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This paper is the second in a pair treating a lattice model for nematic media. In addition
to the familiar isotropic (I) and nematically ordered (N) phases, the phase diagram established
in the previous paper (paper I) contains a new, topologically ordered phase (T) occurring at large
suppression of topological defects and weak nematic interactions. This paper (paper II) is concerned
with the experimental signatures of the proposed phase diagram. Specilc heat, light scattering, and
magnetic susceptibility near both the N-T and I-T transitions are studied and critical behavior is
determined. The singular dependences of the Frank constants Kq, R2,K3 and the dielectric tensor
anisotropy Ae on temperature as T -+ T~~ are also found.

PACS number(s): 64.70.Md, 61.30.—v, 64.60.Cn, 64.60.Fr

I. INTRODUCTION AND RESULTS

In the preceding paper [Ij (hereafter referred to as pa-
per I), we showed that the nematic-to-isotropic transi-
tion need not proceed through a single first-order phase
transition, contrary to long-held belief [2]. In fact, we
have shown that this disordering can proceed by a pair of
continuous transitions, with a novel intermediate phase
possessing nontrivial topological order. The phase dia-
gram discussed in paper I (Fig. 3 there) is expected to
be generic for nematic materials since the gauge theory
&om which it is derived depends only on the symme-
try of nematic media. The present paper is devoted to
the calculation of characteristic signatures of the phase
transitions into and out of the topologically ordered but
physically isotropic phase T discovered in paper I. The
quantities we study are the specific heat, light scattering,
and magnetic susceptibility near each transition. We also
calculate the singular temperature dependences of the
Frank constants Kq, K2, and K3 as well as the dielectric
tensor anisotropy LE'.

An unusual feature of our model is the presence of two
distinct, physically isotropic phases T and I, which are
separated by a continuous phase transition. Unlike the
familiar transition between liquid and gas (which are also
both isotropic Quids), there is no latent heat and no criti-
cal end point between T and I; they cannot be smoothly
interpolated. The qualitative distinction between these
two phases, both of which are nematically disordered,

'Present address.

is subtle: in the topologically ordered phase there are
few configurations with long nematic defects and the lo-
cally coarse grained director field can be unambiguously
converted into a nonsingular vector field throughout the
Quid. The clearest demonstration of this order would be
the measurement of the energy per unit length of a defect
that is externally imposed by boundary conditions. Such
a direct demonstration of topological order, however, is
likely to be quite difFicult.

Although one cannot use local probes to distinguish
T from I deep within these phases, the transition be-
tween them has very characteristic and measurable prop-
erties. Our prediction is that under certain conditions,
one should be able to observe critical behavior by all con-
ventional means (specific heat singularities, light scatter-
ing, etc.) between two isotropic phases. Observation of
such critical behavior would support our scenario. Veri-
fication of the scaling laws derived below would confirm
the universality classes identified in paper I.

A less dramatic but also surprising prediction of paper
I is the existence of a continuous phase transition be-
tween the nematically ordered and the topologically or-
dered states. According to conventional wisdom based on
Landau theory, the development of nematic order &om
any isotropic state should occur as a first-order phase
transition. As we have shown in paper I, this need not
be the case if the physically isotropic phase has topolog-
ical order, since then the transition can be in the univer-
sality class of the three-dimensional Heisenberg model.
Detailed predictions based on our model are presented
below.

For convenient reference, we summarize our results
here. Detailed derivations of each of the results 1—9 are
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c(T) = A~ltl

Near the I Ttran-sition, the exponent n takes the (pos-
itive) three-dimensional Ising model value [3] nI
0.1085 6 0.0075, which implies a divergent specific heat.
The amplitude ratio A+/A is inverted relative to the
usual Ising spin model, a result of the duality trans-
formation discussed in paper I. Near the T-N transi-
tion, n takes the three-dimensional Heisenberg value [3]
o.~ ———0.130+0.021, resulting in a cusp. The amplitude
ratio A+/A takes the corresponding universal value.

2. Polarized light scattering near the I-T transition.
Near the I-T transition, the light scattering intensity
I (q, t) for incoming and scattered light with parallel
polarizations obeys the scaling law

t—~r
( t)

—c1y/vy fITP
( () t

(1.2)

Here o.l and vy are the three-dimensional Ising spe-
cific heat and correlation length exponents [3] nI
0.1085 + 0.0075, and vI = (2 —oI) /3 = 0.6305 + 0.0025,
respectively. (The Ising correlation length ( diverges as
t—vI

)
8. Depolarized light scattering near the I-T transition.

Near the I-T transition, the light scattering intensity
I „(q,t) for incoming and scattered beams with perpen-
dicular polarizations shows only a weak nonanalyticity
at q = 0. That is, I „(q, t) can be decomposed into an
analytic and a singular part [4]

Ising( t) (1—ng)/vifITD( ()

t ' q(«1
q(1 ~r)/"I q( )) 1 (1.3)

where f+ D is a universal function. Note that the ana-
lytic contributions to the scattering dominate the total
scattering as lql ~ 0 and t ~ 0.

