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We consider the weakly Brst-order phase transition between the isotropic and ordered phases of
nematic liquid crystals in terms of the behavior of topological line defects. Analytical and Monte
Carlo results are presented for a recently introduced coarse-grained lattice theory of nematics that
incorporates nematic inversion symmetry as a local gauge invariance. The nematic-isotropic transi-
tion becomes more weakly erst order as the disclination core energy is increased, eventually splitting
into two continuous transitions involving the unbinding and condensation of defects, respectively.
These transitions are shown to be in the Ising and Heisenberg universality classes. A novel isotropic
phase with topological order occurs between them.
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I. INTR.ODUCTION

The modern theory of critical phenomena [1] empha-
sizes the role of symmetry and dimensionality in de-
termining the long-wavelength behavior at phase tran-
sitions. From this point of view, the properties of the
ferromagnet-to-paramagnet [1] and nernatic-to-isotropic
[2] order-disorder phase transitions might be expected to
be quite similar. In both cases, a continuous rotational
symmetry is broken, leading to the same sort of long-
wavelength Goldstone modes, spin waves, and director
modes, respectively. Because of this similarity, an ex-
pansion [3] in e = d —2 for spatial dimensions d near 2
predicts that both transitions are continuous and have
identical exponents to all orders in e. Prior to our earlier
work [4], it was generally believed that this prediction
was wrong in three dimensions, where the ferromagnet
to paramagnet transition is continuous, whereas all ob-
served nematic to isotropic transitions are first order, al-
beit usually only weakly so.

These empirical facts are in accord with the predic-
tions of Landau theory [2], although that treatment fails
to explain the ubiquitous weakness of the first-order ne-
matic transition. The Landau approach treats these two
order-disorder transitions using qualitatively diferent or-
der parameters and apparently disregards the inherent
similarities of the ordered states. In this paper we will
focus on the role of topological defects in the nematic
phase transition, since "disclinations" the line defects

*Present address.

that occur in nematic liquid crystals but are not allowed
in magnetic systems are the sole topological distinction
between the two kinds of ordering.

This paper presents a thorough analysis of a recently
introduced model [4] of the three-dimensional nematic-
isotropic (X I) transition-in which a pivotal role is played
by disclinations. Our model allows us to independently
vary the local nematic stiKness and the disclination core
energy. %hen the defect core energy is large, our ne-
matic phase contains only a few, thermally activated,
small disclination loops and is therefore similar to the
magnetic phase, where such loops are topologically for-
bidden.

We And that sufBciently strong suppression of de-
fects leads to behavior that contradicts the predictions
of Landau theory. In particular, the first-order nematic-
isotropic transition splits into two continuous transitions,
with an intervening "topologically ordered" isotropic
phase (see Fig. 3). The transition from the conventional
isotropic phase (denoted by I) into the new topologically
ordered isotropic phase (T) belongs to the universality
class of the three-dimensional Ising model and that from
the topologically ordered phase to the nematically or-
dered phase (X for nematic) to the three-dimensional,
three-component (n = 3) Heisenberg universality class.
Recent experiments by Poulin et al. [5] may have revealed
such a phase diagram.

The organization of this paper is as follows. In Sec. II
we further discuss the conflicting approaches to the N-
I transition based on Landau theory and the 2 + ~ ex-
pansion and describe the disclinations, which are the
sole topological distinction between ferromagnets and ne-
matic liquid crystals. Motivated by these considerations,
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we present in Sec. III two models that explicitly suppress
these defects, with the purpose of making the nematic
more like the ferromagnet. The phase d.iagram of this
second model (Fig. 3) or, more specifically, the existence
of three distinct phases and the natures of the transi-
tions between them is determined in Secs. IV—VII. An
analysis of three limits that reduce to already understood
models is presented in Sec. IV, followed in Sec. V by a
characterization of the three phases in terms of defect line
tension and. the introduction of order parameters in Sec.
VI. The robustness of the exact limits analyzed in Sec.
IV is demonstrated in Sec. VII, thereby establishing in
particular that the nematic to physically isotropic (but
topologically ordered) transition remains continuous and
in the Heisenberg universality class over a nonvanishing
range of parameters. This section is fairly dense and
can be skipped on first reading. Section VIII shows that
perturbations such as space-spin coupling that are absent
&om our model yet present in real nematic liquid crystals
do not alter our conclusions. Our Monte Carlo results on
the recent nematic gauge theory, including a finite-size-
scaling analysis of .he phase transitions, are presented in
Sec. IX and corroborate the analysis of earlier sections.
A separate paper [6], paper II, presents detailed predic-
tions for critical phenomena at the transitions predicted
here.

II. SYMMETRY, EPSILON EXPANSION,
AND LANDAU THEORY

A. Fluctuations

Ferromagnets and nematic liquid crystals both spon-
taneously break a continuous rotation symmetry: the el-

ementary moments of a ferromagnet are preferentially
aligned parallel to a common vector in "spin space, "
while in a nematic liquid crystal the long axes of the
constituent molecules preferentially align with a common
axis in physical space. By "axis" we mean a headless vec-

tor, usually called a "director. " Note that there are two
directions associated with an axis, so the nematic liquid
crystal has a local "up-down" symmetry that is lacking
in the ferromagnet.

The "order parameter space" of an ordered medium
contains the set of "directions" that are associated with
the broken symmetry. The order parameter space for
the Heisenberg magnet is the unit sphere S . For the
nematic liquid crystal, the order parameter space is the
two-dimensional projective plane 1RP, which is simply
the unit sphere with antipodal points identified (Fig. 1).
There is evidently a two-to-one mapping from S to IRP
which is a local isometry. Thus small fluctuations of both
order parameters therefore have similar phase space mea-
sures.

In an ordered phase, the effective free energy for small
fluctuations can be written in terms of gradients of the
order parameter. Since the nematic and ferromagnetic
order parameter spaces are locally isometric, the asso-
ciated long-wavelength physical properties are also the
same. Indeed, the Prank kee-energy density for nematic

FIG. 1. Projective plane RP . Points on the equator and in
the "missing" hemisphere are identified with their antipodes,
so that it does not have a boundary, contrary to casual ap-
pearances. A closed, but noncontractible, path starting and
ending at point x is depicted.

liquid crystals

1
Xs, s(r) = —(Ki(V'. n) + K2[n. (V' x n)]

2

+Ks [n x (V' x n)] ), (2.1)

is an acceptable spin-wave Hamiltonian for a ferromag-
net with space-spin coupling. [If all of the K, are equal,
Eq. (2.1) becomes simply (K/2)(B np)(0 n~), which is
invariant under independent rotations of space and of the
order parameter. ]

An immediate corollary of this discussion is that any
treatment of nematic ordering that considers only non-
singular fluctuations about a uniform, nematically or-
dered state will necessarily be identical to the correspond-
ing treatment of a ferromagnet. This is precisely the ap-
proach of the e expansion [7]. The existence of a critical
fixed point of order e implies that both transitions can
[8] be continuous and would share the same universality
class.

B. Topology

Although the local fluctuations of the ordered nematic
and ferromagnetic states are quite similar, certain config-
urations of the two systems are very different. Suppose,
for example, that we arbitrarily assign an arrowhead to
the director at some point in a nematic liquid crystal and
try to extend this smoothly to a continuous vector field
that is consistent with the given director field. For small
fluctuations this is clearly possible; traversing a closed
path in physical space maps out a closed path onto the
unit sphere S . Such configurations are "homotopically
trivial. " Note that all smooth magnetic configurations
are trivial in this sense. Homotopically trivial nematic
configurations can therefore be placed in correspondence
with related magnetic configurations. Since their energies
will both be governed by the elastic energies of Eq. (2.1),
we expect these configurations to make similar contribu-
tions to the partition function of their respective systems.

The nematic configurations that cannot be related to
magnetic configurations in this manner are those for
which an ambiguity in sign arises at the completion of a
closed path in physical space. That is, the image in 1RP
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of a closed path in the physical system will be closed if
the director field is continuous, but its "lift" to S travels
&om one point to its antipode and is not closed. A closed
curve in the nematic that corresponds to a homotopically
nontrivial loop in RP necessarily encircles a singularity
of the order parameter since shrinking the path in real
space induces a deformation of the corresponding path in
the order parameter space. Such a configuration is said to
contain a topological line defect known as a disclination.
The topological character of these defects endows them
with considerable dynamical stability. This essential dis-
tinction between nematic and magnet is quantified by the
fundamental group vri. The fundamental group ~i(S )
of the sphere is the trivial group with only an identity
element, whereas that of the projective plane vri(RP ) is
the group Z2 (integers mod2 under addition).

A cross section of a nematic configuration with a discli-
nation is depicted in Fig. 2. Related configurations in the
magnet have very large energies because there are 180
discontinuities in the corresponding vector field. Thus
configurations containing defects will make distinct con-
tributions to the partition functions of the nematic liq-
uid crystal and the magnet and provide a possible expla-
nation for the fundamental difference between the two
order-disorder transitions. These disclinations are very
important for the nature of the nematic to isotropic tran-
sition. That this is so is suggested by earlier work (for a
very readable review see Ref. [9]; also see Refs. [10—12])
showing that many phase transitions proceed by an un-
binding of topological defects.

The most famous example is the explanation of the
transition in the two-dimensional XY model as an un-
binding of point vortices by Kosterlitz and Thouless

[13,14]. In three dimensions, both the XY model and
the superconductor can be cast as problems of interact-
ing vortex loops [15]. This produced the discovery that
the superconducting-normal transition can be continuous
(as experimentalists are well aware), in contrast to the
prediction of the 4 —~ expansion that fluctuations of the
electromagnetic field drive a first-order [16] transition.
Monte Carlo studies [17] have found that suppression of
these loops (by adding a sufficiently large core energy)
constrains the model to remain in its ordered phase and
prevents a phase transition to a disordered state.

In the three-dimensional Heisenberg model, there are
no stable line defects, but point defects ("hedgehogs") are
possible. Suppression of these point defects in the three-
dimensional Heisenberg model has been studied in simu-
lations by l,au and Dasgupta [18], in which the transition
was destroyed by a sufBciently large energetic penalty for
hedgehogs. Fucito and Solomon [19] likewise found that
the three-dimensional XY transition was destroyed by
suppressing vortex lines.

C. Landau theory

In Landau theory, the &ee energy is expanded in pow-
ers of an "order parameter [21]." Since the nematic has
global inversion symmetry its order parameter cannot be
a vector: there is no macroscopic direction selected by the
ordered state. There is, however, a preferred axis, which
leads to anisotropy in, e.g. , magnetic and dielectric sus-
ceptibility. The order parameter can then be chosen to be
a traceless symmetric tensor Q p (For this discussion of
Landau theory we restrict ourselves to three-dimensional
systems, so n and P here run from 1 to 3.) For weak ne-
matic order Q p is proportional to the anisotropy of the
susceptibilities and light scattering and can be thought
of as the quadrupole moment of the local distribution of
molecular orientations.

