ', R „-qo~ 5 ~, and a barrier

—1/2 g
—5/2

annu q 0 (3.78)

which is always larger than the Wulff value
Bii,-oii, /5 -gi/5 —1/qo5 fo. r 5(1.

Thus the cost of changing the local wave vector is too
high, so we shall keep the constraint q=qo on average
and attempt to achieve bend by introducing dislocations
in the bulk of the structure [Fig. 9(b)]. Since dislocations
form lines in three dimensions or points in two dimen-
sions, the two-dimensional estimate of Cross [28] for the
number ND of dislocations applies in three dimensions
also, namely,

I.et us Arst compare the Wulff droplet with the various
defected structures discussed in the preceding subsection.
According to Eqs. (3.70) and (3.74) the focal conic and
spherical structures are favored over the Wulff droplet
for 5(qo ~ -A, ~ and 5&qo ~ -A, ~', respectively.
Comparing the barriers BFc-B,~h in Eqs. (3.71) and
(3.75) with the barrier for the defected annulus BD in
(3.81), we see that the annulus would be favorable for
5&qo '-A, ', but this is precisely the region given by
Eq. (3.82) where the annulus is no longer well defined.
We conclude that it is only in a vanishingly small region
near coexistence (when the droplet size diverges and the
barrier heights are very large) that defects come into
play, and when they do it is in the form of focal conic
structures (see Fig. 10).

We are thus left with the Wulff droplet as the preferred
one over most of the metastable range of w. In order to
estimate the probability of nucleation we need the barrier
B«« in the original units of Eq. (2.1b) since the lowest-
order estimate for this probability is the saddle-point con-
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I

I

I
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~cond ~G1

I
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—1/6 y-1/1 5

Diffuse
Wulff Defects

y2/9

Fluctuation Mean-field
Disordered Disordered

, where according to Eq. (2.32) the Har-
tree approximation breaks down and we find

(3.87)

Thus, for d =3 the Wulff barrier is still large (A,
' ))1)

at this point, which in reduced units corresponds to the
region ( rI —Ii.I/Ir, I-A, ' ' )&1). If we continue to
use the asymptotic estimate Eq. (3.85c) beyond its formal
range of validity we find that (for d =3) the barrier
height is of order one at

g1/2 g3/5 y2/3 g2/3
g( —d)/( —d) g) /2

COIIC1 7 (3.88)

FIG. 10. Summary of the metastability properties of the Bra-
zovskii model in three dimensions for A, «1. The scale of the
control parameter 7 of Eq. (2.1b) and that of the reduced quanti-
ty ~-Fk ' are shown. The fluctuation-induced bulk transi-
tion occurs for ~&0 at ~=~, —1 (~=7, -A, '). The defected
critical droplets are only favorable in an infinitesimal region
near ~„5=[i~i—lr, l]/I~, I-A, ' &&1. The anisotropic Wulfj
droplet is favorable for 1 & 5 & X . For

I &I » I
&

I
( I &I » I r, I

)

the Wulff droplet is diffuse since the interface width is of the
same order as the droplet radius. The Ginzburg criterion
beyond which the perturbation theory no longer holds occurs

(I~i = l~gil =~'"» I~, I),
which point the critical barrier height is 8&&-k ' ')) 1. The
barrier becomes of order unity at

tribution exp[ Bii,] [the nois—e in Eq. (2.1c) is normalized
to unity]. According to Eqs. (2.15h), (2.16), (2.17), and
(3.39) we have

—/3B g() d)/3 (i d)/2 (7—d)/4I g
I

—)B (—5)—
(3.84)

Noting that B~(5)-5' for 5&&1 (r~r, ) and
Bii (5)- I for 5-1, and taking into account the asymp-
totic estimates in Eq. (3.83) we find

(3.85a)

which represents a crude estimate of the condensation
point. We also note from Eq. (3.87) that for d =2 the
barrier height becomes of order unity precisely at ~=~6&.

Let us compare our results with those of Fredrickson
and Binder [10]. As mentioned in the Introduction, these
authors confined themselves to isotropic droplets, so we
should compare with our Eq. (3.86). The scaled free en-
ergy (2.10) of Ref. [10] is the same as our O', Eq. (2.1b),
since all quantities are O(1) except for the coupling con-
stant

(3.89)

[here and below A, refers to our coupling constant, not to
their parameter A, , which is O(1); note also that the quan-
tity 5Fa defined in their Eq. (3.12) corresponds to our
I~I —Ir, I

=5I~,
I ]. The estimate of the barrier in their Eq.

