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Hydrodynamics from dissipative particle dynamics
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Starting from the stochastic differential equations corresponding to the updating algorithm of
dissipative particle dynamics we derive, with a standard technique of projection operators, the
hydrodynamic equations for the mass and momentum density fields. The connection of the original
parameters of the model vrith the viscosity and speed of sound of the Quid is clarified.
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I. INTR, ODUCTION

The method of dissipative particle dynamics (DPD) in-
troduced by Hoogerbrugge and Koelman [1,2] is a promis-
ing approach to the study of hydrodynamic behavior in
complex geometries as in, for example, those appearing
in colloidal suspensions. DPD is essentially a molecu-
lar dynamics (MD) simulation where the particles inter-
act through direct conservative potentials and dissipative
Brownian dashpots. The point particles are no longer re-
garded as molecules in a Quid but rather as representing
clusters of particles that interact dissipatively. This im-
plies a mesoscopic level of description and it is expected
that the relevant hydrodynamic behavior appears with a
number of particles much smaller than those required in
conventional molecular dynamics [3—5].

In general, the introduction of noise and dissipation
represents a coarse graining in the description of the dy-
namics of a system. In Brownian dynamics (BD) simula-
tions [6], for example, an individual friction and random
force is assigned to each particle of the system. BD is
intended to describe colloidal suspensions in time scales
large compared to molecular collision times. The efI'ect
of the solvent is coarse grained through the noise and
friction forces. The macroscopic behavior of Brownian
dynamics simulations is dift'usive as the only conserved
quantity is the total mass the system. In DPD, on the
other hand, not only the mass but also the momentum is
conserved in each "collision" between particles. As a con-
sequence, the macroscopic behavior will not be difFusive
but hydrodynamic, this is, there exists a transport equa-
tion for the momentum density of the fIuid. It should
be noted that the total energy of the system is not con-
served either in BD or DPD and, therefore, there is no
transport equation for the energy.

Despite the observations that the simulations pass even
quantitatively some well-known hydrodynamic test, there
is no rigorous theoretical justification that DPD has cor-
rect hydrodynamic behavior. In particular, it is not clear
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what is the connection between the original parameters
of the model and the viscosity and speed of sound of the
Quid modeled. Even though some expressions are given
and tested in the original references, they are based on
unsystematic approximations [7,8]. For example, the vis-
cosity of the fl.uid is proportional to the friction coefficient
of the Brownian dashpots. This means that in the limit
of zero friction the viscosity would vanish, and this can-
not possibly be true: there always exists a nonzero con-
tribution to the viscosity coming from the conservative
and deterministic part of the dynamics (otherwise a MD
simulation would produce zero viscosity).

We have recently formulated the stochastic difI'eren-
tial equations and the equivalent Fokker-Planck equa-
tion that correspond to the updating algorithm proposed
by Hoogerbrugge and Koelman [9]. The Fokker-Planck
equation for DPD is the analog to the Liouville equa-
tion for molecular dynamics and, in fact, it reduces to
the Liouville equation in the limit of zero noise and fric-
tion. The Fokker-Planck equation governs the distribu-
tion of the microscopic variables of the system, i.e. , the
positions and velocities of all the particles of the system.
Our main interest in [9] was to discuss the equilibrium
properties of the model. In particular, we found that in
order to obtain the correct equilibrium distribution it is
necessary to modify slightly the original algorithm. With
the modified algorithm, we obtained in a natural way a
fIuctuation-dissipation theorem very similar to the one
obtained in conventional Brownian motion. This theo-
rem allows one to relate the amplitude of the noise to
the temperature of the system.