The Landau theory of the nematic-isotropic transition
is readily constructed in terms of Q by writing down
all rotationally invariant scalars. To fourth order, the
Landau-Ginzburg free energy is

XL~ = a(T —Tp) Tr [Q ] —bTr [Q ] + 2c Tr [Q ]. (2.2)

rH / I

U=+1 i

(c)

[Note that the fourth-order term is unique since
(Tr Q ) = 2Tr Q for any traceless symmetric 3 x 3
matrix. ] Q has five independent components and the
quadratic term is simply the sum of their squares. Thus,
if b = 0, a system governed by this free energy will un-
dergo a second-order transition at Tp in the O(5) univer-
sality class. The cubic term is relevant at the associated
fixed point, however, and there certainly appears to be
no reason for b to vanish generically. When b g 0 the
system undergoes a first-order transition at

FIG. 2. (a) Cross section through a disclination. When the
defect is encircled, the local molecular axis rotates through
180 . On a lattice the defect can occur inside a plaquette.
The (b) presence or (c) absence of a defect depends on the
product of the U,~ around the plaquette.

b
Tg —To +

24ac
(2.3)

For a magnet, however, the corresponding free energy
cannot have a cubic term since inverting the magnetiza-
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Q p = S(n np —1/36 p), (2.4)

where n is a unit director. The Bee energy then reduces
to

=2 3 4 4
XLG = —a(T —To)S — bS—+ —cS .

3 9 9
(2.5)

Uniaxiality is stable against the introduction of higher-
order terms in Eq. (2.2) for sufficiently weak nematic
order.

Nematic transitions observed in nature are first order
(as predicted by Landau), but generally only weakly so
[2]. This is revealed by light scattering, which shows
nearly critical fluctuations and means that the transition
temperature T* is close to the spinodal To. The jump in
the order parameter at the transition

tion is a symmetry of the system and therefore cannot
change the &ee energy.

For b g 0, the free energy (2.2) is minimized by a
uniaxial tensor
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FIG. 3. Phase diagram for the Z2 gauge plus the
three-component spin lattice model. The phase boundaries
are very straight except near their intersection. The two
isotropic phases are not distinguishable by any local quan-
tity. The dotted line denotes a 6rst-order transition and the
unbroken lines continuous transitions.

bS(T') =-
4c

(2.6)

is not necessarily small. The Landau theory gives no
clue as to why the transition should generally be so weak
despite significant variation in microscopic properties.

D. Motivation for our work

We have seen that the e expansion, which ignores discli-
nations, predicts a continuous nematic-to-isotropic tran-
sition, while the Landau theory, which implicitly includes
disclinations (since it averages, albeit crudely, over all
configurations of the full nematic order parameter, in-
cluding those with defects), predicts a first-order transi-
tion. Is it then the disclinations that drive the nematic-
to-isotropic transition to erst order? If so, can the con-
tinuity of the transition be restored by suppressing these
defects? Our answer to both questions is a resounding
"yes&" These conclusions are reached by considering a
theory of nematic liquid crystals that incorporates both
spin-wave and topological fluctuations on an equal foot-
ing. We And that the strength of the erst-order nematic-
to-isotropic transition is reduced as the defect core en-
ergy is increased. For large enough defect suppression
the transition splits into a pair of continuous transitions,
with a qualitatively new intervening phase (see Fig. 3).
This new phase is isotropic ((Q p) = 0), like the fully
disordered phase, but possesses distinct topological char-
acteristics.

E. Experimental verification

To test these ideas experimentally one must have inde-
pendent control over the disclination core energy, corre-
sponding to K, and the local nematic interaction strength
corresponding to J. This is likely to be difficult since in

real materials both microscopic energies arise from the
same interactions and entropic configurations. Neverthe-
less, one can imagine that certain impurities may increase
the entropic cost of defects by accumulating in the defect
cores. The addition of long molecules that align with the
local nematic axes but are very long might also make for-
mation of defects more difficult by increasing the energy
cost of short-scale variations of the director. Observation
of weakening (strengthening) of the first-order transition
as defects are suppressed (favored) would provide partial
support for our scenario.

Another approach is to add objects to the nematic liq-
uid crystal that disorder it without favoring the creation
of disclinations. In this way, the nematic order is de-
stroyed at a lower temperature, where disclinations are
eff'ectively suppressed. (That is, E,/kIBT increases while
the defect core energy E, remains the same. ) This ef-
fect may explain the experiments of Paulin et aL [5],
who added small polystyrene spheres to a nematic liquid
crystal. These spheres favor the creation of point defects
(hedgehogs) and therefore tend to destroy nematic or-
der. Poulin et aL appear to observe critical opalescence,
suggesting a continuous transition between two isotropic
phases for this system; it is tempting to identify this tran-
sition with the I- T transition in Fig. 3. Detailed experi-
mental tests of the critical properties described in paper
Ii would confirm this identification.

Unfortunately, the topologically ordered phase we pre-
dict will be difficult to observe directly because it is
isotropic and therefore quite similar to the conventional
isotropic state. Nevertheless, the passage into and out
of this phase can be recognized by the associated critical
singularities. These singularities are determined by the
universality classes of the transitions, which are three-
dimensional Ising for the transition between the fully
disordered and topologically ordered phases (I T) and-
three-dimensional Heisenberg for the transition between
topologically and nernatically ordered states (T-N). De-
tailed predictions can be found in paper II.
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III. LATTICE MODELS
FOR NEMATIC SYSTEMS

In this section we introduce two lattice models for ne-
matic media that explicitly include energetic penalties
for disclinations: a "spin-only" model and a lattice gauge
theory. The behavior of the spin-only model is less in-
teresting, but it clarifies the motivation for the lattice
gauge theory. Monte Carlo studies of this latter model
are reported in Sec. IX. Analytic results for the lattice
gauge theory will be studied in more detail in Secs. IV
and VII.

A. Madi6ed Lebvrahl-Lasher madel

The simplest lattice model of the nematic-isotropic
transition was introduced by Lebwohl and Lasher [22]
and is based on the continuum Maier-Saupe model [2].
The local nematic degrees of &eedom are represented by
unit vectors S, that are assigned to the sites of a regu-
lar lattice (cubic for convenience). The free energy of a
configuration of such spins is given by

(3.1)

where (i, j) denotes nearest-neighbor pairs of lattice sites.
Since the spins occur quadratically, there is local inver-
sion symmetry, as appropriate for a nematic model. That
is, the spin at site i may be negated without changing the
energy of the system. This local symmetry foreshadows
the introduction of a gauge description of nematics (see
below).

To consider topological defects, we introduce a defect
counting operator

(3.2)

which is unity if a defect pierces the plaquette (ijkl) and
zero otherwise. This four-spin operator evidently retains
the local inversion symmetry of Eq. (3.1).

If the term in curly brackets vanishes, then by a pro-
cess of flipping spins (to which the nematic configuratio,
hence the energy, is insensitive), we can make all the fac-
tors (S; . Sz) positive. Then the smooth interpolation
that takes the shortest route between the corresponding
values for the director (on RP ) is homotopically triv-
ial. Thus there is no disclination threading the plaquette
(ijkl) In contrast, in. the presence of a defect there is al-
ways one leftover negative factor and the defect number
is unity. The associated path on RP is nontrivial.

A defect core energy is then

transition weakens (as measured by the order parame-
ter discontinuity) as KD increases. There are only two
states (nematic and isotropic) in the phase diagram of
the model of Eqs. (3.1)—(3.3) and the transition be-
tween them is always first order, as expected by Landau
theory. For large enough KD, however, the system re-
mains ordered even for vanishing bare nematic stiÃness
Jiv [23]. Thus the elimination of defects leads to a long-
wavelength renormalized nematic stifFness that is larger
than the value required for long-range order to appear.
This result mimics related work on the three-dimensional
AY [17] and Heisenberg [18] models, where elimination
of defects leads to long-range order even in the absence
of a bare order parameter stiG'ness. This model, there-
fore, nowhere exhibits a continuous nematic-to-isotropic
transition. In the next subsection, we consider a diR'er-
ent model, but in the same spirit as this one, which does
achieve this goal.

B. Lattice gauge theory

The model of Eqs. (3.1)—(3.3) exists on a lattice. To
deal with topological defects, however, we had to con-
sider what happens between lattice sites. To take this
into account from the beginning, we envision the lattice
as embedded in a (continuum) nematic fluid. A coarse-
grained director at each lattice point can be constructed
&om the mean molecular axis within a region whose ra-
dius is somewhat less than the lattice spacing. This pro-
cedure can be carried out as long as the correlation length
is larger than the lattice spacing. In our model this local
molecular axis is associated with a vector S, at each site
i, as in the Lebwohl-Lasher model. Once again, the sign
of S, at each site is arbitrary.

Now consider the variation of the local molecular axes
between two lattice sites i and j (see Fig. 4). Beginning
at S; on the unit sphere and following the variation of the
director, we trace out a curve that ends at either Sj or
—Sj. Thus we arrive at two homotopy classes of paths,
as discussed in the Introduction. Those in each class are
deformable into one another (while keeping end points
fixed). In our lattice description of the nematic fluid, we
must retain this information regarding the director field
between sites since it is needed to define topological de-
fects, which require a notion of continuity. The presence
or absence of a defect within a plaquette is determined by
the homotopy class of the director field around it, which

U=+i

P+D = It D ) +ijkL)

where the sum extends over all elementary plaquettes
(ijkl). A Monte Carlo study shows that the

FIG. 4. Link variables U;~ provide information on the ro-
tation of the local molecular axes between sites i and j.
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S, + Q;S;, U,q m P; Qq U,q (3 4)

are performed on the site and link variables. The simplest
Hamiltonian including a defect-suppression term that re-
spects this local gauge symmetry is

in turn is determined by splicing together the classes cor-
responding to the links making up the plaquette.

The local degree of &eedom associated with each link
(ij) is represented by U;~, which can be either +1 or —1.
A value +1 of U,j means that one can assign a continu-
ously varying orientation to the molecules between i and
j that matches up with both S; and S~ [Fig. 4(a)]. If the
orientation can be chosen to match either S, or Sj, but
not both, UU is —1 [Fig. 4(b)].

This approach divers crucially &om the modified
Lebwohl-Lasher model of Eqs. (3.1) and (3.2), which im-
plicitly assumes that the local nematic axis follows the
shortest route between its values on the lattice sites. If
the lattice is not too coarse, this is justifiable by ener-
getic considerations that suggest that these configura-
tions will dominate the partition function. When defects
are strongly suppressed, however, this need no longer be
the case. The extra energy cost incurred by "taking the
long way" may be more than compensated for by avoid-
ing the imposed defect core energy. Thus, in a strongly
defect-suppressed regime, we must keep track of configu-
rations in both the defective and defect-&ee classes.