(3.16) is B;„-N ' [5Ir, I] -k 5, which agrees
with Eq. (3.86a) for d =3. However, the condition of va-
lidity of the expansion in their Eq. (3.14) is 5„B«N
not 5„ii«1 (i.e., 5«1, not 5«A, ). Thus the esti-
mate of a kinetic limit of metastability or condensation
point where 8;„—1 given by these authors, namely,
5„B-N -A, ' (or r„„d -A, ' ), difFers significantly
from our estimate for the isotropic droplet I

i „„dI

—1,
which follows from Eq. (3.86c). In any case, according to
our calculations, the critical droplet is an anisotropic
difFuse structure and it leads to the estimate Eq. (3.88) for
the kinetic limit of metastability.

I@I /Ir , I

—1, .

B~-x" "'"IrI'"
(3.85b)

(3.85c)

g(1 —d)/3
1SO (3.86a)

(3.86b)

(3.86c)

From the above estimates it is clear that the anisotrop-
ic Wulff droplet has a lower barrier than the isotropic
droplet, but the barrier nevertheless is still large
(A,

' "' &)1) up to and beyond the region
when the droplet becomes diffuse according to Eq. (3.30).
Indeed, we may estimate the barrier height at

A similar calculation for the isotropic droplet of Eq.
(3.56) yields

d —1

IV. CONCLUSION

In this paper we have presented estimates of the criti-
cal droplet free energy of the Brazovskii model (2.1) in
the metastable phase of its Auctuation induced first-order
transition in the weak-coupling, low-noise limit A, «1.
Our work builds on that of Fredrickson and Binder [10],
but finds a more favorable configuration for the critical
nucleus than their isotropic droplet, by taking into ac-
count the anisotropy of the lamellar ordered state. Our
derivation is also physically more plausible than that of
Ref. [10] in our opinion, since the free energy we use dis-
tinguishes between the short-scale fluctuations leading to
the first-order transition and the long-wavelength Auctua-
tions necessary to build interfaces and droplets. In the
final results, however, this added self-consistency changes
only the numerical factors and not the basic scaling of
the barrier height in the small parameter A, . Our main
conclusion, which differs from that of Ref. [10], is that on
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the scale of the first-order transition (
~
r~ —

~ r, ~

—
~ r, ~ ) the

critical barrier is large, 8~-k" "' ))1 for d & 2.
At this point none of our calculations can be claimed

to yield realistic estimates of the lifetimes of metastable
states in the systems described by the Brazovskii free en-
ergy (2.1b). First of all, this is because our results are
based exclusively on dimensional analysis with no ac-
count of numerical coe%cients and with highly idealized
asymptotic conditions, the most extreme of which is the
one in Eq. (2.34). In addition, we have only addressed the
question of finding the energy of the saddle-point
configuration, which is the first step to estimating the life-
time of a metastable state, but by no means the whole
answer.

Our work is, to our knowledge, the first attempt to
modify classical nucleation theory [11,12] in a controlled
way to deal with metastability in Auctuation-driven first-
order transitions [13]. A straightforward extension
would be to solve the self-consistent equations (3.59) and
(3.61) for the Wulff droplet numerically and thereby cal-
culate the function B))'(6) explicitly. A more difficult
(and more interesting) step would be to justify the heuris-
tic arguments leading to Eqs. (3.42) and (3.44) by a formal
calculation analogous to Langer's [12] field-theoretic
derivation of the lifetime of a metastable state in transi-
tions where phase coexistence already appears at the
mean-field level.

The most promising application to an experimental
system is to the microphase separation transition in sym-
metric diblock copolymers [6—9], which was the main
focus of the work of Fredrickson and Binder [10]. With
all the caveats expressed above, we can say that we ex-
pect the disordered phase to be metastable against homo-
geneous nucleation of droplets down to a reduced tem-
perature of the same order as or larger than the shift
r, ~

-A, / between the mean-field and the actual (thermo-
dynamic) transition ( ~r„„z~ ~r, ~

). If the ordered phase
is homogeneously nucleated we expect the critical drop-
lets to be difFuse [16]since the more regular Wulff'needles
shown in Fig. 5(b) have large barriers. The actual shapes
that would be observed experimentally can only be deter-
mined if one studies the subsequent evolution of the drop-
lets as they aggregate and coarsen [10], a question whose
elucidation requires further work.