The purpose of this paper is to formulate the equations
of motion for the macroscopic hydrodynamic variables
starting from the microscopic Fokker-Planck equation.
We will use the standard technique of projection opera-
tors in order to obtain the equations of hydrodynamics
for DPD. As our main interest is to clarify the connection
of the amplitude of the noise and the friction coefficient
with the sound speed and viscosity of the fIuid modeled,
we only need to consider linearized hydrodynamics. This
allows us to use the time-independent projection operator
of Mori and proceed according to the standard technique
[10]. The extension to nonlinear hydrodynamics is not
difFicult, though.
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Prom a mathematical point of view, the main diKer-
ence between the derivation of the macroscopic equations
from the microscopic equations in DPD versus MD is
in the non-Hermiticity of the Fokker-Planck operator, in
contrast to the Hermitian property of the Liouville op-
erator. For this reason we will generalize conveniently
Mori's projection operator technique.

II. MICH. OSCOPIC DYNAMICS

The stochastic differential equations (SDE's) that gov-
ern the position ri and momentum pi of the particles in
DPD are given by [9]

dx i — G~)
mi

dp; = ) F,, (r;, ) + ) p(u(r, , )—(e;, v,, )e,, dt
i jgi

+ ) our'~ (r,, )e,,dWU,
jgi

where mi is the mass of particle i; z ij —p x j p

~r, —r, ~, e;, =r;,/;, ) v;, =v, —v, , v;=p/m;, and
F;.(r;~) is the conservative force exerted on particle i
by particle j. The dimensionless weight function w(r, ~)
provides the range of interaction of the dissipative and
random forces and it is normalized in such a way that
jw(r)dr = V/N = n . The friction coeflicient p and
the noise amplitude o. are subjected to the Quctuation-
dissipation theorem

(2)

where T is the temperature of the equilibrium state to-
wards which the system relaxes (if the boundary condi-
tions allow for it) and k~ is Boltzmann's constant. Fi-
nally, dW;~ = dW~; are (N —1)N/2 independent incre-
ments of the Wiener process. To fix ideas, we will assume
the Ito interpretation which implies the Ito calculus rule

dW;~dW; ~
= (b,, b, , + b;~ h~; )dt,

i.e. , dW;~(t) is an infinitesimal of order 1/2 [11].
The above SDE's are very similar to the ones that cor-

respond to the updating algorithm proposed by Hooger-
brugge and Koelman with a slightly different notation.
However, note that we have a square root of the weight
function in the random force. This is in contrast to the
original algorithm and it is crucial in order to obtain the
proper equilibrium ensemble [9].

The Fokker-Planck equation that is mathematically
equivalent to the SDE's (1) is given by [11]

O+):~ (*) '" — ('" *')
Opii jgi

(0 Bi
+kgTe;, »)

The first term in square brackets is the Liouville opera-
tor. The second term proportional to the friction coeK-
cient p takes into account the efFects of the dissipation.
In the absence of dissipation (p = 0), Eq. (1) reduces to
Newton's equations of motion and (4) becomes Liouville's
equation. Note that the diffusion tensors accompanying
the second derivatives with respect to the momentum do
not depend on the momenta of the particles. This implies
that the Ito and Stratonovich interpretations provide ex-
actly the same answers [11].

It is a matter of substitution to check that the canoni-
cal equilibrium ensemble is not only a stationary solution
of the Liouville equation but also a stationary solution of
the Fokker-Planck equation (4), i.e., Lp'~ = 0, where

1p''i(z) = —exp( —H(z)/k~T jZ
f= —exp — ) * + V(r) jksT),g ( 2m;

H(z) is the Hamiltonian of the system, V is the potential
function that gives rise to the conservative forces F, and
Z is the normalizing partition function.

We will need several operators related to the Fokker-
Planck operator L For exam. ple, if we use the SDE (1)
with the aid of the calculus rule (3) in order to compute
the difFerential df of an arbitrary function f, we will Bnd

df =) dr, + dp;
- ~f ~f

Or; Opi

1 82f 1 02f
+ ) — d dr&r+ — dr &dp&

2 OI' OF ' 2 OF 'Op
U

02
dp, dp~ + O(dt i )2 OpiOp j

= Lfdt+ ) a~ ~ (r,, )e;~ dW, ~ + O(dt ~ ). (7)»~

The operator L is given by

0~p(z; t) = Lp(z; t), (4)
O+ ).&~("6) ( *iV)e'2''

i jgi Opi

where z is a shorthand for the set of all positions and
momenta of the particles, p(z; t) is the probability density
in phase space, and the Fokker-Planck operator is [9]