The exponent in (1.3) is (1 —nI)/vI = 1.414 + 0.006,
which is greater than unity. The singularity is therefore
merely a divergence in the second derivative c) I „/Bq of
the scattering intensity. This singularity is not a promis-
ing signature of the I-T transition since it is so weak.

g. Depolarized light scattering near the It/ Ttransition. -

Near the N-T transition, the depolarized light scattering
intensities I,(q, t) and I„(q,t) obey the scaling laws

found in later sections. Unless otherwise indicated, re-
duced temperature relative to a particular transition is
denoted by t = (T —T )/T and the corresponding corre-
lation length is denoted by (. Subscripts + and —denote
quantities pertaining above (t & 0) and below (t ( 0) T .
"Above" always refers to the more disordered phase, so
that the isotropic phase is above the topologically ordered
phase, which in turn is above the nematically ordered
state.

Specific heat. The singular specijic heat near the
continuous transitions into and out of the topologically
ordered phase varies as

t) g —lfNTD(
Z =X)g. (1.4)

(The incoming polarization z is along the mean director. )
The very small anomalous dimension of the spin for the
three-dimensional Heisenberg model is q~ ——0.02 4 0.01.
Matching the form (1.4) onto the known small-wave-
number behavior of I; deep in the nematic and isotropic
phases (for this purpose, T and I behave identically) im-
plies

q
—2tv~(1+2rlH) t ( 0 q( (( 1

I;,(q, t) oc &
q2"" ', q()) 1
t v ( ") t&0, q((&1.

(1.5)

Approaching the transition from the nematic side (t (
0), this result implies a relationship between the criti-
cal behavior of the Prank constants and the dielectric
anisotropy Ae since

c(AE)
K.q. + K.q.

(1.6)

and

c(Ae)'
~ q2 + ~ q2

'

with some constant c (we have taken q&
——0). The form

(1.5) then implies both that (i) the Frank constants are
asymptotically equal upon approaching TNT (due to the
isotropy of the scaling law) and that (ii) there is a partic-
ular relation between the exponents governing the van-
ishing of the Prank constants and of Le at the N-T tran-
sition. These are, indeed, our next two conclusions.

5. Frank constants. The Frank constants approach a
common value and vanish as

as T MT~z (1.8)

at the N-T transition. This can be tested by direct mea-
surements of the Prank constants either by light scatter-
ing (see result 4) or by Freedericksz instability measure-
ments (see result 8).

The approach of the "splay" Prank constant Ky to
equality with the "bend" and "twist" constants K2 and
K3, however, is very slow. Specifically, we expect

Kg —K2 3 1

I »(ltl)l

Experimentally, this behavior may look very much like
Kq being proportional to K2 3 with a constant prefactor
of order unity.

O'. Dielectric anisotropy near the N-T transition. The
dielectric anisotropy tensor Le vanishes like

as T M T~lp ) (1.10)

where [3] PII = 0.368 + 0.004 is the Heisenberg order pa-
rameter exponent. This result for Ae can be tested either
through light scattering as mentioned above or by sim-
ple optical birefringence measurements. Combining our
previous results (results 4 and 5) for the Frank constants
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and I, gives

I;,(q, t & 0) oc q )t) ~

( . 1= XIH +&y(t, H)
~

n np ——& p ~Hp,)
(1.12)

where o; denotes Cartesian components, n is the nematic
director (always along H in the topologically ordered
phase), and the isotropic part of the susceptibility yl
is analytic through the (continuous) N Ttran-sition. The
anisotropic part of the susceptibility Ly, on the other
hand, obeys

With the exact relation 2P = v(d —2 + q) that is derived
by combining the Fisher scaling law and the Rushbrooke
scaling law [5], we find Eq. (1.5) for q( &( 1 (and d = 3).

7. Magnetic response near the N-T transition. Near
the N-T transition, the magnetic response of the system
is given by

OHs ' H, [t)+~

which is readily seen to cross over smoothly to the low-
field ( z„((1) result at H H, ~t~~&.

8. I'reederi cksz instability. The Preedericksz instabil-
ity [2] provides a means of measuring the ratio of the
anisotropic susceptibility Ly to the Prank constants K,
When a nematic is conGned between parallel plates that
have been treated to create boundary conditions favor-
ing a particular orientation of the director, it will assume
that orientation even in the presence of an applied mag-
netic Geld H that favors a different orientation, as long
as that field is sufIiciently small. Usually experimental-
ists choose this Geld to be perpendicular to that favored
by boundary conditions. When the strength of the ap-
plied Geld exceeds a threshold H~, however, the director
rotates away from the alignment favored by the bound-
aries to that favored by the Geld. This is the Preedericksz
instability. The standard result for the threshold Geld is

A~(t, H) = Aft/'~" f~
/qH. t& )