By introducing the link variables U,j, the local Z2 in-
variance of a nematic Quid is expressed as a local gauge
invariance. Choosing P, = +1 independently for each
site i, the energy of any configuration is unaltered if the
simultaneous transformations

that it is energetically preferable for sgn(S, Sz) to be
equal to U;~. Thus U;~U~i, Ui, iUh (sites i, j, k, t around a
plaquette) is a rough measure of Qsgn[(Si . S,)]. This
equivalence is stronger for larger J since then S is less
likely to take the long way between its values on the lat-
tice sites. Later we will see that the resemblance between
the gauge model and that of Eqs. (3.1) and (3.2) is great-
est in the limit of small K. We have performed Monte
Carlo simulations of the two related lattice nematic mod-
els of Eqs. (3.1)—(3.3) and (3.5) and our results are dis-
cussed in detail in Sec. IX.

IV. EXACT EQUIVALENCES

In this section we show that the gauge model must
have three distinct phase transitions at the points M, I,
and K on the phase diagram of figure 3. This provides
strong preliminary evidence that there are at least three
phases that actually appear there.

A. Complete defect suppression: K = oo

When K = oo, only defect-Bee configurations con-
tribute to the partition function. The product of the
U;j around each elementary plaquette, hence around any
closed path, then must be +1. The defect density is
zero everywhere and the gauge can be chosen [24] so that
U,z

——+1 for each link (ij). Specifically, this can be done
as follows: For each site i, pick a path of links P(i) &om
the origin to i and de6ne

pQ = —J) U;~S, . S~ —K ) U;~U~i, Ui, iUh,
(ij&

(3.5)
(A:l) gP(i)

(4.1)

where the second sum is over all elementary plaquettes
CI = (ijkl). The partition function is found Rom e
by integrating over spins (S;) and summing over link
variables (U;~).

The first term in Eq. (3.5) is a nematic interaction that
favors minimal variation of the director along link (ij).
For example, the configurations depicted in Figs. 3(a)
and 3(c) have lower energy than those in 3(b) and 3(d).

The second term is a defect core energy analogous to
Eq. (3.2). If the product of the link variables U,~ around
a plaquette is +1, then there is a smooth pattern of ori-
ented molecular axes along the links that does not use
the head-to-tail symmetry of the nematic. This pattern
can be continuously extended to the entire interior of the
plaquette, indicating the absence of a disclination. If the
product of the link variables U,j around a plaquette is
—1, however, the local molecular axis rotates by 180 as
the plaquette is encircled [compare Figs. 2(b) and 2(c)].
This is most easily seen by using a gauge transformation
to set as many of the links on the plaquette to +1 as
possible (all of them if the product of links is +1, all but
one otherwise).

How do the defect suppression terms in Eqs. (3.2) and
(3.5) compare'? From the first term in Eq. (3.5), we see

Since the product of link variables around any closed path
is +1 at infinite K, o; so defined is independent of the
specific choice of path P(i). Furthermore,

U;j = o.,o.j, (4.2)

as can be seen by constructing P(i) as the concatena-
tion of P(j ) with the single link (ij). Thus the partition
function becomes

z = ) J[ds]exp( —J) [o;s;) [o,s, )) (4 3)

and the o's embody the freedom of gauge choice. Chang-
ing to variables S'; = o,S,, each term is independent of
the o's and the partition function is 2~ times that for an
n = d = 3 Heisenberg model. Thus for K = oo there is a
second-order transition in the three-dimensional Heisen-
berg universality class at [20] J 0.693.

We show in Sec. VIIB that this Heisenberg transition
persists for large but 6nite K. Finite-size-scaling analysis
of our Monte Carlo simulations con6rms that the tran-
sition remains in the Heisenberg universality class out
to the multicritical point M. Thus "defect fugacity" is
irrelevant in the renormalization-group sense.
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For complete defect suppression (K = oo), in the gauge
with all U,~ equal to +1, the ordered phase at large J
is characterized by a nonzero total magnetization. One
may instead check for a nonzero limit of the usual spin-
spin correlation function lim~, ~~~~(S; . S~) ) 0. This is
generalized to an arbitrary gauge in Sec. VI.

B. Pure gauge theory: J = 0

For J = 0 the spins decoupage completely and our model
[Eq. (3.5)] reduces to the three-dimensional pure Ising
lattice gauge theory on a cubic lattice. This gauge the-
ory can be mapped onto the ordinary three-dimensional
Ising spin model by a duality transform. ation [25]. The
critical coupling J, = 0.22165 + 0.00003 for the three-
dimensional Ising spin model (from Monte Carlo [26] and
high-teznperature series [27] studies) then implies a crit-
ical point in the Ising universality class at K 0.765.
While J = 0, K g 0 is of course an unphysical limit of
our model, the value of the mapping is, in its use as a
starting point &om which we will argue, that the transi-
tion persists and remains in the Ising universality class,
for small J ) 0. Finite-size-scaling studies of our Monte
Carlo simulations indicate that this Ising transition per-
sists all the way to the multicritical point M of Fig. 3.

C. No defect suppression: K = 0

When K = 0, the Ising link variables on different links
are decoupled from one another. It is then trivial to
trace over U;z ——+1 and obtain an effective Hamiltonian
for the spins alone (subtracting a constant Kln2):

U [S;'e)lie() exp(JUeS; Se)}—1Vle2

(~&)

= ) ln cosh( JS, S~)

cally ordered phase N, the rotational symmetry breaking
and the nonzero order parameter are accompanied by a
nonzero helicity modulus [28], or spin-wave stiffness. In
our model, the one-Frank-constant approximation is ex-
act. In a more general model than ours, which included
space-spin coupling, the single spin-wave stiffness is re-
placed by the three Prank constants. This means that if
the nematic Quid is confined to a box of side L, imposi-
tion of boundary conditions with a relative angle 0 ( ~
between the directors on opposite faces of the box raises
the free-energy density by T(0/I)2 over its value for pe-
riodic boundary conditions (i.e. , 0 = 0). The helicity
modulus T is positive in the ordered phase and increases
with the degree of ordering. Note that for fixed 0, the
difference in &ee-energy density vanishes in the thermo-
dynamic limit L ~ oo. In the one-Prank-constant ap-
proxiznation, T = K/2, where K is the Frank constant.

An analogous measure of the free-energy cost of discli-
nation lines can also be constructed via the response to
changes of boundary conditions. Imagine a cylinder of
height L and radius B filled with a nematic Quid. Con-
sider two boundary conditions.

(a) No disclinations are permitted to pierce the bound-
ary, so that all defects must form loops contained entirely
within the cylinder.

(b) A single disclination is forced through the centers
of the upper and lower faces of the cylinder, but no other
defect lines are allowed to pierce the surface. Internal
disclination loops coexist with the externally imposed de-
fect.

The three phases appearing in Fig. 3 are distinguished
by the dependence of the &ee-energy difference bW be-
tween boundary conditions (a) and (b) on the radius and
height of the cylinder. Note that, as with the manipula-
tion of boundary conditions used to measure the helicity
modulus, this free-energy difference is not extensive.

A. Nematic phase

Local gauge invariance of Eq. (3.5) guarantees that trac-
ing over the U's will generate an effective Hamiltonian
for the spins that is even in each 8 separately, i.e., which
has local inversion symmetry.

Like the Hamiltonian [Eq. (3.1)] of the Lebwohl-Lasher
model, H, zz is a function of (S; S~); the reseznblance is
even stronger when it is Taylor expanded in J. Thus it is
not surprising that, also like the Lebwohl-Lasher model,
it has a single, first-order phase transition between a ne-
matic and an isotropic phase, indicated by the point N
in Fig. 3 at J = 1.9.

V. PHASES OF THE NEMATIC CAUGE
THEORY

In this section we describe the macroscopic distinction
among the three phases depicted in Fig. 3. In the nemati-

In the nematically ordered phase N, the extra defect
imposes a variation of the director arbitrarily far &om
the core since the director must undergo a net rotation
of m along any path encircling the defect. The free-energy
difference between the two boundary conditions is there-
fore governed by the helicity modulus, viz. ,

bF~ & T 2~x dr = C~ Lln B a ) (5.1)

where Czv(J, K) = vr T/2 is the long-wavelength nematic
stiffness and. a is the defect core size. The defect line
tension bF/I is therefore logarithmically divergent with
system size whenever long-range nematic order exists and
vice versa.

A similar calculation shows that the interaction en-
ergy between a pair of externally imposed defects has a
logarithmic dependence on separation. Thermal Quctua-
tions generate spontaneous defect loops within the cylin-
der, but these loops have a strong energetic preference to
avoid director variation far from their cores. They can
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achieve this by being small or binding in pairs. In this
phase, the defects can be said to be confined.

For small enough J [that is, J below a K-dependent
threshold J,(K)], the long-wavelength nematic stifFness
vanishes and the free-energy difFerence between (a) and
(b) is no longer logarithmic with B. Depending on the
degree of defect suppression, however, there are two dis-
tinct regimes that correspond to the two isotropic phases
I and T of our model.

(b)

B. Topologically ordered phase

Let us consider a state without long-range nematic
order but with sufhcient short-range order to permit
the coarse-graining leading up to the gauge model of
Eq. (3.5). If the defect core energy K is sufliciently large
(e.g. , K = oo), then the local molecular axes can be con-
sistently assigned a continuous orientation throughout
the system even in the absence of long range or-der This.
assignment efFectively converts the short-range-ordered
nematic director Geld into a short-range-ordered vector
Geld. We call this phase the topologically ordered state.
Its physical properties are isotropic (since it lacks long-
range order), but it is nevertheless distinct from the usual
isotropic phase. This distinction is quantified by diferent
asymptotic behaviors of the defect free energy.

Despite the absence of long-range nematic order in
the large-K disordered phase T, the free-energy cost per
unit length of disclination remains nonzero. The bend-
ing imposed on the spins by the presence of the defect is
screened out over the correlation length since the helic-
ity modulus is zero. Near the defect core, however, the
extremely tight bending (along with the bare defect core
energy K) produces a nonvanishing defect line tension
that is independent of the radius of the cylinder. The
free-energy di6'erence between the two boundary condi-
tions is given by

bFT CTL, (5.2)

where CT(J, K) is a constant that depends on the bare
core energy and the elastic energy within a nematic cor-
relation length of the core.

In contrast with the nematic phase, in the topologically
ordered state there is no long-range interaction between
disclinations mediated by the nematic Quid since long-
range nematic order is not present. Defects are there-
fore unbound and loops of finite extent will proliferate.
Viewed &om far away compared. with their linear extent,
these loops are either topologically trivial or the point
defects of the nematic liquid crystals (hedgehogs). The
picture of this phase as a gas of unbound hedgehogs is
similar to that for the (d = n = 3) Heisenberg model in
Ref. [18].