Another possible experimental application is to
Rayleigh-Benard convection [4,5,27,28], perhaps near the
Quid critical point where fluctuation eAects are expected
to be large [29]. In that case, however, apart from non-
Boussinesq eff'ects [27], which might mask the fiuctuation
contributions, it may be important to take into account
the effects of multiplicatiue noise [30] on the transition
since the latter could be much larger than the additive
(thermal) noise. It is not clear at present how much of
the present theory would be relevant in the convection
system.
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APPENDIX A: RENQRMALIZATION-GROUP
RECURSION RELATIONS

We seek to obtain a coarse-grained free energy by con-
structing a momentum-shell renormalization group in the
manner of Wilson and Kogut [22], except that we elimi-
nate shells surrounding the sphere ~q~ =qo, rather than
shells surrounding a single point in q space, as was done
in Ref. [22]. To do this we borrow from the techniques
developed by Shankar [26] for the Fermi liquid. Rather
than starting from the free energy (2.1b), we generalize in
the usual way [22] to include higher interactions, i.e., we
start from

&[0]=&&+ &,+&,+ (Al)

72= —,
' f d 1 d2 u2(1, 2)(2)r)~5(1+2)g(1)g(2),

tp ~o~

(A2a)

V~= —f d 1 . d4u~(1, 2, 3,4)(2~)
4! [p X,]

X 6(1+2+3+4)i])(1)g(2)g(3)g(4),

(A2b)

etc. , where

1

[O, Ao] (2~) 0( ~q)
—

qo~ (Ao
(A3)

and 80
~

is the element of solid angle in d dimensions.
We now integrate over the modes

o/b &q —
qo &Ao (A4)

and the corresponding inner shell with q &qp and then
rescale all momenta so that Ao/b ~Ao. If we define

k=q qp

k'=bk,
(A5a)

(A5b)

(A5c)

then in lowest order in u4-A, we may write

u2(1, 2)= [r +go(q, —qo ) ]

and the change in r is given by

r'=b [r+b~],

(A6)

(A7)

where 62 is the contribution from the Hartree diagram in
Fig. 1(a) (see below). Let us now examine the change in
u4. By an argument similar to the one given by Shankar
[26] (Sec. V) we find that at "tree level" the change in u&

is given by

X& u4(1, 2, 3,4), (A8)

~n, +n2+n3~ 1 (A9)

where n, is the unit vector q,. /~q, ~. Thus by iteration of
the renormalization group, only couplings with vectors
satisfying
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A A A A —A A
Q4(ll» ni~ lilt n2&gp ) ii (Ili~nl) (A10)

will remain finite. It can be shown that for both d =2
and 3 this implies that the four wave vectors in
u4(1, 2, 3,4) must be equal and opposite in pairs when
their magnitude goes to qo. Thus only

The contributions to b, 4 are given in Figs. 1(c) and 1(d).
When we examine the contribution to u, from Fig. 1(b)
we find there is one channel in which both intermediate
Green's functions have arguments in the shell being in-
tegrated over, whereas for ub there are two. This allows
the evaluation of h4 and leads to

survives and it satisfies

u'(lli, Ill) =b [u(n„I12)+64(112,I12)], (Al 1)
dQg —3Qg
dl

agou, Ap avow, Ao+
(r+PoAo) r+P()Ao

(A2lb)

where 54 is the contribution from the diagrams in Figs.
1(c) and 1(d). It turns out that u(n„n2) develops a
dependence on the angle between n, and nz under the ac-
tion of the renormalization group. For a general nonzero
angle u is practically constant and we define

and

dQb
b

2agoa. Ao agowb Ao-'"+ (A21c)

u(n»nz)=u, .

For the special case of parallel n, and n2 (to within an an-

gle of order +r ), we define

Now consider 66. There are 15 ways of distributing the 6
arguments of ub over the external legs in both Figs. 1(e)
and 1(I). Examination of the number of channels that
contribute to N„Nb, and N, leads to

u(n, ,n, )=ub .