+k Te,," ~

( 8
Opi

0 l
»')
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The relevance of L stems from the fact that it allows one
to compute the time derivative of averages, because of
the following property derived &om (7):

s~ =) "[1+@il

p, = p' [1+@i],

in such a way that 4'i ——PA, (t)A, . In terms of the devi-
ations from equilibrium Eq. (14) becomes

Another crucial property satisfied by DPD is detailed
balance. Detailed balance is satisfied if [12] which implies

LV"0 = S "L'& (10) PA;(t) = (A;, A. ) (A, , 4', ),

III. MORI FORMALISM

In this section we will adapt the standard technique of
projection operators to the case that the dynamic oper-
ator is not self-adjoint, as happens with L in (5). Fol-
lowing Ref. [10], we introduce a scalar product in order
to construct a Hilbert space for the functions of phase
space,

(»0) —= f "(')4(')@(')&'—= &') "441

With this scalar product and due to detailed balance (10)
the operators L and L' are adjoints of each other, i.e. ,

(L& @) = (& L'@). (i2)

As in any technique of projection operators, the first
step consists in selecting the relevant variables that de-
scribe the macroscopic behavior of the system. We will
denote the relevant variables by A;(z) and we will specify
them in the next section. The only requirement by now
is that their equilibrium value vanish. With the relevant
variables one constructs a relevant ensemble of the form

1
p, (z)—:—exp( —PH(z) + PA;(t)A;(z)),

where summation over repeated indices is understood,
P = 1/k~T, and A;(t) are a set of thermodynamic pa-
rameters that depend on time. They are selected in such
a way that the average of A.; performed with the rel-
evant ensemble coincides with the actual average per-
formed with the solution of the Fokker-Planck equation
(4), that is,

(A, ), = tr[p, A;] = tr[p, A;]. (14)

Near equilibrium the relevant ensemble must be similar
to the canonical ensemble and therefore the parameters
A;(t) are small, allowing for an expansion of the form

p, ( ) = '
( )[ + pA;(t);( )].

We further define the deviations kom equilibrium

(15)

where P is an arbitrary function of positions and mo-
menta. The operator L' is obtained &om L by reversing
the sign of the velocities. It is a matter of some algebra
to prove that DPD satisfies the detailed balance property
(10).

and therefore

0, = A, (A;, A, ) '(A, , 4,):—'P4,

where the detailed balance (10) has been used. As usual,
kom this equation one writes equations for the relevant
7 4'i and irrelevant Q@i = (1 —P)@i parts and solves
for the second. Substitution into the equation for the
relevant part leads to

t
8,4, = PL'4, + du'PL' exp(QL'(t —u)) QL'4'„.

0

Note that in order to write this equation conventional
calculus has been used because 4z is an ordinary func-
tion and (20) a usual partial differential equation. There
is no need of using stochastic calculus at the level of the
Fokker-Planck equation. For example, the formal solu-
tion of (20) is

4q ——exp(L't) @o (22)

where the operator exp(L'tj is defined in terms of its
series expansion.

From Eq. (20) one obtains an exact equation for the
average of the relevant variables:

t—(A;) = (IA, , 0,) + du[exp{LQ(t —u))
0

xIA;, QL'A, .]PA~. (u) (23)

where the Hermitian property of T and Q and detailed
balance have been used.

The crucial point in any technique of projection oper-
ators is the selection of the relevant variables. In general,
one tries to find variables for which the complicated mem-
ory term in (23) can be approximated by a term which
is local in time (i.e. , Markovian). This will be possible
whenever there exists a clear separation of time scales
between the relevant variables and the memory kernels,
which will be the case if the relevant variables are "slow."
In this case, the Markovian equation which approximates

where 7 is a projection operator that extracts the rele-
vant part of the actual ensemble.