(i.i3) H~ = — ' O(i).
1 K;

&x
where A and H, are nonuniversal (i.e. , system-
dependent) constants. The exponent is Px ——vy /2 =
0.62+ 0.01, where y is the renormalization-group eigen-
value of the "spin-tensor interaction [5]" for the (n = 3)
Heisenberg model. To second order in the e = 4 —d ex-
pansion, y 1.77 + 0.01. The scaling functions f+(x)
obey

The precise geometry of the experiment determines which
Frank constant K, appears, as well as the O(l) factor.
Inserting the known scaling forms

(1.20)

f+(x) mx as xmO,

f (x) ~ const as x ~0, (i.i4)

and Eq. (1.13) for Ay into (1.19), we obtain

Hy = L '+ 2 f~ (L/(~), (1.21)

f~~(x) + fx(x) oc x'~ " ' as x -+ oo, where the scaling function f+ (x) has the asymptotic
forms

where SIr —1 = 2(1 + rlII)(y ) = 1.15 + 0.01. The
result (1.15) for f+ implies that the nonlinear suscepti-
bility diverges as the N-T transition is approached from
the isotropic (T) side as

f~(x) ~x-«' a.
f+(x) ~c as x~0,
f+(x) ~ c'e ' as x ~ oo, (1.22)

with

0 M, H
oc ~t~~' for ~ && 1,H. t4

p2
——2(PH —Qx) = —0.52 + 0.01.

(1.15)

(1.16)

for some constants c, c', and c". These relations imply
that

'
gati

I. oc
gati

for t &O, L)) (
L—1+) L(—0.99&0.01) fol L (( (

, e ~ ~ e
—~~'~" ~ e —~~'~" for t ) 0, I. )) (.

BM 2

BH 3
= Xl+ —&X = a+lent~' ", (1.17)

where a and 6 are constants. Increasing the magnetic
field so that H &( H ~t~~&, the singular temperature de-
pendence (1.15) of the nonlinear susceptibility becomes
a singular magnetic Geld dependence

Recall that in this topologically ordered but isotropic
phase, M is always along the applied field H. From (1.13)
and (1.15), one deduces a nonanalytic (though nondiver-
gent) temperature dependence of the linear susceptibil-
ity as the N-T transition is approached from the nematic
side

(1.23)

Unfortunately, the smallness of gH makes the dependence
of H~ on the temperature (and on the anomalous length
scale in the critical regime) extremely weak in the ne-
matic phase and hence difBcult to discern experimentally.
In practice, one expects to observe an H~ that is nearly
constant with increasing temperature, until it begins to
drop in the unusual stretched exponential manner indi-
cated in (1.23). The observation of either this stretched
exponential or the apparent temperature independence
of H~ below T~T would confirm our theory.

The constancy of H~ below T~T should be contrasted
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Ay(T) oc Qp(T) oc ~~t~,

K;(T) oc Q2 oc it]. (1.24)

with the predictions of Landau theory in the case of a
weakly first-order transition. These predictions are

& = ).(V[PA(*)l —W~+~bpp(*)]U) (2.2)

upon the value of p itself and spatial gradients can be ne-
glected. A Hamiltonian with the appropriate symmetry-
allowed coupling is

Given these scalings, (1.19) would imply that Hz oc

~t ~i~4, instead of (1.23).
9. Magnetic susceptibility. The elusive I- T transition

can also be detected by magnetic susceptibility measure-
ments, albeit with more diKculty. We find that the non-
linear susceptibility has a ~t~i ' singularity at the tran-
sition

aH (1.25)

The rest of this paper is devoted to deriving these con-
clusions. The results quoted above for the specific heat
require no further discussion, as they follow directly and
immediately from what has already been shown (in pa-
per I) about the partition function, which determines all
thermodynamic functions. The other results involve var-
ious correlation functions.

where U abbreviates the renormalized plaquette term
from Eq. (2.1) above. [Recall that U measures defect
density, so that Eq. (2.2) describes a coupling between
defect density and fluid density. ] In the lattice model, the
local density variables p„are associated with the plaque-
ttes, so we denote this dependence simply by the direc-
tional index p. (Each plaquette is then labeled by its
normal vector. ) KR is the renormalized defect stifFness
obtained after integrating out the spins as described in
paper I, p is the coupling between p and the disclination
density, and b'p„= p„(x) —pp.

For the moment, all we need to know about V(p) is
that it is a local, smooth function through the transition,
since p is nonordering, and it has a minimum near (but
not at) the equilibrium density pp. A duality transforma-
tion can be applied to the model implied by Hamiltonian
(2.2). As explained in paper I, the duality transforma-
tion is completely local in the couplings so the partition
function becomes

II. POLARIZED LIGHT SCATTERING
NEAR THE I-T TRANSITION

Consider first light scattering near the I-T transition.
In general, light scattering in an isotropic material is
given by [6] I (q) oc (~e(q) ~

). This scattering is caused
by local fluctuations in the (isotropic) dielectric constant
e, which in turn are caused by density Buctuations of the
various components of the material. For simplicity we
consider here a situation with just one such density p;
including more does not alter the conclusions. Expand-
ing the density dependence of e to linear order about
the average density, we obtain I (q) oc (~bp(q)~ ). The
calculation of the polarized light scattering near the I-T
transition thus reduces to determining the Quctuations of
the (nonordering) density p. To calculate these correla-
tions, we must know how density fluctuations enter the
Hamiltonian.