If the nematic interaction J is now increased, nematic
order will develop &om a state without topological de-
fects. Since the relevant configurations are those of a vec-
tor Geld, an ordering transition in the Heisenberg univer-
sality class is expected. - This is discussed more carefully
in Secs. IVA and VIIC. If the renormalized defect fu-

FIG. 5. Caricature of the defect, which is forced by bound-
ary conditions to traverse the system in (a) the X or T phase
and (b) the I phase.

gacity is small enough that arbitrarily large defect loops
do not proliferate, the transition will be in the Heisen-
berg class along the entire line MH, as confirmed below
by Monte Carlo studies.

C. Isotropic phase

As the core energy K is diminished at fixed, weak ne-
matic interaction J, thermal Huctuations will cause the
defect line imposed by boundary condition (b) to mean-
der through the system. The system will then gain an
entropy proportional to its length L and the defect line
tension will diminish. At a critical point the line ten-
sion will vanish and the free-energy difference between
(b) and (a) will become independent of the dimensions
of the cylinder for large cylinders

(5.3)

We will show below that this transition can be under-
stood as an Ising lattice gauge theory whose critical point
lies in the universality class of the three-dimensional Ising
model.

In the resulting disordered phase I the nematic stiff-
ness and the defect line tension both vanish, so the free-
energy difference between the two boundary conditions
remains Gnite as I and B tend to infinity. In this phase
there is a nonzero density of infinitely long defects [see
Fig. 5(b)], which can be called a condensation of discli-
Ilat lons.

VI. ORDER PARAMETERS

An order parameter for a system with a local gauge
symmetry must be gauge invariant [29]. In our model the
gauge group is Z2 and the local gauge transformation is
given by Eq. (3.4). A product of spins and link variables
is therefore gauge invariant if the number of factors (S;
or U;~) pertaining to each site i is even. Observables
containing only gauge Gelds are therefore made of Wilson
loops products of the link variables around a closed
curve p (typically a rectangle)
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(6.1)

Purely spin-dependent quantities are gauge invariant if
each spin enters an even number of times, such as the
the defect counting term in Eq. (3.2) and the familiar
traceless, symmetric, tensor order parameter

Q p(i) = S; S;p —b p/3, (6.2)

used in the Landau theory of the nematic-isotropic tran-
sition. In the absence of an applied ordering Geld, long-
range nematic order can be detected by calculating the
correlation function

N( , &) = ('W Q( )QU)) = ((S; . S ) —1/3).

C(~, j;p) = (8;.S, Ua&),
(kl) gp

(6.4)

with the product of link variables taken along some path
p joining sites i and j. This is a generalization to arbi-
trary gauge of the ordinary spin-spin correlation. In the
infinite K limit, the choice of path is immaterial since the
product of links around any closed path is guaranteed to
be one. Thus, in this limit, (C(i, j;p)) is equal to (S; S~.)
for the ordinary Heisenberg model at the same value of
J. For any finite K, however, the path-dependent corre-
lator [Eq. (6.4)] always decays to zero exponentially with
the separation between i and j, independent of the path

This is not really surprising. For Gnite K, the links
represent Buctuating degrees of freedoin (the topological
defects) and a single "weak link" will change the sign
of the path-dependent product. (The same phenomenon
occurs with the Wilson loop expectation value. Even at
large K and in the presence of other ordering, it decays
exponentially as a result of a nonzero density of very
small defect loops. )

An individual spin is not gauge invariant, so (S) g 0
is possible only if the gauge is Gxed. Nevertheless, global
rotation symmetry can be broken by a preferential align-
ment of the spins along some axis. This is precisely what
is measured by N(i, j) [Eq. (6.3)] or (Q(i)) [Eq. (6.2)].
Ferromagnetic ordering implies nematic ordering, but the
converse is false. That the global SO(3) symmetry actu-
ally is spontaneously broken at some Gnite, nonzero value
of J for any K is clear from the results of Sec V. We know
that it is broken at finite J (points N and H on Fig. 3)
in both of the limits A = oo and K = O. Reducing
K introduces frustration and makes ordering more diK-
cult. The only reasonable conclusion is that there is a

N(i, j) is invariant under global spin rotation and thus
measures the tendency of the spins to align along a com-
mon axis, regardless of its orientation. When Qo2

hm~, , ~~ K(i, j) ) 0, or equivalently (Q(i)) g 0, the
system is nematically ordered. Thus we have a local order
parameter to distinguish the nematically ordered phase
N from the isotropic phases I and T.

Gauge-invariant quantities can also be constructed by
using both spin and link variables, as in the following
path-dependent spin-spin correlation function:

line J,(K), monotonically decreasing with K, at which
nematic ordering occurs.

For the pure Ising gauge theory (J = 0), the two phases
on either side of the Ising transition discussed in Sec. IV 8
above are distinguished by the asymptotic behavior of
large Wilson loops (W(L, T)), for which the path p is a
closed rectangular loop of sides L and T. In the small
K phase, the Wilson loop follows an "area law" for suffi-
ciently large L and T: ln(W(L, T)) is proportional to the
area LT of the closed path. This corresponds to the "con-
fining" phase of the gauge theory. In the large K phase,
on the other hand, sufFiciently large Wilson loops obey
a "perimeter law, " so that in(W(L, T)) is proportional
to the perimeter I + T of the closed path. This corre-
sponds to the "&ee-charge" phase of the gauge theory.
These results emerge &om expansion methods described
further in Sec. VII A. As also shown there, the "defect
line tension" hX/L is related by duality to the spin-spin
correlation function of the Ising spin model.

The distinction between the fully disordered and topo-
logically ordered isotropic phases is more subtle when J
is nonzero. There is no local order parameter that dis-
tinguishes between the I and T phases. The line tension
is therefore quite important because it does perform this
function. Coupling of spin and gauge degrees of &eedom
results in a decay of Wilson loops that is asymptotically
a perimeter law for any nonzero J, with a crossover scale
of L&&

——41n(J/3)/ln(tanhK). The defect line tension
described in Sec. V, however, remains a valid diagnostic
of topological order.

The results discussed so far show quite clearly that
there is a line connecting the first-order transition at N
to the second-order one at H as depicted in Fig. 3, at
which global spin rotational symmetry is broken. There
is also a critical point at I. We have until now somewhat
implicitly assumed that this point actually separates two
completely distinct phases I and T, though the line ten-
sion appears to be a good diagnostic of this distinction
and ofFers strong support for it. Accepting this point
(which is established more carefully in later sections), the
simplest possible phase diagram topology, i.e. , that with
the fewest number of phases, is shown in Fig. 3, which in
fact is the outcome of our Monte Carlo simulations.

In Sec. VII we demonstrate analytically that the con-
tinuous Ising transition near I persists for nonzero J and
the Heisenberg transition near H persists for finite defect
activity e . In Sec. IX we fill in the analytically in-
tractable interior of the phase diagram using Monte Carlo
simulation. This work shows that the three transition
lines emanating from the border of the phase diagram
meet at a multicritical point M. The jurnp of the order
parameter at the symmetry-breaking transition goes to
zero at M, so that the transition is first order to the left
(smaller K) of M and continuous to the right. Finite-size
scaling has been employed to verify that the entire con-
tinuous transition line is in the Heisenberg universality
class, not just the point at inGnite K. Calculations of the
specific heat strongly suggest the existence of the Ising
transition line originating from the pure gauge theory
transition. This is verified by calculations of the defect
line tension.
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VII. ROBUSTNESS OF CONTINUOUS
TRANSITIONS

Z(J, K) = ) Z(K) (W(C)) ~ p(ur), (7.4)

In this section, we demonstrate that the continuous
Heisenberg N- T and Ising T-I transitions found in
Sec. IV at K = oo and J = 0, respectively, persist
for K ( oo and J ) 0. These transitions are there-
fore generic and occur for a finite range of material pa-
rameters and not just at isolated points. Our tool is
perturbation theory in e and J, which can be devel-
oped in terms of polymer expansions. The general for-
malism of such expansions is developed in Sec. VIIA.
Sections VIIB and VIIC treat the limit K ~ oo, while
Secs. VIID and VIIE deal with the limit J —+ 0. Finally,
we treat the limit K —+ 0 in Sec. VIIF.

(W(C))~ = Zc (K) (7.5)

where Z(K) is the gauge theory partition function at cou-
pling K and Zc (K) the partition function in the presence
of "source" C. Spin polymers interact via both the gauge
field and a hard-core repulsion.

where the sum runs over collections C of nonintersecting
spin polymers and W(C) is the associated generalized
Wilson loop, a product of factors U,~ for each link in C.
Its expectation, evaluated here in the pure gauge model
at coupling K (as indicated by ()~), can also be written

A. Polymer expansions

Polymer expansions for lattice models express the par-
tition function and correlation functions in terms of an
interacting system of self-avoiding chains of links on
the lattice. The simplest example is the familiar high-
temperature expansion of the Ising model; Mayer expan-
sions may also be viewed as polymer expansions. For
more details on this subject, the derivation of Eq. (7.8),
and careful discussions of the convergence question, the
reader is directed to Refs. [30—32] (such techniques are
brie8y discussed also in de Gennes's book [33] on real
polymers) .

With Ising variables (0 = +1), the simple identity

e = cosh(x) [1 + 0 tanh(x)] (7.1)

(7 2)

where dS, denotes the usual integration measure over the
directions of S, (normalized jdS = 1) and

is remarkably useful. By taking 0 = U;z and x = JS,. S~,
this identity can be applied to the part of the Boltz-
mann factor arising from the spin term of our Hamil-
tonian, Eq. (3.5). Expansion of the ensuing product
produces a sum of terms, each of which contains fac-
tors Ui tanh(JS; Si) for the links (ij) in a distinct set.
We decompose each such set into constituent "polymers"
connected at the lattice sites and define the activity of a
polymer u as

B. Large K

Now we evaluate (W(C))G for some fixed C by intro-
ducing a second type of polymer. At large K, the gauge
field configurations are most conveniently represented in
terms of defect loops on the dual lattice. A link on the
dual lattice pierces a unique plaquette on the original
lattice. For a configuration of (U,~f, that (dual) link is
part of the defect network if the product of U,~'s around
its associated plaquette is —1. As with the spin poly-
mers, we decompose the defect network into pieces that
are connected at the dual-lattice sites. We call the pieces
"defect loops, " although the nomenclature is not ideal
since such a loop may cross itself many times.

A defect loop p of total length ~p~ has a C-dependent
activity given by

1)*(, ) e— (7.6)

D p6D
E

[1 —i(..')], (7 7)

where i(p, C) = +1 is the parity of the linking of p with
C, which is equal to the product of the linking parities of
p with the separate constituents of C. [For two loops p
and w, i(p, w) is —1 if p wraps around u an odd number
of times and +1 for an even number. ]

By construction, the defect loops do not overlap. We
may also think of this as arising &om a hard-core repul-
sion. The partition function in the presence of source C
will then be written as

tanh( JS~Sq) (7.3)

is a quantity we will need later when discussing small K.
A polymer clearly has zero activity unless it is closed,
i.e., an even number of constituent links impinge on each
lattice site. (When calculating a correlation function in-
stead of the partition function, we will alter this defi-
nition slightly, so that some open polymers may have
nonzero activity. ) In this representation, the complete
partition function is written

where l(p, p') is +1 if the defects p and p' overlap and is
0 if they do not. The sum over collections D of defects
does not then need to be restricted to nonoverlapping
sets. Each term in the expansion of the product of fac-
tors [1 —l(p, p')] can be associated with a graph whose
nodes represent the polymers p and in which two nodes
corresponding to p and p' are joined by a line if they
overlap, i.e. , if l(p, p') = l.