It is convenient to write the Fokker-Planck equation
(4) in terms of the deviations &om the equilibrium, that
1s)

(20)
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(23) reads

d—{A,) = (LA;, 4,)
OO

du(exp{LQu)LA;, QL'A~) PA~ (t)
0

= (LA;, (16') + p;~PA~ (t),. (24)

where the transport coefficients p;~ are expressed in.
terms of Green-Kubo formulas, i.e. , time integrals of
equilibrium correlation functions.

of a flux. This implies that the small k components of
these fields in Fourier space are slowly varying quantities
for which local in time or Markovian equations of the
form (24) exist.

On the other hand, the operator L applied to the en-

ergy density field leads to

Le, = V' —r, + ) ' F, . v, + kgyT ~(r;~) h(r —r;)
m

u
(29)

where the conservative energy flux has the form

IV. HYDRODYNAMIC VARIABI ES

We are interested in the hydrodynamic behavior of a
system of particles governed by DPD. For this reason
the selected relevant variables would be, in principle, the
microscopic mass, momentum, and energy density fields
defined by

bp, = ) m8(r —r, ) —p(),

2
7.~ ——) p' + —) p;, p;b(r —r )' 2~'

1 & 1+-).—F;,'(p'+p~) *~

u
7

x dab(r —r, —ne;~. )
0

(30)

g, = ) p;8(r —r;),

be, =) ' + —) P,, b(r —r;) —e(),
2 2,~'

(25)

Lp, = —V'-g, . (26)

In the same way, one obtains

where p0 and e0 are the equilibrium mass and energy
densities of the fluid. Note that the equilibrium average
of these quantities (25) vanishes.

The time derivative of the average of any phase func-
tion involves the operator L, because of Eq. (9). Let
us consider then the efFect of L on the hydrodynamic
variables. For example,

and F;. = —p ((dr; )~(e; ~ ,v)~"e, ~is the dissipative force on
particle i exerted by particle j.

The physical meaning of the different terms in (29)
is clear. The first divergence term represents the con-
served contribution whereas the second term stands for
the effects of the dissipated energy due to the &iction
of the dashpots and the increase in energy due to the
Brownian kicks exerted on each pair of particles. This
last term cannot be expressed as the divergence of a flux
and, therefore, in the limit of small wave numbers in
Fourier space the time derivative of the energy density
field does not vanish. The energy density field is then
not a slow variable and cannot be taken as a relevant
variable.

In summary, the only relevant variables in a system of
particles governed by DPD are the mass density (actually
its deviations from the equilibrium density), and the mo-
mentum density field. The relevant ensemble obtained
with these relevant variables will be

1
Lg, = —V. ) —p;p;8(r —r;)

m 5, = tt/ dr]tt (t)6p, + A, (t).g, ], . (31)

1 +tg
I+— F; e,~ do.b r —r. —o.e-. (27)

7

b(r —r, ) —b(r —r~) = —V' e,~ dab(r —r, —ne, ~).
0

(28)

Both Eqs. (26) and (27) imply that the equations of mo-
tion for the mass and momentum densities are transport
equations, because their derivatives are the divergence

where F,~ is the total force (including conservative and
dissipative parts, but not the random contribution) that
particle j exerts on particle i. The prime in the summa-
tion excludes the i = j terms. In (27) the generalized
Taylor theorem [13,14] has been used:

where p, (t) and A, (t) are the corresponding thermody-,
namic parameters.