Recall that the basic Hamiltonian defining our theory
[Eq. (2.1) of paper I] is

.exp .—Va ~p„
4 -)

+4(bpu) ~-~-+~] (2.3)

In this model, Buctuations in p are driven entirely
by those of the Ising spins that are dual to the gauge
field. More precisely, they are proportional to the energy-
energy correlations of the Ising model obeying the scaling
law (1.2). To see this, expand V~ to second order and
J(bp) to first order in powers of bp. The result for the
Hamiltonian is

H = Hi„„s(pp) + h) bp~

with a "renormalized" potential V~ and density-
dependent spin coupling J given by

V~(p„) = V(p„) —(K~+ pbp„) —1/21n(1 —e ~" l),
J(bp„) = 1/2 lncoth(KR + pbp~). (2.4)

P'8 = J) U;, —S; . 8~ + K ) U;~U~yUy(U(;, (2.1)
(i j) gijkl)

with

—p~) bp„o. o. +„+A./2) (bp) (2 5)

where the spins S; are three-dimensional unit vectors on
the sites of a lattice (cubic for convenience), the variables
U;~ = +1 are associated with links (ij) between nearest-
neighbor sites, and the second sum in the Hamiltonian
runs over elementary plaquettes ijkl.

We showed in paper I that the spins are irrelevant at
small J, so they may be neglected when one incorporates
density-Buctuation effects into an effective renormalized
lattice gauge Hamiltonian. There are no symmetry re-
strictions upon the dependence of the Hamiltopian on
p. For long wavelengths, the dominant dependence is

h = VIi(pp) A = Vg(pp), &R = J (Pp), (2.6)

A(bp„) = h —p~—(o. o +„). (2.7)

Since this is zero by definition, h = p~(o. o. +„). Using

where primes indicate derivatives. The calculations re-
quired to find expressions for (bp„) and (bp~bp„~) are
easy in this approximation since they are Gaussian in-
tegrals over bp (fluctuations on difFerent sites are even
decoupled) . Specifically,
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this expression for h,

&'(~j ~~j ~ ) = ~a(~-~-+~ ~- ~- +~ ) + &4~ (2 8)

III. DEPOLARIZED SCATTERING
NEAR THE N-T TRANSITION

Next we turn to depolarized light scattering near the
the N-T transition. The standard form for such scatter-
ing in an anisotropic medium is [6]

&ij (q) oc (eij (q)eij ( q)) )1 (3.1)

where e;j(q) is the Fourier transform of the position-
dependent local dielectric tensor and the summation con-
vention has been suspended on the right-hand side.

For small nematic order the dielectric tensor can be
expanded in the tensor nematic order parameter

Q' (r) = ~*(r)~ (r) ~' /3 (3.2)

as

where (x;y) = (xy) —(x)(y} is the truncated correla-
tion function. Aside from the (zero-range) second term,
the right-hand side of this equation is simply the energy-
energy correlation function for the three-dimensional
Ising model, the well-known behavior of which now im-
plies Eq. (1.2) of result 2.

yawny ( g) F ds~g+ (+/q&) ' ji
~2(x+~) (3 8)

I (q~0. t) oc( " oct ™,q(((l. (3.9)

The requirement of finite scattering at fixed q in the crit-
ical regime (q( )) 1) implies that f+ and f tend to the
same constant as x ~ oo; this means

I,, (q) oc q
+ "H for q( &) l. (3.io)

On the nematic side of the transition (t ( 0), scat-
tering is dominated by Goldstone modes —fluctuations
in the orientation of the director. The resulting long-
wavelength behaviors of Eqs. (1.6) and (1.7) are stan-
dard results [6]. In these equations, the anisotropy of the
dielectric tensor Ae is given by

To complete the description of the critical scattering
near the X-T transition requires matching the scaling
form (1.4) onto known long-wavelength behavior in the
N and T phases to obtain the asymptotic forms of f~

Consider first the topologically ordered ( T) phase (t )
0). No Goldstone modes are present since there is no
broken symmetry. The fj.uctuations of the dielectric ten-
sor (hence light scattering) must therefore be Pnite as

~q~
-+ 0 at fixed temperature. Consistency with the scal-

ing law demands f+(x) oc xi "H as x ~ 0. The q + 0
scattering therefore diverges upon approaching the tran-
sition from the isotropic side

e'q = eob*j + gQ'j ~ (3.3)

where g is a microscopic parameter and is therefore non-
singular at the transition. The correlation function