This formulation is advantageous when we pass to the
logarithm, i.e., the Bee energy. Explicitly,
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(7.8)

where the sum is over connected graphs D containing ~D~

nodes. The "index" of D is defined as

(7.9)

where the sum is over connected subgraphs G C D, which
contain all the nodes of D (thus ~G~ = ~D~), and l(G) is
the number of lines in G. The formula (7.8) for the free
energy is an expansion [cf. Eq. (7.6)] in powers of

{7.iO)

ln(W(C))~ = —2e ~C~+ O(e " ). (7.11)

This result can now be used to derive an efI'ective
Hamiltonian for the spins alone. We sum over the de-
fect configurations to express Z( J, K) purely in terms of
spin polymers. In the expansion of Eq. (7.4), each factor
tanh(JS; S~) in a spin-polymer activity p [Eq. (7.2)] is
accompanied by a factor of U,~. , which goes into W(C).
From Eq. {7.11),we can think of each link in C as bring-
ing a factor exp( —2n ) to the expectation (W(C)). Al-
ternatively, we can put this factor with the tanh to write,
correct to order o. ,

Z(J, IC) = f cosh( Js~ Sp)dS;
(jk)

x 1 + e tanh( JS, Sg) (7.i2)

As remarked before Eq. (7.2), the constraint to closed
loops is still in force by virtue of the integration over the
spins.

Taking a logarithm gives an efI'ective Hamiltonian

For o, sufficiently small (K sufficiently large), the com-
bined infIuence of factors of o. and the requirement of
connectedness suppresses the higher-order contributions
enough that we can prove convergence of the expansion.

We can now see that ln(W(C)) G = ln Z~(K) —ln Z(K)
is a difference of two expansions like Eq. (7.8), one with
activities z(p, C) and the other with z(p). Only terms
containing polymers with z(p, C) f z(p) need to be cal-
culated; all others are eliminated by the subtraction. To
see this in action, we calculate the contribution of the
smallest defect loops to (W(C))~. In that case, the D's
occurring in the sum in Eq. (7.8) consist of single defect
loops of four links going around the perimeters of elemen-
tary plaquettes on the dual lattice. Only if p encircles C
are z(p, C) = —z(p) z(p) = n diferent. The result is
therefore

terms of higher order in the spins but the same order in
cx, we can say J,(n) —J,(o. = 0) = O(n ), but cannot
predict the numerical prefactor.

The eff'ective Hamiltonian in Eq. (7.13) gives the same
free energy as the original model. If one wants to com-
pute expectations, it is helpful first to restore gauge in-
variance by multiplying S; S~ by U,~, where these link
variables are subject to an infinite effective K. Going
through the same arguments, one finds that expectations
of quantities involving link variables U;~ [the path depen-
dent scalar product C(i, j;p) of Eq. (6.4), for instance]
can be computed by replacing U,~ inside the expectation

4
with e U;~ and then using H,~. Thus exponential de-
cay of C(i, j;p) is maintained even in the ordered phase.

The program of eliminating the link variables U ap-
pears to be going well and the result [Eq. (7.13)] argues
for the irrelevance of small defect activity. However, this
is the lowest-order result; only the smallest defects have
been eliminated. Higher-order (in n) terms, while indi-
vidually small and formally irrelevant, proliferate alarm-
ingly at higher order. It is not entirely obvious that
they can be neglected or that the "sum" even exists.
In Sec. VIIC below, the issue of defect activity irrele-
vance is taken up again, within a renormalization-group
approach.

C. Irrelevance of defect activity

The first task in developing a real-space renormaliza-
tion group approach is to define block variables. We need
to block both spins and link variables. The spins can be
handled in a usual way, with a bit of care to ensure gauge
invariance. The link variables are not so familiar in this
context and require some thought. We will present one
particular blocking scheme and then comment on the mo-
tivation.

Figure 6 illustrates the blocking procedure. Sites in
the blocked lattice are denoted with a prime superscript,
thus, site i' is associated with the cubical block B(i') of
sites centered on i' with side length 2L + 1:

B(i') = (j: ~x (j) —x (i')
~

& L, n = 1, 2, 3). (7.14)

The contribution of the spin at j to the block spin S,',
is found by parallel transporting it to i' by using some
set of standard paths. A convenient choice, illustrated in
Fig. 6 for the case of two dimensions, is to move along
coordinate directions in reverse lexicographic order, i.e.,
move along the z direction until the z coordinate equals
that of the destination, then along the y direction and
then along the x direction. Denote this path from j to i'
by I'; ~. The blocked spin is now defined as

JI,g = ) (1 —2n )JS, . S~ + n ) (—2JS; S~)"

&ij) n=2

+O(n ). (7.i3)
To this order, the efIective Heisenberg coupling is reduced
to J,~ = (1—2o. )J. Since Eq. (7.13) contains additional

s', , =— ', ) U(r, ,)s, ,

where the parallel transport factors are

U(I'; ~) =

(7.15)

(7.16)
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The rescaling factor (s will be adjusted to keep the dis-
tribution centered around. vectors of unit length.

For two neighboring sites i' and j' in the blocked lat-
tice, we might try to make a blocked link variable by sim-
ply taking the product of link variables along the straight
path kom i' to j' denoted. by I'; ~~. This is really a dec-
imation scheme. It turns out to be much better to take
products of link variables along paths which are defor-
mations of this straight path on a scale L and average
them. Defining closed loops

(a)
FIG. 6. Lattice paths that occur in the real-space blocking

scheme for the (a) spins and (b) gauge (link) fields in the case
of tvro dimensions.

K +i L(K —c)e (7.21)

and we need to determine the Bow of the various cou-
plings. The first two terms provide the weighting for
the magnitudes of the spins and link variables and their
indicated functional dependence is dictated by gauge in-
variance and rotational symmetry. On the original lat-
tice (m = 0), they were h' functions at one. The el-
lipsis indicates all other interactions generated by the
renormalization-group transformation.

Our blocking scheme treats large and small defect loops
differently and this is reHected in the structure of H
Defects smaller than the current lattice spacing L are
effectively integrated out in the sense that they no longer
appear as extended objects, but they suppress the mag-
nitudes of the blocked links. Their effects are reHected
in 4 . After blocking but before rescaling, the link
variables U.. . typically has a value e from the
small defects (n = e ~). This has an inHuence of the
magnitude of the product Q U; ~ U~ i, Ui, i Ui; around a
blocked plaquette. That product, like the blocked link
variables U; ~ making it up, is an average over many
paths. It will not be negative unless most of them are
encircled by a d.efect. This can be accomplished by one
large defect of length L or an even greater length of
small ones.

The value of K is therefore determined by the prob-
ability to have such a large length of defect ( L in
original lattice units) through the blocked plaquette; ev-
erything else is absorbed into C . As in the calculation
of K,g in Sec. VIID, the spins also contribute to the
renormalization of K and tend to suppress it. Let us
neglect this, though, and make the conservative estimate

I';
A, &

——I'; & u I'I,
& u I'

& U I';, , (7.17)

our blocked link variable is (see Fig. 6)

(7.is)

(7.is)

This is a gauge transformation on the block lattice, as
required.

After m renormalization-group steps, the running
Hamiltonian looks like

+ J ) U;, S; S,. + K' U,, U, OUI, iUh+

(7.20)

The prime on the sum denotes restriction to k g B(i'),
t E B(j'). Again, there is a rescaling factor to keep the
link-magnitude distribution centered at one.

The preservation of gauge invariance by our blocking
scheme is easily checked. Performing the gauge transfor-
mation S; -+ P;S;, U;z ~ P,.P~U;~ on the original lattice
first (P, = kl chosen independently for each i) and then
blocking results in

where t'he c comes from an entropy factor (the number
of distinct defects of total length L is ~ expcL). The
rescaling of the link variables has also been taken into
account in making this estimate and accounts for the
final exponential factor.

As long as the initial value of K is large enough and
we do not try to take too large blocking steps, the defect
fugacity a is being rapidly driven to zero, exponentially
fast, in fact. If K starts out too small, the entropy dom-
inates and this scenario no longer holds [34].

Thus, in order to conclude that a small defect activity
does not alter the Heisenberg universality of the transi-
tion, it is only necessary to verify that in the process of
vanishing it does not induce any extra interactions that
are themselves relevant. The fundamental constraints
on the form of these are gauge and rotational invari-
ance. Among terms involving only the gauge variables,
there are even more irrelevant multiplaquette terms and
also the bond weight 4, which ultimately amounts
to annealed randomness in the Heisenberg model bond
strengths. Two of the least irrelevant pure-spin terms
that can occur are (S; S~) and the spins-around-a-
plaquette term g(S, . S~), which will be seen again in
Sec. VII F. None of these perturbations is relevant. Thus
the presence of weak defect activity does not alter the
(Heisenberg) universality class of the transition.
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D. Small J
At small J, the spins are a small perturbation to the

pure gauge theory. We can try to integrate them out,
as we did the gauge Geld excitations in Sec. VIIB, to
obtain an effective Hamiltonian for the gauge field, with
corrections ordered as a power series in J. The polymer
expansion is [see (7.2) and (7.4)]

(7.22)

At leading order, the only spin polymers occurring are
those that go around an elementary plaquette on the lat-
tice, just as with the defect loops on the dual lattice in
the K ~ oo limit. The required activity is

~= ff~sl
(zq) qP

= 3(J/3) + O(J )

tanh( JS; S~ )

(7.23)

E. Line tension again

The defect line tension was discussed heuristically in
Sec. V. Additional insight can be gained by using the du-
ality between the three-dimensional Ising spin and gauge
mod. els. This duality amounts to no more than the banal
observation that the polymer representations of the ordi-
nary nearest-neighbor Ising model II = —JP o, sr~ and
the gauge inodel in Eq. (3.5) are identical [up to an in-
nocuous overall factor of (cosh J)s~] when the couplings
are related by

e = tanh J. (7.24)

The self-duality of the Z2 gauge Higgs model (i.e., spins
and links are Ising variables) is just as clear. Referring to
Sec. VII 8, we see that the spin polymers and defect loops
have identical activities apart kom a linking-number re-
lated interaction, which is completely symmetric between

where the product is over the links around the plaquette
P. Exponentiating this result gives an effective action for
the gauge field [35] with K,ir = K+J /27+0(J ). Terms
of higher order in J also introduces gauge couplings on
larger closed loops of links that decrease exponentially
with the length of loop.

