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We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequili-
brium molecular dynamics and smooth-particle applied mechanics. The time-reversible microscopic
equations of motion are isomorphic to the smooth-particle description of inviscid macroscopic continu-
um mechanics. The corresponding microscopic particle interactions are relatively weak and long
ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional
flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary
plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds
to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic, even at high
density. For the soft Lucy potential which we use in the present work, nearly all the system energy is po-
tential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosi-
ties can be understood, in terms of a simple weak-scattering model, and that this understanding is useful
in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that
method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.

PACS number(s): 66.20.+d, 03.40.Gc, 05.70.Ln

I. INTRODUCTION

Boltzmann popularized the quest for an understanding
of the emergence of irreversibility from time-reversible
equations of motion. His explanation made it plain that
irreversible behavior can be seen in isolated systems only
if fluctuations are ignored —that is, ensemble averages
can approach equilibrium even while individual histories
continue to cover all available states. Generalizing classi-
cal mechanics, admitting interactions with the surround-
ing world, to include sources and sinks of work and heat,
has two advantages: (i) stationary nonequilibrium states
can then be generated, and (ii) the analysis of irreversibili-
ty becomes less difficult. Several methods for treating
time-reversible heat reservoirs have established that the
irreversibility associated with the conversion of work to
heat is rooted in the chaotic instability of the underlying
motion equations [1,2]. The Green-Kubo theory [3],
which predicts irreversible behavior in terms of the en-
semble average of equilibrium correlation functions, is a
general demonstration of the possibility of obtaining ir-
reversible behavior from reversible motion equations.

It has been widely accepted that the Green-Kubo
theory predicts some kind of divergence for two-
dimensional transport coefficients [4]. The diffusion
coefficient, viscosities, and heat conductivity were all ex-
pected to diverge because the corresponding correlation
integrals decay slowly in two dimensions, inversely as the
time. On the other hand, recent high-precision simula-
tions [5] of shear flow, for a short-ranged steep repulsive
potential produced a size-independent, though rate-

dependent, shear viscosity fairly close to the predictions
of Gass' two-dimensional Enskog theory [6]. The repro-
ducible finite nature of these viscosities could be made
understandable if the coefficients only diverge in some
unobtainable zero-rate large-system limit. Evidently, the
simple Green-Kubo derivation of divergence fails to hold
for finite systems with finite steady nonequilibrium fluxes.
The simulations we report here, for a very different po-
tential, show no problems in defining and using viscosity
in two dimensions and cast doubt on the generality of the
divergence argument.

An interesting additional puzzle emerged when we be-
gan to use smoothed-particle methods to solve analogous
flow problems in continuum mechanics. In this approach
[7] the equations of continuum mechanics are smoothly
interpolated in space, using summed contributions from a
set of moving material points. The continuum field
variables —stress, energy, strain rate, and heat flux—
anywhere in space are calculated by superposing the con-
tributions from all those moving points, which lie within
the range of a weight function which describes the
"smoothing. " At a given space point the superposed
averages usually involve contributions from a few dozen
of the moving points.

If the continuum material we choose to model happens
to be a two-dimensional ideal gas, then the corresponding
inviscid Euler equations have as their smooth-particle
representation the motion of particles obeying the usual
equations of molecular dynamics, with the weight func-
tion playing the role of an interatomic potential [8].
Thus, the smooth-particle approach to continuum
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mechanics produces another version of the paradox
Boltzmann studied: linking reversible particle motion
equations to irreversible macroscopic behavior [9].