(3.4)

{-"' (r) ~ (S'(r)S.(r)s*(0)s.(0)). (3.5)

In paper I we have shown that near the N-T transi-
tion the system is described by an efFective Heisenberg
model, so that we can apply a renormalization-group
transformation to relate C, (r) to the same function in
the Heisenberg model with diferent parameters:

( t) b 2{d—2+el~) Q (b
——1 bi jvH t)

(3.6)

The second equality follows upon making the choice 6 =
r/a, where a is a microscopic length and ( = (o~t~
is the three-dimensional Heisenberg correlation length,
noting the isotropy of the Heisenberg model and making
the definition

g(x) = C;, [o., x ~" ((o/a) j"~]ci {" (3.7)

Fourier transformation (and the substitution d = 3) leads
directly to Eq. (1.4) (result 4), with

for i g j = z can therefore be expressed in terms of
Heisenberg spins of our model as

(e'i } —= cob*i+ +e
I

n;'nj 8'i )
(3.11)

the mean director n lies along z, and q y = 0. If the
scaling results are to coincide with Eqs. (1.6) and (1.7)
in the q ~ 0 limit, then f (x) oc x {i+2~) as x ~ 0. As
a result,

g
—{1+2'~) —2

oc ~t~"{ + ~~)
q as q( -+ 0, t -+ 0 —.

(3.12)

(3.13)

(3.i4)

Clearly all three Frank constants have the same critical
behavior.

We now verify both Eq. (3.14) and the critical behavior
(K, ~t] ~) of the Frank constants by an independent
derivation. If we take an expectation value and express
Q;j in terms of spins [see Eq. (3.2)], we find

(Q,, ) oc ~t~ 2(n, n—j 6;j/3). (3.i5)

Comparing with the definition of Le, we deduce A~ {x.
g2Pa

Some information about the Frank constants can be

This is the result announced in Eq. (1.5) of result 4. Im-
plications for the critical behavior of the Frank constants
are also carried by Eq. (3.13) combined with Eqs. (1.6)
and (1.7). Specifically,
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obtained &om generalized Josephson relations [7]. Imag-
ine imposing a twist on the boundary conditions for a
nematic confined to an L x I x I volume and compare
to one with periodic boundary conditions. The (Frank)
&ee-energy difference is AP(L) = (K2/2)L0, where 8 is
the twist angle. From scaling, one expects KF = g(L/()
near a continuous transition. Combining these two equa-
tions,

Ki still difFers by 50% from the value Ka~t~" taken by
K2 and K3 at the ridiculously tiny reduced temperature
ItI

—2
— / —10

In fact, Aq is so small that for all reasonable val-
ues of Li, the renormalization-group flows of LKi
(Ki —K2 s) are presumably dominated by a nonlinear
term proportional to (AKi) (which to our knowledge
has never been calculated). The full recursion relation
for LKq is then of the form

K2 cx ( oc
gati

". (3.16)

Very similar arguments that use boundary conditions
that impose a bend or splay distortion imply Ki,K3 oc

~t~" as well. Gathering these results and the scaling of
Ae we find

oc [t( ~"
K; (3.17)

Application of the exact scaling relation 2P = v(d —2+
q) = v(1 + g) (the last equality following &om d = 3)
recovers the result Eq. (3.14).

IV. CORRECTIONS TO SCALING
FOR FRANK CONSTANTS

Let us next consider the corrections to scaling for the
Frank elastic constants. In the context of an ~S~ soft-
spin theory [5], the starting point is a Landau free energy
expressed in terms of a vector-valued field S with fluctu-
ating magnitude and direction. The term of lowest order
in gradients is uniquely of the form f (~s~ ) (V'S), as long
as the invariance under global rotations of S is unbroken
(compare the discussion in paper I). In real nematics,
this invariance is broken and only the invariance under
combined identical rotations in internal and real space
survives.

The Landau-Ginzburg free energy then contains three
types of gradient terms

x„., =K, (v'. s)'+K, ~s (v x s)~'

+K,~s x (v x s)~', (4.1)

K'(t) = Ko~t~" (1 + & ~t~"* ), (4.2)

with A2 and A3 given above.
The difFerence between K2 and K3 therefore vanishes

rapidly, but Kq is another story. The eigenvalue of the
operator (V . S) is [8] Ai ———e /108 + O(e ), so this
Frank splay constant vanishes very slowly under renor-
malization. By way of illustration, for e = 1 and Li ——1,

where Ki, K2, and K3 are the Prank constants for splay,
bend, and twist, respectively. In an e = 4 —d expansion,
the renormalization-group eigenvalues of these operators
at the n = 3 Wilson-Fisher fixed point are A2 3 — 2 +
O(e), as can be seen by power counting (four powers of
S and two gradients). Since these eigenvalues are large
and negative, the difference between K2 and K3 vanishes
rapidly as the transition is approached. The standard
form for the correction to scaling is

= AiAKi —c(EKi), (4 3)

where c is a constant (again, to our knowledge, never cal-
culated). Due to the smallness of Ai, Eq. (4.3) is valid
outside an extremely narrow range of temperatures in
which LKi « Ai. Assuming c & 0, i.e., the fixed point
LKi ——0 is globally, as well as locally, stable, and ne-
glecting the linear term, we conclude that AKi vanishes
as 1/E for all experimentally observable temperatures.