Similarly, we have
A A A A A A

u6(1, . . . , 6) ub(n„—n, , nl, —n2, n3 n3 qp)

=w(n„nz, n3),

(A13)

(A14)

dw, 2agpu, Ao
=4Ng +

(r +PoAo)

3agou, w, Ao

(r +PoAo)
(A21d)

and two similar equations for Nb and N, .
These equations have initial values corresponding to

Eq. (2.1b),

w ( Il i, Ill, I13 ) b [w ( Il i 112 I13 ) +56( ll i I12 I13 ) ] (A15)

W =Ng (A16)

with b,6 given in Figs. 1(e) and 1(f). Under the action of
the renormalization group N also develops an angular
dependence; for general angles between n„n2, and n3 we
define

r(l =0)=r,
u, (l =0)= ub(l =0)=A, ,

w, (1 =0)=wb(l =0)=w, (l =0)=0 .

(A22a)

(A22b)

(A22c)

Because of the scalings we have chosen in Eq. (A5) the
quantities r(1),u, b(l), w, b, (1) all grow with l. To find
finite quantities we make a change of variables

N =Nb

and for all three unit vectors parallel we define

N =N
C

(A17)

(A18)

When only two of the unit vectors are parallel we define A =Apso(az) -'"e-',
r (A) = r(l)(aA, ) e

u, b(A) =u, b(l)ke

w, b, (A)=w, b, (1)a (aA, )
i e

(A238)

(A23l3)

(A23c)

(A23d)

Let us now evaluate the contributions 62, h4, 66, using
the lowest relevant order in u4-u -A, for each b,;. We
find

leading to

Qg

r+A (A24a)

qo+ Aolb

Ao
=agpu, I dk

Ao/b p +pkl

—+P(—2 —2)2

(A19)

b =1+I,
with 1 « 1, and find from Eqs. (A7) and (A19)

dr agp17a Ap=2r+
r+P()Ao

(A20)

(A21a)

where a is given in Eq. (2.12) and go is defined in Eq.
(2.15h). In particular there is no momentum dependence
to this order, so the second term in square brackets in Eq.
(A6) is unmodified. In order to find diff'erential recursion
relations we set

dug

dA

dNg

dA

dwb

dA

dwc

dA

2
Qg

(r+A )

2Qg

(r+A )

2Qg +
(r+A )

—4Q ' —+
(r+A )

—12u, +
(r+A )

Ng

r+A (A24b)

Nb

r+A
3Qg Ng

(r+A )

(A24c)

(A24d)

Qg Nb 4ug Ng+, (A24e)(r+A ) (r+A )

8Qg Nb

(r+A )2

with initial values at A=Ago(ak) '~ = co,
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r(oo )=r,
u, b(oo )=1,

b (oo) 0

(A25a)

(A25b)

(A25c)
r(0) &—

(a)

Let us reexpress the free energy in terms of the running
couplings u„(l). Since the upper cutoff Ao is restored to
its original value at each stage of the recursion (A7), the
effective free energy still has the form (Al) and (A2) when
expressed in terms of the u„(l) and the corresponding
g( I ). Let us now change to the scaling (A23), supple-
mented with the relation

(b)

y( I)—y(()gl/2( —g)
—i/3 31/2 (A26)

ub(0) 0—

Then it is straightforward to show that the free energy
takes precisely the form (2.44), with a variable upper
cutoff A and coefficients satisfying Eqs. (A24). The re-
sulting functions r(A), u (A)=ub(A), and w(A)=w, (A)
are similar, but not identical to the ones defined in Eqs.
(2.45) —(2.48) and obtained phenomenologically in Appen-
dix B. In particular, contrary to the latter functions, the
solutions of (A24) do not exist for all r and A, due to
singular denominators for ~ & ~&

= —2.65. This is to be
contrasted with the bulk transition predicted by (A24) at
r,"s= —2. 56. An analysis of Eqs. (A24) shows that the
coefficients are undefined for

wc(0)
2—

0
—3

(c)

A&A, (r), (A27)

A) 0.5

where Ai(r) is plotted in Fig. 11. En the domain (A27)
represented by the shaded region of Fig. 11, the quantity
r(A, r)+A appearing in the denominators in (A24) has
zeros, so the recursion relations cannot be solved with in-
itial conditions at A= ac. Of course the singularities in
(A24) occur for r(A, r) &0, i.e. , in a region where the
disordered state is not even metastable, so they are not
physically significant. However, in the renormalization-
group formulation the coarse-grained free energy at small
A is found by integration starting from a bare free energy
with large A, so the recursion relations are needed even
in the unphysical parameter range with ~&~„A large,
and r &0. The phenomenological coarse-graining pro-
cedure of Eqs. (2.45) —(2.48) avoids the singularity, but
even if it did not, this would not affect the utility of the