Though the irreversibility problem is an old one, the
capacity and speed of present day computers makes this a
good time to investigate all these questions anew, begin-
ning with both equilibrium Green-Kubo and nonequili-
brium steady-state Couette Aow simulations of two-
dimensional viscosities, and then applying the results to
the simulation of a two-dimensional unstable Aow, the
Rayleigh-Benard problem. In Sec. II, we introduce the
smooth-particle approach to continuum simulations,
stressing the parallels linking this continuum approach to
molecular dynamics in the case that the macroscopic
weight function is proportional to the microscopic poten-
tial function. Because the atomistic view is unique, and
underlies the continuum one, we next consider atomistic
particles, describing in Sec. III how the continuum con-
stitutive relation linking stress and strain rate can be ob-
tained from atomistic simulations of plane Couette How.
In Sec. IV, we exploit the close relationship linking
smooth-particle applied mechanics and molecular dy-
namics to compute the viscous shear response of a partic-
ular ideal fIluid, which can be pictured in either an
atomistic or a continuum point of view. Section V con-
tains a comparison of the nonequilibrium viscosities for
this case with equilibrium estimates from Green-Kubo
theory. In Sec. VI, we explore a nonlinear problem,
heat-induced convection in a gravitational field (the
Rayleigh-Benard problem). Section VII records our con-
clusions.

II. SIMULATION OF FLOWS USING
SMOOTH-PARTICLE APPLIED MECHANICS

Smoothed-particle applied mechanics (SPAM) provides
an ordinary-differential-equation particle method [7—11]
for solving the partial differential conservation equations
of continuum mechanics:

dp/dt = —pV' v;
pdv/dt =T.a;
pde/dt =o:Vv —V.Q .

(2.1)

p(r)=m g w(r —r ) .
J

(2.2)

The density at the position of any particle includes the
self-term w (0), from the term i =j in the sum over j:

The method, often called smooth-particle "hydrodynam-
ics," can be applied to solids as well as to fluids. It treats
the motion of X "smoothed, " or "smeared-out, " parti-
cles, distributed in space. All the field variables in the
continuum conservation equations, including the mass
density p, the velocity v, the energy per unit mass e, the
stress tensor o., and the heat Aux vector Q, are interpolat-
ed among the locations of the moving particles. In the
simplest form of the theory, the density at any point in
space, p(r), is given by the summed contribution of all
particles within range of that point:

The motion of particle i is governed by the stress tensor
and the "weighting, " or "smearing, " or "smoothing"
function w (r), in a sum over all nearby particles j:

d r, /dt =dv;/dt

=g [(mcr/p );+(mo Ip )J] V;w(r;~) . , (2.4)
J

where the stress a.; at each particle is calculated from its
internal energy per unit mass, e; (which obeys a similar
equation) and its mass density p, .

We use a special weighting function, w(r)=wi„, „(r),
in this work. It is typical of such functions, being
smooth, monotone decreasing with increasing r, and
designed to include interactions between each particle
and a few tens of nearby neighbors. It was used by Lucy
[11], who, with Monaghan [7], invented the smoothed-
particle method in 1977. This Lucy weight function has
circular symmetry, and exactly the same analytic form,
apart from the units, as does the Lucy potential function
which we use in Sec. IV:

wi„,„(r(h =3cr)=(5/h n)[1+(3rIh)][1—(r/h)]

(2.5)

We arbitrarily choose the cutoff, or range, of this func-
tion to be h =3o.. The multiplicative constant
(5/m. h )=(5/9rrcr ) is then fixed by the two-dimensional
normalization of w: f Zrrrw dr = l.

Note that a scalar equation of state, for a two-
dimensional ideal gas,

cr =—

crier

=—P =pe =P, (p /p, ) /2, (2.6)

(where P, =E lo and p, =m /o are constants) provides
equations of motion isomorphic to the motion equations
of monatomic molecular dynamics [7],