The polymer expansion for the spin problem is known
to be convergent for small enough J, so the only question
is whether it can legitimately be rewritten as an efFective
action for the gauge Beld. The entire calculation is very
similar to the one performed. for the large K regime in
Sec. VIIB, with the defect loops replaced by spin poly-
mers. In fact, if our spins were Ising spins, there would be
a perfect duality. We believe that the near duality makes
this effective action calculation as solid as the previous
one and establishes the robustness of the Ising transition
for J&0.

the two types.
Dual representations of correlation functions are also

easily written down by going through the polymer repre-
sentation. For instance, (o';crz. )Z corresponds to polymer
configurations having one polymer with an odd number
of links connected to sites i and j. One way to generate
this set is to take one fixed configuration Z that satisfies
the condition, a single path of links between the two sites
for instance, and then forming the symmetric difference
with each configuration for Z, which are made of closed
loops. [The symmetric difFerence of two sets A and B is
AaB = (A Lr B) i (A n B).]

In the gauge model, the set of links dual to
plaquettes on which the field strength is —1 is required
to be closed by the nature of the underlying fields. If
the couplings are not all the same, the set of plaquettes
on which KPUP, i.e., on which the configuration is an
excitation over the local ground state, is not required
to be closed. The defect loops must really be identified
with the excited plaquettes, so if we reverse the sign of
the coupling on plaquettes in Z*, with Z as above, the
partition function of the resulting model is the dual rep-
resentation of Z(a; cr~). We get. exactly the same thing
by evaluating the expectation value of the operator

PgZ
exp( —2K U~) (7.25)

with the original Hamiltonian. This disorder operator
(a 't Hooft operator [36] for our particular gauge group)
is therefore the dual representation of the operator cr;o~.
The number of defect lines entering or leaving any ele-
mentary cube of the lattice has the same parity as the
number of plaquettes on that cube for which the coupling
has been reversed in sign.

The 't Hooft disorder operator can detect the transi-
tion in the pure gauge theory (J = 0). As i and j become
infinitely separated, (D(Z*)) tends to a nonzero constant
at small K and decays exponentially in ~i —j~ for large
K. At J = 0, the only relevant aspect of the path Z is
its end points. For J ) 0, this is no longer true since the
spins are sensitive to the signs of UP and not just the
products Kp Up. As a result, for J ) 0, (D(Z*)) decays
exponentially in the length of the path ~Z~ for any value
of K. This behavior is rexniniscent of the path-dependent
spin-spin correlation function [Eq. (6.4)]. This is not an
accident; in the case of Z2 spins, the two are dual to each
other.

The defect line tension is similar to the 't Hooft opera-
tor and equivalent at J = 0, where the tension is therefore
positive for K & K and zero for K ( K . Unlike the
Wilson loop or the 't Hooft operator, however, the line
tension continues to be a good diagnostic for nonzero J.
Rigorous results [37] show that it vanishes in some re-
gion around J = K = 0 and is strictly positive in some
region around K = oo, J = 0 in our phase diagram.
Whether these behaviors hold throughout the entire I
and T phases, however, is not rigorously established.

To go further, consider the truncated energy-energy
correlation

(e(ij); e(kl)) = (o;a~0.io ) —(0.;o,) (crier ) (7.26)
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for nearest-neighbor pairs (i, j) and (t, m), which yields
the specific heat when sumined over links (tm). Choose
Z (as in the spin-spin correlation construction above) to
be the two plaquettes dual to the links (ij) and (lm), so
that the dual representation of (e(ij) e(kt)) is obtained
by weighting each configuration of defects contributing
to the gauge theory partition function by an extra factor
of e for each of those links that does not occur in the
defect set and e+ for each that does, and similarly for
(e(ij))(e(kt)).

We use the notation y(ij) = Ui;zl. for the product of
link variables around the plaquette (ij)', which is dual
to the link (ij). Thus y(ij) = 1 if the dual link (ij) is
in the defect set and y(ij) = 0 otherwise. Then we have
the correspondence

(e(ij);e(kl)) = 4sinh 2K(y(ij);y(kt))
= sinh' 2K(U~;, l. , U~&&l. ). (7.27)

).z(~)[1—h(kt)) ]

+) . (~) [h(k~)) ~q, —h(kt)) ~1 (7.28)

The divergence of the specific heat in the spin model
shows that this function becomes long ranged at the crit-
ical point. In gauge theory language, what Eq. (7.27)
measures is the degree to which frustrations of widely
separated plaquettes are not independent. We argue that
its asymptotic behavior reBects that of the probability
for two widely separated points to be in the same defect
cluster. Multiplying Eq. (7.27) through by a factor of
the partition function Z, we rewrite the result as a sum
over the defect cluster [38] p, which contains dual link
(ij) since only such configurations contribute. We will
also extract an explicit factor z(p) = n~+~ of the weight
of cluster p [Eq. (7.4) with C = P]. Thus we write

of boundary conditions in Sec. V both serve to measure
the ease with which a defect line can join two distant
points. The line tension is the inverse of the correlation
length for the frustration percolation.

This percolation criterion must hold for J ) 0 to be
a useful description of the I- T transition. There is little
doubt that it is more robust against the perturbation of
positive J than either the Wilson loop or the 't Hooft dis-
order operator. A crude estimate says that for e ~ ( J,
the leading behavior of the large K defect expansion is
the same as at J = 0. For the small K expansion in
terms of plaquette surfaces, the leading terms involve
a tube running between the two plaquettes in question
and the J perturbation is negligible for tanh K ) J2. As
stated in Sec. V, the line tension cannot vanish in phase N
since that would certainly destroy the long-range order-
ing. The case of the Zz Higgs gauge model [39], however,
argues for some caution. It has only two phases —a free-
charge phase at large K and small J and a confinement-
screening phase everywhere else. The line tension, which
vanishes in some region near K = J = 0, becomes pos-
itive at large J without passage through a bulk phase
transition.

F. Small K

In Sec. IV we showed that for K = 0 our gauge the-
ory becomes a spin-only model akin to the Lebwohl-
Lasher model. Now we will use the methods introduced
in Sec. VI to extend the elimination of the gauge variables
to small nonzero K.

We expand the spin part of the Boltzmann factor as
before, but without integrating over the spins, and use
the pure gauge Hamiltonian to evaluate the expanded
form term by term. Explicitly,

Z= dS ZS, (7.29)
where the first sum is over defect clusters p that contain
both (ij) and (kt) and the second is over those containing
(ij) but not (kl). The subscripts on the expectations
indicate the lattice we are calculating for —the full lattice
A or with the cluster p removed A $ p.

If K is small enough, the probabilities of (kl) E p and
of ~p~ & M asymptotically decay exponentially with the
distance between (kt) and (ij) or M, respectively. Sim-
ilarly, the difference (y(kl)) —{y(kl))& decays exponen-
tially with the distance of (kl) from the boundary of A

(the former expectation is for an infinite lattice with no
holes). If the correlation equation (7.28) is to exhibit
power law decay at K = K, at least one of these three
quantities must also show such a change in asymptotic
behavior. It seems extremely unlikely that the eKect of
cutting out small pieces of the lattice has a qualitatively
slower fallo8' than the cluster size. Accepting that, the
transition at K = K, J = 0 is accompanied by a perco-
lation of defect lines. The difFerence from ordinary bond
percolation is that the frustration network is made of
closed loops and thus is not allowed to have free ends.

This picture is easily related to the line tension. The
correlation function of Eq. (7.27) and our manipulation

with

Z[S] = cosh(JS; . S, )
L

&ij)

x 1+ U;~ tanh JS; . S~
(»)

(7.30)

where the sum is over collections C of closed graphs on
the lattice, as in Eq. (7.4) for the large K case, and
p(u1, S) is de6ned in Eq. (7.3). The factor Z&(K) is the
pure gauge theory partition function in the presence of
source C [Eq. (7.5)]. The gauge field induces a weak
noncontact interaction between the spin polymers.

By use of Eq. (7.1), the Boltzmann factors associated
with the pure gauge theory can also be rewritten as

e = cosh K(1 + U~ tanh K), (7.31)

where we use the shorthand U~ = Q~, .
l U;~ for the prod-

uct of link variables around a plaquette P. Expanding
the product gives us collections of plaquettes with fac-
tors of tanhK. The expansion of the spin part is as
before. Upon summing over +1 for each link variable
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H~„l = ) in[cosh(JS, . S, )]
(ij)

+J' ) tanh(JSg S().
kl gU

(7.32)

Here J' = J tanhK. Notice that the correction term in
Eq. (7.32) is almost the same as the disclination counter
equation (3.2), just without the sign function.

U,~, any surviving term of an expansion must have an
even number of occurrences of each link variable. Thus
our polymers will consist of edge-connected. collections
of plaquettes each carrying a factor tanh K and a factor
tanh(JS, Sz) for each boundary link (ij), if any. In the
presence of a Wilson loop, the loop and all the plaquettes
Rom expansion of the gauge Hamiltonian or links from
the spin Hamiltonian that overlap it on a link are to be
considered as a single polymer, whose activity is zero un-
less all the factors of U;~ are canceled in pairs, and is
otherwise evaluated as for the others.

The leading terms contributing to a Wilson loop in
this case are (i) the one containing all the plaquettes on
a surface bounded by the loop, which gives an area law
decay in the case of J = 0, or (ii) the spin polymer that
tracks along the Wilson loop, which gives a perimeter
law and is dominant for large enough loops at J ) 0. In
either case, what determines the minimal polymer is the
need to cancel the factors of U along the loop. In the
expansion of Eq. (7.30), the expectations are in the pure
gauge Hamiltonian, so there is area law decay and the
expansion is well under control. As a erst approximation,
we keep only single plaquette graphs. Exponentiating,
the result is

A, Lack of local inversion symmetry

First, we consider the local head-to-tail symmetry. We
need an extra variable o,, = +1 for each site that keeps
track of whether S, is oriented with the local vector. It
has identical gauge transformation properties to that of
S,. itself, so that the product o.,S, is the "real" local vec-
tor (and gauge invariant as it must be). A direct Heisen-
berg interaction is added to the Hamiltonian of Eq. (3.5)
by the term g g~. .

~
n;n&S, S~, for some small g (similar

to the Mattis spin-glass model [40,41]), where the n's are
to be summed over in the partition function. As far as
the spins S are concerned, this is equivalent to adding
a second independent gauge Beld with K = oo, thus
the Heisenberg character of the transition is clearly pre-
served. It is also easy to see that the interaction does not
produce a true vector ordering once the nematic phase is
entered. The tendency toward complete vector ordering
is only strengthened if all the spins are forced to orient
along a common axis, yielding an ordinary Ising model in
the variables o.,S,. But the coupling g is weak, so there
will be no ordering.