If we choose E such that e ( = 1, we find 8 oc
] ln ~t~]

This in turn implies that (Ki —K2 s)/K2 s vanishes like

] 1n(~t~) ~, as claimed in result 5. This dependence is so
weak that in many situations it will simply look as if the
correction term is independent of t. In this case, we can
write Ki(t) = K0~t~" (1 + Ai) for all practical purposes.
That is, Kq will vanish with the same exponent as K2 and
Ks but with a prefactor of (presumably) order one. This
means that for q y = 0, I,(q) will remain anisotropic:

c(Ae)'K, '~t~
—""

'*.(') = (1+~,)q +q (4 4)

The singular character of the anisotropy should be unob-
servable for all practical purposes. I„,(q) is still expected
to become isotropic. Note that the anisotropy of I does
not alter the scahng law I, oc ~t~"~ + "~q, but rather
introduces a (nonsingular) anisotropic prefactor.

V. MAGNETIC SUSCEPTIBILITY
NEAR THE N-T TRANSITION

The application of a magnetic field H adds to the
Hamiltonian a term

'8 = —Aya) (H S ), (5.1)

= 2&~,(S;S,. )a~.
1 BE p (5 2)

Now we know that

where the molecular diamagnetic anisotropy Ly0 is as-
sumed to be a smooth function of temperature, in the
spirit of modern critical phenomenology. This standard
expression Eq. (5.1) for the nematic magnetic energy is
the lowest-order [9] term in H that respects the gauge
symmetry (S; -+ cr;S;, U~. -+ o;o~.U;~). The magneti-
zation M induced by the applied magnetic field can be
deduced via the standard thermodynamic relation
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(S, Sp) = Qo(n np —b' p/3) + b p/3,

where Qo(T, H) is the magnitude of the nematic tensor
order parameter. This immediately implies Eq. (1.12),
with

XI = (2/3)&Xo (5.4)

&X = 2&XoQo(T, H). (5.5)

Qo(T H) = b P"i "Q (6 ""t 5""H)

where yh is the renormalization-group eigenvalue of H.
This eigenvalue can be determined by rewriting the mag-
netic Hamiltonian as

Equation (5.4) ensures that XI is perfectly smooth
through T~z since Lyo is; this follows from the fact that
~S~ = 1, regardless of temperature. Hence, taking the
trace over n and P in Eq. (5.3) fixes the coeKcient of
b p at exactly 1/3, independent of temperature (the first
term is traceless by construction and does not affect this
result). This coeKcient in turn leads to the exact rela-
tion (5.4) between XI and AXo, which in turn implies
analyticity of yl.

We must still determine the scaling of Qo(T, H). Since
Qo involves correlations of two S fields, its renormal-
ization group eigenvalue is simply (see the Appendix)
—2P~/v~. Therefore, the renormalization-group trans-
formation near the d = 3 Heisenberg critical fixed point
can be used to relate Qo(T, H) to Qo at rescaled temper-
ature and field as

Qo to Hz (the coeKcient of the magnetic perturbation)
should be finite. Hence Qo oc H in that regime. (Qo
of course vanishes as H + 0 in the disordered phase, so
this H term is the leading order term. ) In the ordered
phase, Qo remains nonzero as H -+ 0, which implies the
asymptotic form (1.15) for f . Finally, requiring that
Qo(t, H) remain finite and nonzero as t -+ 0 for fixed H
implies the final asymptotic form in Eq. (1.15) for f~(x)
in the critical (x i oo) regime. All the other results Eqs.
(1.15)—(1.18) quoted for the magnetic susceptibility now
follow straightforwardly from the scaling law Eq. (1.13)
and the asymptotic expression in Eq. (1.15) for f+

VI. FREEDERICKSZ INSTABILITY

Regarding the Freedericksz instability, we need only
derive the scaling forin (1.20) for K; and the asymptotic
forms (1.22). The former can be done in a manner pre-
cisely parallel to the argument given for Qo. The difFer-
ence is that the Prank constants have renormalization-
group eigenvalue 1, as can be seen by requiring that the
zero-field Josephson relation K; oc ~t~ holds.

The first asymptotic form in Eq. (1.22) then follows
from the standard result H~ oc L, which holds when
nematic order is well developed. The second expression in
Eq. (1.22) follows by requiring that H~ remain finite and
nonzero in the critical regime. In the disordered phase,
boundary effects surely fall off exponentially with the dis-
tance &om the boundary for distances large compared to
the correlation length. This gives the last (exponential)
form in Eq. (1.22).