[m'r', =mv; = —V;4], 4=gP (r,~ ), (2.7)

where P(r) is the pair potential. These equations consti-
tute an autonomous set, with a solution independent of
the energy equation. [The energy equation (2.1), with Q
set equal to 0, is, however, fully consistent with the dy-
namics generated by (2.7).] Thus, the smooth particles,
whose motion is governed by the ideal gas pressure ten-
sor, through the weighting function w(r), trace out the
same trajectories as would atomistic particles governed,
through the corresponding potential function P(r), by the
equations of molecular dynamics. For definiteness, we
continue with our special, though typical, choice of the
potential corresponding to our smoothed-particle weight-
ing function, using again the functional form introduced
by Lucy: Pi„,„(r)=(Ecr )wi„, (r). Potential functions de-

p, =p(r, )=m g w(r, . —r )=m g w(r~); rz =r, —r. .
J J

(2.3)
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I PL„,„(r;;=0)= (eo')w„„,„(0)

=(5ecr /nh )=0.1768388e], (2.8)

are not included. This difference does not affect the iso-
morphism of the two kinds of particle trajectories, since
w'(0) and P'L„,„(0)both vanish.

In this paper, we apply molecular dynamics, equivalent
to ideal-gas smoothed-particle applied mechanics, to the
analysis of simple two-dimensional flows. We consider
first plane Couette flow and then convective Rayleigh-
Benard flow, in which convection rolls, driven by heating
in a gravitational field, compete with conduction, as a
mechanism for heat transfer. The lack of viscosity for
the continuum ideal-gas version of this model suggests
that the corresponding flows describe the large-
Reynolds-number limit of turbulence analyses [12—14].
It is paradoxical that there is an intrinsic atomistic
viscosity present in the implementation of this continuum
model, which prevents that model's Reynolds number
from diverging.

Movies of smoothed-particle flows reveal high-
frequency velocity fluctuations, which are ordinarily ab-
sent in continuum mechanics. Because the particles can
be large, the smooth-particle simulation method has a
substantial scale advantage over molecular dynamics.

rived from weighting functions, such as this, differ, in
shape, range, and units, from conventional pair potentials
P(r). Because the smoothed-particle function has no
strongly repulsive core and is also relatively long ranged,
each smoothed particle simultaneously interacts, weakly,
with dozens of others. The statistical mechanics and hy-
drodynamics of corresponding long-ranged molecular
systems, with pair potentials resembling Lucy s weighting
function, have not yet been systematically explored.

Energy is reckoned a little differently in the microscop-
ic and macroscopic dynamics. In the smooth-particle
density and energy sums, the self-contribution of each
particle, proportional to w (0), is included. In the molec-
ular dynamics simulations of Sec. IV, the corresponding
contributions to the energy,
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FIG. 1. Two-dimensional I.XL plane Couette shear How
driven by the relative motion of periodic images (shown
dashed). This periodic driving, "Lees-Edwards boundary condi-
tions, " is augmented by a global ergostat in order to generate a
nonequilibrium steady state.

[x =Ey + (p„ /m ); y = (p /m );
P. =F. Ep, kS—. ; P—,=F, Pp, ]— (3.1)

with

eP y
V/2—J; K=(l/2m)gp (3.2)

S'=iP
y V . (3.3)

In our numerical simulations we derive the interparti-
cle forces in the motion equations [(F,F~)= —VC&]

from the specially chosen short-ranged Lucy pair poten-
tial shown in Fig. 2:

P is the xy component of the pressure tensor and K is
the kinetic energy, measured in terms of particle veloci-
ties relative to the mean flow. The isokinetic version of
these equations has been called the "Sllod" algorithm be-
cause of its close relationship to the Dolls Tensor algo-
rithm [19]. The friction coefficient g extracts heat from
the system at exactly the rate that the periodic shearing
boundaries do thermodynamic work on the system,

III. SIMULATION OF STEADY
TWO-DIMENSIONAL PLANK COUKTTE FLOW

0.20

Homogeneous periodic shear has been studied for more
than 20 years [2,5, 15]. In such a flow, an N-particle sys-
tem is driven by the motion of neighboring periodic im-
age systems, as shown in Fig. 1. From the macroscopic
standpoint, and confirmed by the microscopic equations
of motion, the sheared system would steadily gain energy,
and heat up, due to this periodic boundary driving. To
avoid this heating, and to obtain a nonequilibrium steady
state, it is usual to add time-reversible Gauss [16] or
Nose-Hoover [17,18] "friction coefficients" g to the equa-
tions of motion. The resulting reversible friction con-
strains or controls either the temperature or the internal
(excluding the macroscopic flow kinetic energy) energy.