We will devote the rest of this section to finding the
physical meaning of these parameters. It is first necessary
to consider the matrix of scalar products. In general this
matrix is M;~ = (A;, Ai), but when specialized to the
hydrodynamic variables it becomes

( Md'6'(r —r') Mt's(r —r') ~M j w M:
~ ( ) ( )

~
(32)

where M6'6'(r —r') = (hp„hp, ), M~s(r —r') = (8p, g, ),
Msd'(r —r') = (bp„g, t), and Mss(r —r') = (g„g,t).
This matrix (32) is a 4 x 4 matrix that has to be un-
derstood as a functional matrix with respect to the con-
tinuous indices rr'. It is straightforward to compute the
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different terms,

M~~(r —r') = mb(r —r')po+ pov(~r —r'~),
M~g(r —r') = Ms~(r —r') = 0,
Mgg (r —r') = kzz Tp b(r —r') 1,

(bp. )~ = dr'M" (r —r')PV' (t)

(g.)~ = po&, (t). (34)

The last equation shows that A, (t) = v(r, t), the velocity
field. On the other hand, the kernel in the first equa-
tion will decay in general in a molecular length scale for
which the thermodynamic parameter p, (t) seldom varies.
Therefore we would approximate

where v(r) is the pair correlation function. We observe
that the 4 x 4 matrix is diagonal. Therefore, we may
interpret the thermodynamic parameters by using (18)
in the form (A, )i ——(A;, A~)PA~-(t) which in our case
becomes

M~~ = kzzT (p) "",
Op

(39)

where (p)™is the average mass density in the macro-
canonical ensemble at constant temperature T, chemical
potential p, and volume O.

We finally note that &om (38) the thermodynamic pa-
rameter p (t) is proportional to the deviations of the den-
sity from its equilibrium value.

time domain in the definition of the friction coefficient as
the time integral of the force autocorrelation function in
Brownian motion theory [16]. Therefore, the particular
value of the selected ro will not be very important, pro-
vided that it is selected within the appropriate bounds
(i.e., larger than a few molecular radii and smaller than
the typical macroscopic length scale of variation of the
hydrodynamic fields). In Appendix A we show that the
local in space approximation for M~~(p —p') can be ex-
pressed in the form [see Eq. (A6)]

(b p, ), = M" (r') dr'pv'(t). (35)
V. HYDRODYNAMIC EQUATIONS

The problem with this approximation is that the integral
over all space of the kernel M~~(r) vanishes identically
in the canonical ensemble because

In this section we specify the general equation of mo-
tion (23) to the case of hydrodynamic variables. Because
Ip, is linear in the momentum density, there is no mem-
ory term in the equation for the mass density which be-
comes simply the continuity equation

M~~(r)dr =
O

B,bp(r, t) = ——.g(r, t),
Or

(40)

The proper way to obtain a local in space approximation
is by considering a small spherical volume O(r, ro) of ra-
dius ro centered around r and decomposing the volume
integral in (34) into two integrals,

where b p(r, t) = (b p, ) q and g (r, t):—(g, ) &. Let us con-
sider the momentum density equation next,

~~g(r t) = (+~ Lg. ) + du dr'[exp(LQ(t —u))
(bp )i =

(r,rp)

dr'M~~ (r —r') Pp., (t) xIg„QL'g, ]Pv(r', t),

+ dr'M~~(r —r')Pp, (t).
v —n(&,»)

The radius ro of the sphere is Inuch larger than a typ-
ical molecular separation. For ~r —r'~ ) ro the kernel
M~~(r —r') has a vanishingly small amplitude and this
iznplies that the second integral in (37) is a very slowly
varying function negligible compared with the first one.
Under the assuznption that the macroscopic field p, (t) is
virtually constant within molecular length scales, now it
is safe to take the local approximation

where we have used that QL'p~ = 0 to get rid of the
meznory term proportional to p,,(t). The first term in
(41) will give rise to the (linearized) Euler terms in the
Navier-Stokes equation whereas the second term will pro-
duce the viscosity terms. We will consider an expansion
up to second order terms in gradients, because only for
slowly spatially varying fields does one expect a clear sep-
aration of time scales and a Markovian approximation for
the second term in (41).