'R s ——AXo ) H Hp(S, S, —1/3~S~ b p), (5 7) VII. MAGNETIC SUSCEPTIBILITY
NEAR THE I-T TRANSITION

y =2i1 — +(
ni

1.77+ 0.01,

n —18n —88 2)
4(n+ 8)'

(5.8)

where in the second, approximate, equality we have set
d = 3 and n = 3. The quoted error is typical of second
order in e expressions for d = 3, O(n) models. Since
the coefficient of the spin tensor perturbation (5.7) is

H, the renormalization-group eigenvalue of H is yh

y /2 0.89 +0.01. With this eigenvalue in hand, we can
now obtain the scaling of Qo. Choosing 6 = ~t[

"~ in Eq.
(5.6) and using (5.5) to relate Qo to b, X, we immediately
obtain Eq. (1.13) for AX (result 7), with

f, (x) = Q, (t = +1,H = *). (5 9)

which difFers from (5.1) only by a constant (indepen-
dent of S), owing to ~S~ = 1. In this form, 'R s is
simply the "spin tensor interaction" of Ref. [5]. The
renormalization-group eigenvalue of this perturbation
has the e = 4 —d expansion [8]

(S;S, )=Q (b,b, —8 /3)+b /3, (7.1)

whence

Q. = -,'[((S;)') —1/3] (7.2)

Since the magnetic Hamiltonian can be rewritten

Z ., = ~XoH' ) [(S;)'—1/3] (7.3)

Finally, we consider the magnetic susceptibility and
depolarized light scattering near the I-T transition. All
of the manipulations up to Eq. (5.5) are the same here
as near the N-T transition. The differences all arise in
the scaling behavior of Qo(t, H) This can b. e obtained
by noting that, since there is no spontaneous nematic
ordering anywhere near the I Ttransition -(except at the
multicritical point), the nematic director will necessarily
be along the applied field H. (Without loss of generality,
we will consider H along the z direction. ) In that case,

To obtain the asymptotic form (1.15) of f+, note that
deep within the disordered phase the susceptibility of by adding a trivial constant, it follows that
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3 OE
2' B(h2)

(7.4)

Z= dO; exp K UP +J U,zS; S~
(U)

where N is the number of sites in the system and 6 =
H

/Asap/k~

T.
Using (7.4), we can obtain Qp by familiar maiupula-

tions of the partition function. When 'R
g is ad.ded to

the original gauge theory Hamiltonian, the resulting par-
tition function is

To calculate the lowest-order contributions in H and
J &om Eq. (7.8), note that the denominator can be
replaced by unity. In the numerator, the product of S;.S~
terms depends only upon the relative orientation of the
spins in the polymer. For the order H term, the absolute
orientation of only one spin matters. Integrating over the
orientation of this spin first, with relative orientations
fixed, and then over the relative orientations, the result
is zero since ((S, )2) = 1/3. Thus [10j the expansion
starts at order H .

The coeKcient of H is easily calculated to lowest order
in J. Equation (7.8) becomes

+6 ) [(s,*) —1/3l). (7.5) Kg ——K+ J H +176 4 4

6075 (7 9)

As before, we perform a "polymer" expansion of the
terms e( '& ' & ) in the partition function. Extracting
a factor

ZD = exp 6 S- —1 3
s

(7 6)

which represents completely decoupled spins (()s indi-
cates normalized expectation with completely uniform
spin distribution on the unit sphere), we rewrite the par-
tition function as

Z = ZDZ~ ) W(C

(

m

(i~)qc
X

E 4 E

nl

( h

( 2)PC

(JS; S, ) ,h'[(s:)'-~/3l
h 4 ~

S

h, ' [(s,. )' —i/3]

S

(7.7)

This is a sum ever disconnected polymers t, with fac-
h, S —1 3tors of e" [(s,. ) —x/3j decorating the polymers; the same

factors for sites not on polymers have been absorbed into
the ZD out front, which requires the denominator to
avoid double counting. ZD is clearly a smooth function of
H. Near the I-T transition the singular contributions to
Qp come &om the fiuctuations of the U;~'s. For small J,
it is safe to expand in J. The calculation of the effective
gauge coupling is similar to that in paper I (Sec. VII
D) and involves resumming the leading-order contribu-
tions, i.e. , the polymers consisting of single disconnected
plaquettes. The result is

The most important consequence of this analysis is that
the generic singularity of the magnetic susceptibility near
the I-T transition has the 1 —o.~ singularity reported in
Eq. (1.25) of result 9.