B. Space-spin coupling

Near the N-T transition we have seen that our model
can be mapped onto an effective Heisenberg model. In
the critical regime, a familiar transformation [1] converts
this fixed spin model into an n = 3 "soft-spin" ~S~ Lan-
dau theory with Hamiltonian density

VIII. OTHER PERTURBATIONS

The model we have been considering contains some
exact symmetries that are only approximate for real ne-
matic liquid crystals. These are (i) local head-to-tail sym-
metry, i.e. , S —+ —S, and (ii) global space-spin rotation
invariance, under which all the spins are subjected to
the same rotation [S(r) + RS(r)]. Local head-to-tail
symmetry is lacking despite the fact that global head-to-
tail symmetry is unbroken, i.e. , that the heads and tails
do not order. The absence of a globally broken sym-
metry does not imply that the Hamiltonian lacks terms
breaking it locally, only that they are too weak to induce
long-range order (vector ordering in this case).

The absence of global spin-rotation invariance is ex-
hibited explicitly in the Prank free energy [Eq. (2.1)) for
generic K, (it is invariant at the special point Ki ——K2 ——

Ks). Since the spins of our model are related to the phys-
ical orientation of extended bodies, it is not surprising
that the only exact symmetry is that under simultane-
ous and identical rotations in spin and real space. We
show here that small perturbations of the Hamiltonian
that break these symmetries do not change our results,
so that we can feel safe applying them to real-world ne-
matic liquid crystals.

where S is now a three-vector with unconstrained length.
To incorporate space-spin couplings, we introduce terms
that mix up the spatial component indices and the spin
components. The only such terms with any chance of
altering the critical behavior have as few gradients and
powers of S as possible. Indeed any term involving
more than two powers of each will be strongly irrelevant.
The only potentially relevant term is therefore ~V' . S~
This perturbation was analyzed [42] in the heyday of
renormalization-group (RG) theory in an e = 4 —d ex-
pansion and found to be irrelevant, with renormalization-
group eigenvalue A = —e /108 + O(e ). Thus there is
nothing to fear from space-spin couplings either: the
Heisenberg universality class of the transition survives.
(This issue is discussed further in paper II.)

IX. MONTE CAKLO R.ESULTS

A. General methods

We have employed Monte Carlo simulation to investi-
gate the lattice gauge model of Eq. (3.5). The vast ma-
jority of runs were for three-component spins, though we
have also investigated four-component spins. The sim-
ulations were implemented on a Sun SparcStation with
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a standard Metropolis algorithm on lattices of size up
to 16x16x 16 sites. Most of the runs employed periodic
boundary conditions for all variables (spin and gauge)
to eliminate boundary efFects. A combination of free
and fixed boundary conditions, however, was necessary
to measure the line tension (see Secs. IX C and V).

Instead of allowing the spin variables to sample the en-
tire unit sphere, we used a discrete set of allowed values.
This simplifies and speeds the simulations since Boltz-
mann factors can be stored in a lookup table and it is also
somewhat easier to select candidate Monte Carlo moves.
For the three-dimensional order parameter space, we used
the most symmetric set of allowed vectors, namely, the 30
vectors pointing to the centers of the edges of an icosa-

. hedron. Such a discretization represents an anisotropy
of the single-spin weight that breaks the original O(3)
rotation invariance to its largest discrete subgroup, the
icosahedral group Y.

In order for this anisotropy to be irrelevant at the
Heisenberg critical point (in the renormalization-group
sense), the allowed spin orientations must cover the
sphere suKciently uniformly. The icosahedral edge vec-
tors easily pass [43] this test. Use of a coarser discretiza-
tion that is still irrelevant presents two problems. First,
it will be necessary to get closer to the transition be-
fore crossing over to the fully symmetric critical behavior.
Second, the discretization introduces a spurious &eezing
transition due to the presence of a spin-wave gap. It is
desirable to push this artifact deep into the nematically
ordered phase. The same efFect also results in a small
shift of the numerical value of the critical coupling.

Among the measurables that were extracted from the
siinulations were (i) the average plaquette value P
(U,~. V~I, Ui, OUI;), (ii) the gauge-invariant nearest-neighbor
correlation C = (U;~S; S~), (iii) average Wilson loops of
several sizes, and (iv) a scalar measure of the strength of
nematic ordering given by

a~ J=1.952
~ ~

8 ~~8

~ W
~ ~

J=1.950
gPRI

~a
IN ~g

~Q

quantities for values of the couplings close to the transi-
tions were examined by eye to determine the equilibration
time. Thermalization typically required 700—2000 update
attempts per degree of freedom (link or site) with each
coupling step. Typically 6000—15 000 independent mea-
surements were made at each coupling value, spaced by
two or three update sweeps through the lattice to give
reasonable statistical independence. This was sufIicient
to extract equilibrium averages of the quantities (i)—(iv).
To obtain accurate results on fIuctuations about equilib-
rium values (e.g. , the specific heat), as well as to exam-
ine finite-size scaling, 30000—60000 measurements were
required at each coupling step.

Our data confirm the existence of the three phases that
were predicted analytically in previous sections. They
also show that the transition between phases N and I
is first order and the transitions between N and T and
between I and T are continuous. As is well known, how-
ever, it can be difFicult to definitively establish the order
of a transition via Monte Carlo simulation. We have
used finite-size scaling for the continuous transitions and
shown phase coexistence at the first-order N-I boundary.

The distribution of TrQ2 for values of J near the N
I transition shows it to be first order at K = 0. The
double-peaked distribution shown in Fig. 7 demonstrates

g = —Tr J=1.947

(9.1)

where Q p
= (1/K) P,. Q(i) p is the nematic order pa-

rameter and N is the number of sites in the lattice.
TrQ is invariant under rotation and measures the de-

gree of alignment of the individual spin axes for a uni-
axially ordered phase. The normalization of Eq. (9.1) is
chosen so that q vanishes in the disordered phase and
is equal to unity in the completely ordered state at zero
temperature. Terms with i = j are excluded from the
definition of q; they would make a constant contribution
subleading in 1/N. Leaving them out ensures q = 0 in a
fully disordered state. Normalization is such that q = 1
in a completely ordered state.

We studied the equilibrium values of these quantities
by stepping along lines in the J-K phase diagram at a
variety of orientations, allowing the system to reach equi-
librium after each incremental change, and then making
measurements. The "temporal" development of these

J=1.945

0 0.2 0.4

FIG. 7. Probability distributions (arbitrarily normalized)
for order parameter at K = 0 in a 12 lattice for several val-
ues of J near the first-order transition. As J increases, the
development of a bump corresponding to the ordered state
and the consequent diminishing of the disordered-state bump
at the zeroth-order parameter are evident. In the thermody-
namic limit, at any given J, only one of the bumps is expected
to survive. The distributions were constructed by, making his-
tograms of a Monte Carlo "time" series.
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K=0.73
K=0.77
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Here m is the spontaneous magnetization and n is a small
integer. The indicated functional dependence follows
since both numerator and denominator have the same
scaling dimension. Thus, at the critical temperature, this
quantity is independent of L. Furthermore,

lim —f(It") ac I ~,
t-+0 dg

0.01-

0.72

.yO g g ~ a
0.00

0.68 0.70 0.74 0.76 0.78

as can be seen by noting that this derivative must be fi-
nite and nonzero as t i 0 at fixed L. Since df (Lt )/dt =
vLt f'(Lt ), we must have f'(x) oc 2: ~ as x -+ 0,
leading immediatedly to Eq. (9.3). This relation allows
determination of v.

At K = oo, our model has the same partition function
as the Heisenberg ferromagnet and we expect to have the
same exponents at the transition for A down to the mul-
ticritical value. Since the magnetization is not a gauge-
invariant quantity„we instead consider

FIG. 8. Development of the nematic order parameter TrQ
at the transition and near the crossover point from Grst order
to continuous. All data are for a 12 lattice. The apparent
sharpness of the jump for K = 0.73 is essentially acciden-
tal; neighboring data points straddle the region where TrQ
begins to rise from zero.

the coexistence of ordered and disordered phases. Clear
evidence of a discontinuity in the order parameter ex-
pectation value q is also seen, a feature that becomes
sharper with increasing lattice size.

Figure 8(a) displays the development of the order
parameter q near the ordering transition close to the
point where it meets the Ising transition line. The d.ata
strongly suggest that the nematic ordering transition is
first order to the left of that point and continuous to its
right. The mean plaquette value and specific heat also
show qualitatively different behaviors from one side of
that point to the other. The difference is discernible even
between K = 0.73 (on the first-order side) and K = 0.77
(continuous). On the first-order side, the specific heat
peak sharpens rapidly as the lattice size is increased. ,
compared to a much more gradual sharpening for larger
K at which the transition is continuous. This behavior of
the specific heat is shown in Fig. 8(b) (see also the next
subsection and Fig. 10).

((T Q')')~
~(L t) —= (~Q,),

= ~(Lt ) (9.4)

(TrQ )L, ——N ) ((S',S,) —1/3)L, + 1/N
igj

= (v')L, + ~ '(1 —(&')I-)

(9 5)

which tends to 1/K = 1/L as J -+ 0. The numeri-
cal data for this function for L = 8, 12, and 16 show
intersections indicating a value of the critical coupling
between 0.690 and 0.695, in agreement with the best
value to date for the three-dimensional Heisenberg model
[20] J,(K = 0) = 0.693.... The shift of the criti-
cal coupling due to icosahedral anisotropy is evidently
small. At K = 0.78, the critical coupling is a bit larger:
J,(K = 0.78) = 0.70.

For a magnetic system, the finite-size scaling of the
magnetization is also quite useful:

analogous to f4(L, t) [Eq. (9.2), with h = 4]. We use
TrQ here rather than q [Eq. (9.1)] because the anal-
ogous magnetic quantity m2 = lIiI Q S;l is nonzero
at infinite temperature. Indeed, the presence of terms
lS, l

= 1 in TrQ but not in q (recall the discussion at
the beginning of Sec. IX A) results in m2 1/N at infi-
nite temperature. Splitting oK the i = j terms, each of
which is ISI' —1/3 = 2/3

B. Finite-size scaling m = ltl f(L/() =L""f(«) (9.6)

Finite-size-scaling analysis is a well-developed tool for
the determination of critical exponents and orders of
transitions (for reviews, see Refs. [44] and [45]). The
finite-size-scaling ansatz for critical points asserts that in
finite geometries characterized by a linear dimension L,
scaling forms depend on a scaling variable L/(, in addi-
tion to those already present at infinite system size. For a
magnetic system, the critical coupling can be d.etermined
&om the ratio

According to Eq. (9.6), the ratio P/v is accessible by
measuring the magnetization, which can be determined
accurately. Our order parameter is related to the magne-
tization of an equivalent Heisenberg model, though not
quite the same. For a finite lattice at values of J not too
much below J„the approximation [46]

((S.'S,)'). = ((+;+,') (~;S,')). = (~. ~,').(~,=~, ).
(9 7)

f„(L,t) = „=f„(Lt ). (9.2)
should be valid for i and j well separated. The last ex-
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pression in (9.7) is proportional to m4. Notice that as
J m 0, m4 - 1/N, but (TrQ2) - 1/1V due to the i
terms in Eq. (9.6). Thus (q )I, (which lacks these ex-
tra terms) will behave much more like m, than (TrQ )I.
does. We conclude that

(q )I, = L ~~ f(Lt ). (9.8)

At the critical coupling [determined from Eq. (9.2)j,
Eq. (9.8) can be used to determine P/v. Combining with
v &om Eq. (9.3) gives P. Repeating this analysis at J =
0.693, K = oo, we found v = 0.71 + 0.04 and P = 0.39 +
0.03, to be compared with the accepted Heisenberg values
of 0.703 and 0.38, respectively. At K = 0.78, we find
v = 0.72 + 0.05 and P = 0.4 + 0.04, the same to within

error. The scaling in Eq. (9.8) can also be checked away
koln the critical coupling, by plotting g I ~~" versus
L ~"

(1 2—,). The data collapse is best for the Heisenberg
values. One expects that efFects of a finite gauge coupling
should be observable at K = 0.78 if they are relevant,
which they do not appear to be. Scaling plots of the
order parameter at K = 5 and K = 0.78 are shown in
Fig. 9.