(b p, ) &
—— M~~(r —r') dr'Pp, (t)—:M Pp, (t).

n(r, rp)

(38)

The integrated kernel M~~ depends on the ad hoc length
scale ro and in particular lim„, ~ M~~ = 0 [i.e. , when
0 —+ V then Eq. (36) holds]. However, one expects that
after several molecular radii M~~ will exhibit a plateau
value which will decay to zero very slowly. The sit-
uation here is very similar to that encountered in the

A. Euler terms

In order to see this, we have to consider first the eKect
of the operators L and L' on g, :

CJg = ——0 ——.0
Or Or

C DI g = —.0 ——-0
Or ' Or

(42)

where the conservative and dissipative stress tensors are
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) —p;p;b(r —r, )
2

1+—) F, .e,, dnh(r —r; —ne;, )
22

&ij
~D = —) F~e;, dnb(r —r, —ne;, ).

'u
(43)

(4„o, ) = (bp, , o, )dr. 'PIJ,,(t)
O(r, v 0)

(46)

and by using (38) one finally obtains

We would attempt a local approximation for the first con-
tribution, because the correlation function (bp, r, Ir+) will
decay within molecular dimensions. However, the naive
approximation similar to (35) will fail again and for the
same reasons. Therefore the proper local approximation
will be

Therefore we will need to compute (4'q, og) and (IItq, o D).
Let us consider the last term first:

(@„o., ) = dr'P p,, (t) (b p, , o D)
v

+ dr'pv(r', t) (g, , o D).
v

(44)

(@,, a, ) = f dr'Pp(t)(bp. . .oo),

The first integral vanishes because it involves an equilib-
rium average of an odd number of momenta. The second
integral would produce a third order tensor. However,
the equilibrium average is isotropic and there are no third
order tensors which are isotropic and symmetric in a pair
of indices. Therefore this second term also vanishes. On
the other hand, the conservative term is a bit more in-
volved:

(4t. , o, ) = "" bp(r, t) = colbp(r, t)
I ( )(bp, , cr~)drt

n(r, ro) pr' & pr

(47)

where the constant c0 is the isothermal speed of sound.
Note that in the definition of the speed of sound there
is no dependence on the friction coefBcient p. Therefore
this speed of sound is exactly the same that would be
obtained in a MD model. In Appendix A we show that
the speed of sound (47) can be recast in the familiar form

Op
C0

t9p
(48)

where p(T, p) is the pressure. Note that the partial
derivative is taken at constant temperature.

dr'pv (r ', t) (g, , o., ) . (45) B. Viscosity terms

The last contribution to this expression vanishes because,
again, it involves an odd number of integrated momenta.

Let us arrange a bit the memory kernels of Eq. (41)
by using (42).

[exp(LQ(t —u))Lg„QL'g, ] = —c),{9, [exp{LQ(t —u))o, , Qo, , ] + B,O, [exp(LQ(t —u))o, , Qo, , ]

+c),c), [exp(LQ(t —u))o, , Qtr, , ] + {9,{9, [exp(LQ(t —u))o, , Qo, , ]. (49)

Now, the cross terms D and C cancel each other due to
temporal reversibility. This is shown in Appendix B. The
next step is to integrate by parts the term 0 and to as-
suine that the kernels in (49) are short ranged in space,
with correlation lengths much shorter than the typical
length scale of variation of the velocity GeM, allowing for
the approxiznation Pc}, v(r', t) = Pc),v(r, t). By invok-
ing also locality in time (that the correlation time of the
kernels is short lived compared with the temporal scale
of variation of the velocity field), we arrive finally at the
following approximation for the kernel in (41):

f
t

du dr'[exp(LQ(t —u) )Lg„QL'g, ~]Pv(r', t) (51)

II (r)—:P du f dr'(exp(I Qu}aa, Qua)
0

= P du f dr'(exp(tu}o;, Qa, , )
0

= P du f dr'(aa(u), Qa,
0

IIP(r) = P du f dr'(exp(IQu}a, , Qa, )
0

= P f duf dr'(exp(tu}o', , Qo' )

= P du f dr'[o, (u), Qa, ]. ,
0

= {9,(II + II )c},v(r, t), (50)

where the following viscosity fourth order tensors are in-
troduced:

Here we have approximated the "projected dynamics"
with the real dynamics because, by expanding the expo-
nential in its power series, one arrives at exp(Lqu) =
exp(Lu) + O(V). Therefore, in an expansion to second
order in gradients such as the one we are considering here,
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both dynamics give the same results.
We can now invoke translational invariance of the equi-

librium ensemble to write

IIC(r) = II = — d'rII (r),

II~(r) = IID = — dsrIID(r)1
V (52)

The isotropy of the equilibrium ensemble implies that the
fourth order tensors should be isotropic too, that is, of
the form [15]

(5S)

where the shear and bulk viscosities are given by

(C C
3 )

(D D

= p du —[K„„(u),QZc„],
0

= p du —[Z„„(u),QEc„],
0

= P du —[E„„(u),QZ„],
0

where p g v and no summation over repeated indices is
implied. Here the total stress tensors are defined as

Z = dro. = r, —r~ F
'u

'Y ) ( ~ rj)~~j( ~j v~j)e~j ~

ctgg(r, t) = —co'|7bp(r, t) + gV v(r, t)

(56)

where the total shear viscosity is g = g + g and the
total bulk viscosity is ( = ( + (D.

Note that g~ and gD in (54) contain a factor of p2 com-
ing &om the two dissipative forces appearing in the time
correlation. Therefore they vanish as p —+ 0.

Finally, substitution of (50) and (53) tot, ether with
the Euler terms (47) into (41) leads to the Navier-Stokes
equation

VI. CONCLUDING REMARKS

In this paper we have formulated the hydrodynamic
equations for DPD taking as starting point the micro-
scopic Fokker-Planck equation that governs the position
and velocity of the dissipative particles. We have ne-
glected the energy density field as a proper hydrodynamic
variable because it is not conserved in DPD. Its balance
equation has source and dissipative terms that cannot be
expressed as the divergence of a Aux. Therefore, the en-
ergy is a rapidly varying function for which a proper hy-
drodynamic equation does not exists. On the other hand,
we find transport equations for the mass and momentum
density fields which have the expected form of Navier-
Stokes equations. The main result of this paper is not to
have found these equations, which are expect on merely
physical grounds: Galilean invariance and isotropy of the
microscopic equations together with conservation of mass
and momentum force the equations to have the structure
of Navier-Stokes equations [1]. Rather, the two main re-
sults of the derivation are the microscopic expressions for
the sound speed (48) and the viscosity coefficients (54).
The sound speed is given in terms of the usual thermo-
dynamic expression. The sound speed squared is given
by the derivative of the pressure with respect to the den-
sity at constant temperature. The pressure and hence
the sound speed do not depend on the &iction coeKcient
of the Brownian dashpots. This is not completely unex-
pected in view of the result of Ref. [9] that states that
the equilibrium state of DPD is the canonical ensemble,
which is independent of the friction coeKcient. Being an
equilibrium property of the system, it is not surprising
that the sound speed does not depend on the &iction co-
efBcient. In other words, the sonic propagation is due
entirely to the conservative part of the microscopic dy-
namics.

On the other hand, the shear and bulk viscosities are
seen to have two contributions that come &om the con-
servative and &om the dissipative part of the dynamics,
respectively. The dissipative contribution is proportional
to the square of the &iction coeKcient and vanishes in
a purely MD simulation, for which p = 0. In this limit,
the viscosity is given by the conservative contribution
only. Both contributions are given in terms of Green-
Kubo formulas. In Ref. [1] the viscosity is proportional
to the &iction coeKcient and therefore vanishes in the
limit of zero &iction. This cannot be the case because it
would mean that a molecular dynamics simulation would
produce non-viscous behavior. Therefore such an expres-
sion can only hold for high enough &iction in a way that
the conservative contribution to the viscosity can be ne-
glected. On the other hand, in view of the p factor in
&ont of the dissipative contribution, it is not clear that
the dependence of the dissipative contribution to the vis-
cosity is simply linear as stated in Ref. [1] [if one assumes
that the correlation of the stress tensor in (55) does not
depend strongly on p then the dependence should be
quadratic].