All of the critical behavior of Qp can be obtained from
the field dependence of K,zr via Eq. (7.4), which gives

3 BE BK,s
2K BK,B B(h2)

3h' t' kTi ' 'BE
X EAyp) BK

= (a+ b~t~' )H', (7.10)

where in the last equality we have inserted the known
singularity of E at the (zero-field) I Ttransition-, as well
as the fact that BE/BK,zz oc BE/BT As a bon. us, (7.10)
also tells us the field. dependence of the transition tem-
perature Ty~

Tzz (H) = Tzz (0) + const x H . (7.11)

VIII. DEPOLARIZED SCATTERING
NEAR, THE 1-T TRANSITION

(8 1)

We can now obtain the behavior of C;~.(r) from scaling

C,, (r, t) = b' &C,, (b
—'r, b'~"t), (8.2)

where Xg is the renormalization-group eigenvalue of Q;~
and b the rescaling factor. We can extract Xg from the
results just obtained for the singular part of the non-
linear susceptibility. Scaling implies

This hard-won knowledge of the singular behavior of
Qp near Tzz enables us also to determine the critical
behavior of the depolarized light scattering I,(q, t) near
Tzz (result 3). As shown earlier, its Fourier transformI,(r, t) obeys

n' [(s,. )' ——,']
4 ) ~ E Q", "'(t, h) = b ~Qp'"'(b'~ t, b""h) (8.3)

+o(J ). (7.8) where Qp'"s is the singular part of the magnitude of
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the nematic order and Ag is the (as yet unknown)
renormalization-group eigenvalue of H at the Ising gauge
critical point. Choosing b = ~t~ ", we obtain

—vÃ ITD (8.4)

where

(8.5)

For this to be consistent with our earlier result (7.10)
for Qo, we must have f(z) oc z2 at small x and also
[t~

"( &+ "")= ~t~ ~, which implies

Xg + 2Ah —— (8.6)

To obtain Xg, we still need Ah. But since h couples
directly to Qo (i.e. , to S, —1/3, whose average is Qo) &

we know &om scaling that 2Ah ——d + Xg. Making this
substitution, we find (with d set to 3)

(8.7)

Using this eigenvalue in (8.2) and choosing b = ~t[, we
obtain the scaling form

(8.8)

C,, (r, t = 0) oc r (8.9)

where ( oc ~t~
" is the Ising transition correlation length.

As the critical point is approached (t -+ 0), t;~(r) re-
mains Gnite but nonzero at Axed r, so that the function
f;z must scale in such a way as to offset the t dependence
of the prefactor in (8.8). This gives the result

IX. CONCLUSION
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APPENDIX A

In this appendix we calculate the scaling dimension of
Qo(T). Writing the spin as S = M(t)E + 8S, M being
the magnetization arbitrarily assigned to point along i,

(Q;~) = M (t)b, ,b~, + (hS;SS~ —b;, /3). (A1)

The second term is the expectation value of the connected
piece of the operator r = S;S~. —(1/3)b';~. This expecta-
tion vanishes as t~ as t —+ 0. By general renormalization-
group theory [5]

In this paper, we have analyzed critical behavior of
a variety of quantities at the transitions into the new,
topologically ordered phase of nematic liquid crystals
predicted in our gauge model [l,ll]. Characteristic sig-
natures were found for several standard experimental
probes of soft condensed-matter, notably specific heat,
and optical and magnetic response. We hope that these
behaviors will be sought in the laboratory in the near
future.

which, when inserted back into (8.1), implies p =v(d —y ), (A2)

I, (q, t = 0)oc, e' ' = a2+ b2~g~, (8.10)
V

where a2 and b2 are constants and the exponent (1—n)/v
has the numerical value 1.44. Note that the scattering
remains finite at ~g~

= 0 and lacks even a cusp since
the exponent q is greater than one; two derivatives are
needed to get a divergence (8 I,/Bq ~cl[

' ).
Finally, we argue that a lack of microscopic head-tail

symmetry will not alter these results near the I-T tran-
sition. It suKces to show that the leading-order contri-
bution to K,ir remains O(H4), even in that case. The
H4 term is nonvanishing [even a system lacking head-tail
symmetry will still have a Ago g(H . S,)2 term in its
magnetic energy], and we need to show only that lower-
order terms continue to vanish. This is an immediate
consequence of the absence of nematic order, even in the
presence of such a microscopic symmetry breaking. No
analytic scalar (rotationally invariant) function can be
made that is linear or cubic in H and the H term van-
ishes by Eq. (7.4).

where y is the renormalization-group eigenvalue of the
operator r at the relevant (i.e. , n = d = 3 Wilson-Fisher)
6xed point.

Thus the second term in (Al) is asymptotically domi-
nated by the first as t ~ 0 provided 2P = v(d+g —2) ( P
or, equivalently, if and only if

2P —P =v(y +g —2) (0. (A3)

The e expansion for y can be found in Ma's book (Ref.
[5], p. 355) and is

e n —18n —88 e'
~
+ O("), (A4n+8 4 n+8 s )

which, combined with g = 2("++s)e2 + O(es) at n = 3,
gives

( 2e 23'' )
2P —P = v

i

——— i+0(e ), (A5)ll 5724 y
which is indeed negative, as desired. The expectation
(Al) is dominated by the connected piece and scales with
an exponent 2P.
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