FIG. 12. Bulk coefficients obtained from the recursion rela-
tions (A24). (a) The coefficient r ( A =0, ~) vs ~, (b)
u(~)=ub(A=O, ~) vs ~, and (c) w(~)=m, (A=O, ~) vs ~. The
coefficients are only defined for 'T) 7 i= —2.65, and the bulk
transiton occurs at ~,'g= —2.56. These results are to be com-
pared with those in Fig. 2.

method. This is because the phenomenological equations
are given in integrated form, so the coefficients
r(A), u(A), w(A) at a particular value of A are obtained
by solving equations such as (2.45)—(2.48) involving only
the same value of A, rather than by integrating down
from large A. This means that the physically relevant
small-A behavior can be obtained independently of any
large-A singularities.

In Fig. 12 we show the numerical solution of the recur-
sion relations (A24) in a form similar to that in Fig. 2.
The results only exist to the right of the shaded region in
Fig. 11, i.e., for ~& ~& when A=O. The coefficients agree
with the phenomenological ones for ~~0, but they differ
quantitatively for ~ &0 due to the vanishing of r at ~, .
Nevertheless, for r & ~& the recursion relations provide a
justification for the phenomenological theory, since they
have been derived by Inore or less standard diagrammatic
methods.

l'g
C

APPENDIX B: PHENOMENOLOGICAL
COARSE-GRAINING PROCEDURE

FIG. 11. Function A&(~) at which the recursion relations
(A24) have a singularity. The coefficients are well defined for all
A if ~) v.

&
and for A )A, (~) if ~ & ~&. The bulk transition occurs

at ~,'~= —2.56 in the approximation of Eqs. (A24).

In this appendix we reformulate the derivation of
Fredrickson and Binder [10] for the effective free energy,
replacing the averages in their Eq. (A3), which are over
the whole range 0 &

~ q
—

qo ~
& Ao, by averages over the re-

stricted range A &
~ q

—
qo ~

& Ao. The coefficients
r(A), u (A), w(A) are just the derivatives
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I wn (81) m, =12 u, ago
dk

(r+Pok )
(85)

for n =2,4, 6, respectively. They are obtained from the
diagrams in Fig. 1, except that the integrals are confined
to the range A &

~ q
—qc ~

& Ao and no rescaling of the
momentum is performed. As we noted in our discussion
of the renormalization group in Appendix A, the number
of channels that contribute to I 4 and I 6 depends on the
angles between the wave vectors that are their arguments.
We will eventually want the free energy to be a functional
of a lb of the form (3.3). Thus we want the wave vectors
occurring in the arguments to be either parallel or anti-
parallel. In the notation of Appendix A we then want to
identify ub with u and m, with R.

For r the Hartree graph in Fig. 1(a) gives

r(A) =r+agoA, f dk
(82)

r+Pok

When Eqs. (82)—(85) are reexpressed in terms of the
scaled units of Eq. (2.15) they then yield precisely Eqs.
(2.45)—(2.48).

Let us verify that the denominator in the P„, Eq. (2.48),
remains positive

r(A, r)+A )0, (86)

from which it follows that the coefficients r (A, r), u (A, r),
and w (A, r), Eqs. (2.45) —(2.48) are well defined for all A
and ~. The question only arises for r &0 and ~ &0, so we
set

r = —A (1—ri) (87)

and ask whether g can vanish. If we carry out the in-
tegral P, in Eq. (2.48) we find (assuming q )0)

For u, the graph in Fig. 1(c) yields

dk
u, =A, —u, A. ago

(r+Pok )

For ub this graph yields

(83)

1 2—
r = —A (1—ri) =r+ ln

2A( 1 —ri )

which for g~0 becomes

(88)

(89)
dk

u& =A, —2u, A, ago
(r+Pok )

(84)

The coe%cient of the sixth-order term w, is given by the
graph in Fig. 1(e), which yields

Since for fixed r the right-hand side of (89) is bounded by
4(~r~/3) as a function of A, we conclude that (89) has
no solution for r)~0 and that the inequality (86) is al-
ways satisfied.
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