A finite-size-scaling analysis was also carried out for
the speci6c heat at K = 0.70. The specific heat curves
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FIG. 9. Scaling plots for the nematic order parameter

TrQ . (a) K = 0.78, with v = 0.7, P = 0.4. (b) K = 5
(effectively infinite), with v = 0.7, P = 0.38. The lattice sizes
are L = 8 (squares), L = 12 (crosses), and L = 16 (circles).

FIG. 10. Evolution with lattice size of peaks in the spe-
cific heat across the ordering transition in (a) first-order
(K = 0.70) and (b) continuous (K = 0.78) transition regions.
In the first-order region, the peak sharpens very rapidly with
increasing lattice size. The linear scaling of peak height with
lattice volume is shown in the inset. The continuous curves
are only guides to the eye.
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are shown in Fig. 10. Finite-size scaling near a first-order
transition is quite diferent from that near a critical point
[47]. At the discontinuity fixed point governing a first-
order transition, the only relevant exponent [48] is the
spatial dimensionality d of the system. One therefore ex-
pects to see no exponent other than d in the leading-order
finite-size-scaling formulas for a first-order transition, in
contrast to those for a continuous transition, which con-
tain the familiar anomalous exponents. The rounding of
the b function in the specific heat should thus result in a
peak height linear in the volume of the system, i.e. ,

0i 'H

C
2V

bQ

&(L, T) = &.m..th(T) + L"f
~

t'T —T &

(9 9)

The same conclusion follows [49] by assuming that config-
urations of the finite system occur in the partition func-
tion with a weight that is the average of those appropri-
ate for the two coexisting phases. The data for K = 0.70
appearing in Fig. 10(a) are consistent with such a scal-
ing. The data for K = 0.78 [Fig. 10(b)], however, do
not appear consistent with linearity, indicating that the
transition is not first order at that value of K.

C. Line tension

0.6
K (defect suppression)

0.9

FIG. 11. Line tension, or normalized free-energy di8'erence
SF/L (arbitrary units), between a pair of 12 x 12 x I rectan-
gular prisms with and without an externally imposed defect,
respectively, as a function of K at J = 0.5. Lattice sizes
are L=6 (circles), 12 (triangles), and 16 (squares). Below
K 0.7, the line tension is zero in the thermodynamic limit.

We also measured the defect line tension in our Monte
Carlo simulations. The boundary conditions (a) and (b)
of Sec. V are relatively straightforward to implement in
the lattice gauge theory of Eq. (3.5). In two lattice di-
rections (x and y, say), the boundary conditions are
open for the spins. The product of the link variables
circling once around the periphery in the XY plane is
required to be either +1 [boundary condition (a)] or —1
[boundary condition (b)]. In the remaining lattice direc-
tions (just z in three dimensions), the boundary condi-
tions are chosen open with the restriction that either no
boundary plaquettes are frustrated (a) or only the central
plaquettes on the top and bottom faces are f'rustrated (b).
The free-energy difFerence per unit length in the z direc-
tion as L»L„—+ oo is interpreted as a disclination free
energy. Essentially this construction was suggested as a
diagnostic for quark confinement by Mack and Meyer [37]
in the context of the Z2 Higgs gauge model.

The general strategy is to force a defect to traverse
the system in the z direction, going through the centers
of the faces at z = 0 and z = L, but to forbid defects
&om passing through the boundary anywhere else. This
means fixing the gauge field strength everywhere on the
boundary. The simplest means of doing this is by actually
partially fixing the gauge, 6.eezing the link variables on
the boundary into an appropriate configuration, and not
altering them during the simulation. It is also possible
to use periodic boundary conditions in the z direction
and still force a defect to run through, so that a Wilson
loop going around the boundary and circling the z axis
is —1. The defect is attracted to the boundary by image
forces, however, where it produces the least disturbance,
which needs to be avoided. Since the spins do not need
to be constrained in any way, free boundary conditions

4-

2-

0 II

0.9 1.0 1.2

FIG. 12. Derivative of the line tension (arbitrary units)
with respect to J across the N-I transition at K = 0.5. The
squares are for lattice size 10 and the triangles for 14 .

are used for them.
The line tension can be studied in such a setup by

varying L, at fixed I and L„. As discussed earlier, in
the infinite volume limit the line tension is expected to
vanish at K with the correlation length exponent vl of
the Ising model. Finite-size eEects make interpretation
of the data difBcult. The problem is also exacerbated by
working on a lattice with boundaries. VJe measured the
line tension at J = 0.5 as a function of K. This value
of J is chosen to be in the nematically disordered region,
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yet with large enough nematic coupling J that its eKects
ought to be observable. The free energy is determined by
integrating the plaquette expectation value with respect
to K. In principle we should integrate from the corner
J = K = 0, but we actually start from K, J = (0, 0.5),
since within statistical error 0(6I")/8j = 0 at that point,
hence a fortiori for all smaller J. The evolution of the
line tension with K at J = 0.5 is shown in Fig. 11. There
is a kink near the value of K at which the specific heat
peak occurs. This kink sharpens and moves downward
with increasing L, indicating that the tension vanishes
above K, in the infinite volume liInit. The derivative of
the line tension with respect to J across the N-I tran-
sition at K = 0.5 is shown in Fig. 12. As the lattice
size increases, the peak sharpens into a b function, re-

J=1.88
J=1.90

Gl
0+
D

D

0

gent~
++pa

Qecting the strictly positive value of the nematic order
at the transition. Apart from observing the qualitative
trend with system size, we have done no quantitative
6nite-size-scaling analysis. Multiple length scales result-
ing from nonperiodic boundary conditions makes such an
analysis impractical.

2 ~
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+ J=2.1
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FIG. 13. Snapshots of typical defect configurations (a) in
the nematic (N) phase at (J, K)=(1.3,0.4), (b) in the isotropic
(I) phase at (1,K)=(1.1,0.4), and (c) in the isotropic T phase
at (J, K) = (0.4, K = 0.85). Periodicity of the boundary
conditions is revealed by some of the defects in (a) and (b).

FIG. 14. Scaling of the radius of gyration (R ) (in lattice
units) of defect clusters with the total number of links (N)
near the 6rst-order transition at K = 0. As J is lowered
toward the transition value, there is a proliferation of defect
loops (both gauge defects and disclinations) of all lengths.
The points fall close to the line corresponding to a random
walk for all values of J, except for some very large clusters,
which have wrapped completely around the toroidal lattice.
The two plots correspond to different definitions of defect: (a)
is computed from Eq. (3.2) and (b) from the second term of
the Hamiltonian in Eq. (3.5). The data (a) were taken with
only 20 discrete values of the spin because it is necessary that
there are no spin values with S,S~ = 0; consequently, the
value of J at the transition is somewhat smaller for this case.
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D. Defect line statistics

We have also examined the configurations of defect
lines in our simulations. Figure 13 depicts typical defect
networks for several representative points in the phase
diagram. Upon passing into the totally disordered con-
finement phase I from the free charge phase T, a dra-
matic increase in the number of defect loops is evident.
The increase in total length is not quite so obvious in the
N-I transition because even in the nematic phase there
are already many small loops near the transition. The
presence of greater defect length in Fig. 13(b) than in
Fig. 13(c) may seem odd at first glance. By increasing
J suKciently, the defect density in the nematic phase N
can be made arbitrarily low. The point to note is that
long-range nematic order can coexist with a considerable
density of microscopic defects. Also, that density jumps
discontinuously at the I-N transition, but is continuous
at the I-T transition.

When the lattice becomes crowded with defective pla-
quettes, it is impossible to unambiguously pick out in-
dividual /oops of defect. The loops coalesce into defect
clusters because of their intersections. We have com-
piled some statistics for these clusters. Figure 14 shows
the distributions of total length for the defect clusters in
typical configurations as J is varied at K = 0. The N-I
transition is characterized not only by a sudden increase
in the total length of defect but also by the appearance
of very long defect loops. The mean square separation
of dual lattice sites on the clusters was also studied; in a
toroidal lattice this is the quantity most nearly equiva-
lent to radius of gyration. For clusters with radii smaller
than the length of the lattice, the mean-square separation
scales approximately as net length, as appropriate for a
random walk. Any self-avoidance of the defect clusters is
apparently weak.

E. Higher (spin) -dimensional models

As indicated at the beginning of this section, we have
also carried out simulations for the system with four-
component spins situated at the lattice sites. The phase
diagram for this case is qualitatively similar, with the or-
dering transition shifted toward larger J. Note that for
a four-component nematic point defects are excluded by
topological considerations [ms(IRP ) = 0], so that discli-
nations are the only allowed type of defect. Since there

is no qualitative distinction, we have not pursued a full
analysis.

X. CONCLUSION

The ordered states of ferromagnetic and nematic media
are strikingly sixnilar, yet the experimentally observed or-
dering transitions of the two are quite different. Nematic
transitions are observed to be weakly first order and fer-
romagnetic ones are continuous.

In this paper we have shown that the origin of this dif-
ference lies in the topological differences between the ap-
propriate order parameter spaces, specifically, the pres-
ence of disclination lines in the nematic. Furthermore, we
have shown that this effect can be completely suppressed
by finite, short-ranged interactions, thereby making the
disordering transitions of the two systems identical. In
the process, we have discovered a phase of nematogenic
materials the phase entered when the nematic disorders
via a ferromagnetlike, continuous Heisenberg transition.
This phase exhibits topological order that is destroyed
only at a second, distinct transition in the Ising univer-
sality class. The full scenario is summarized in the phase
diagram (Fig. 3). Experimentally observable critical be-
havior at the two continuous phase transitions in that
figure is worked out in detail in paper II. The problem of
formulating a Landau-Ginzburg description of our theory
and its relation to the usual Landau-Ginzburg theory [2]
of the nernatic will be addressed in a future publication.
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