We finally comment on the range of temperature for
which a Newtonian description of the liquid is valid. At
low temperature the noise level is very small and the &ic-
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tion tends to &eeze the motion of the particles. In the
absence of forcing boundary conditions the particles will
tend to form a sort of colloidal crystal, searching for bet-
ter accommodation in the potential created by the 'rest
of the particles [8]. It is apparent that the rheological
properties of such a state are likely to be different from
a Newtonian viscous response. This non-Newtonian re-
sponse has been actually reported in Ref. [l]. A criterion
for the validity of the Navier-Stokes equations would be
then that the temperature of the system should be well
above the melting temperature of the dissipative crystal.
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APPENDIX A

The numerator of (47) can be written as

= —k~ ln Z(T, M, O), where Z(T, M, O) is the partition
function in the canonical ensemble. In this way,

) P (M) (hM c)T,M, B

M=o

= ) P „(M)hM(a., )
M=O

) P (M) ( D)T,M, A

Op

kgyT ) PT „ri(M)p(T, M, O)l0
19p

k~T p(T, p, O)l,
19

(A5)
Op

where p(T, M, A) is the pressure in the canonical ensem-
ble of a system of M particles enclosed in a volume 0
at a temperature T and where p(T, p, 0) is the pressure
de6ned in the grand canonical ensemble.

We may follow the same steps for the denominator in

(47), i.e.,

(h' p, , o, )dr' = m[bN(r, r p), o., ],
n(~, r, }

(Al) = k~Tm (p)
n

Dp
(A6)

where hN(r, «) is the Huctuating number of particles
within the region A(r, so) of volume 0 and o+ is the
total stress tensor of the particles within A(r, «). The
ensemble average is performed with the canonical ensem-
ble, i.e., at constant temperature T, number of particles
N, and volume V. However, one expects the equivalence
of averages of quantities defined for the subvolume 0 per-
formed with the canonical ensemble and those performed
with a grand canonical ensemble at constant temperature
T, chemical potential p, and volume 0, that is,

so finally the speed of sound (47) becomes

~8

2 p
co =

OP TBp,

APPENDIX B

(A7)

m(hN(r, «)o ) ' ' = m(hN(r, ro)cr, ) '"'+. (A2)

The actual value of the chemical potential p is such that
it produces an average number of particles (M) in the
volume 0 equal to & 0, in order to have the same average
density inside and outside of the region B(r, re). The
grand canonical ensemble can be defined as an statistical
average of canonical averages, that is,

In this appendix we show that the cross correlations D
and C in (49) cancel each other. We introduce the time
reversal operator de6ned by

&f(p g) = f( pg)— (Bl)

where f (p, q) is an arbitrary function of phase space. In
particular we obtain

(hN(r, «)~~)~""—= ) P,„,,(M)(bM~~)~ M"
M=O

RO =0 )

RO = —0 (B2)

(A3)

where the probability of having M particles within the
volume 0 is given by

exp P(F(T, M, 0) —p—M)
T~P qA

) exp P(F (T, M, 0) —IJM—)
M=o

'RL' = L'R,
'RP = 'P'R

R' =X,
(Rf, g) = (f, Rg). (B3)

It is a matter of simple algebra to show that the time
reversal operator satisfies the following properties:

The free energy is defined as F(T, M, Q) With these properties we arrive at the following equation:
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(exp(QI'u)Qo~, Qo ) = (exp(QI. 'u)Qo. ~, 7Z'Qo )

= e e~(exp(QLQu/Qo~, Qcr )

e~(exp(QI'u)Qo, Qo~)

(&4)

vrhere n and P denote D or C and e = 1, e = —1.
Therefore,

(Qcr, exp(QI'u) Qo ) + (Qo, exp(QI'uj Qcr ) = 0.
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