For two-dimensional particles of mass I, and with a
macroscopic strain rate i =du /dy, the Gaussian isoener-
getic form of these equations that we use here is the set

0.1 2

0.08

0.04

0.00
0.0 0.2 0.4

r/h
0.6 0.8 1.0

FIG. 2. Lucy potential function, P„„,„, proportional to the
weighting function which we use in our smooth-particle applied
mechanics simulations here. The integral of the weighting func-
tion is normalized to unity. The force from the Lucy potential
vanishes quadratically at the cutoff. In our two-dimensional
simulations, each Quid particle interacts with approximately 30
others.
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Pi„,„(r)=(5Ea /h m. )[1+(3r/h)]

X[1—(r/h)] for r (h =3cr . (3.4)

The reason for this particular choice, which contains the
energy scale c, the length scale o., and the cutoff range h,
is described more fully in Sec. IV. As usual, the total po-
tential energy 4& is a sum of pair contributions {P; ], one
for each pair of particles closer than the cutoff distance.
Throughout this work, we arbitrarily choose the range of
the potential, h, equal to 3o. and the volume per particle
equal to cr, giving the relations h =3o.=3(V/N)'~ .
Here X is the number of particles in the simulation and V
is the volume. As before [5], we use the linked-list
method in combination with Lees-Edwards boundary
conditions for the inter gration of the equations of
motion.

IV. SHEAR VISCOSITIES FOR LUCY'S FORM
OF P(r) AND w(r)

SD,„;(r)=gby;by;w(r; —r);
SL„;(r)=gbx, bx, w(r, —r);
Sf~),„;(r)=SP),„;(r)= —g bx;by, w(r, —r);
hr; =r; —r;

(4.1)

resembling a moment-of-inertia tensor, is diagonalized,

It is convenient to solve the set of 4N motion equations
for {x,y,p„,p ] using the classic fourth-order Runge-
Kutta method. We have previously simulated the viscous
properties for a short-ranged steeply repulsive force using
this method [5]. Here, the quadratic nature of our force
cutoff implies discontinuities in the forces, proportional
to dt, leading to local single-step trajectory errors of or-
der dt . These exceed the Runge-Kutta integration error,
which is of order dt /5!. With a time step of
0.005(ma /s)'~, the single-step energy is still conserved
to about 12 digit accuracy. This small energy error can
be eliminated by rescaling the momenta after each
Runge-Kutta integration step.

All of our simulations have been carried out at unit re-
duced density, Xo. = V. This choice gives 24 interacting
neighbors for each particle when the particles are ar-
ranged in a regular square lattice and 36 interacting
neighbors when the particles are arranged in a regular
triangular lattice. We use two difFerent energies, Ne/2
and Nc. It turns out that in the first lower-energy case,
the energy is mainly potential, with kT =0.07'., less than
half the potential height, ( so )w(0) =P(0) =5E/(9~).
The higher-energy case, with E=Xm[e +(v /2)]=No,
corresponds to a thermal energy kT=0. 54', three times
the maximum value of the potential.

Typical instantaneous configurations of 1024 smoothed
particles are shown in Fig. 3 for the two choices of the to-
tal energy, NE/2 (left) and NE (right), at the moderately
high strain rate, E = ( s/m o )

'~ . Although they appear
to be very similar, a striking difference can best be
displayed by using an analysis of these structures, sug-
gested to us by Dave. If the local dyadic sum at r,

FIG. 3. Typical configuration of 1024 Lucy particles under-
going shear, at unit reduced strain rate, with per-particle inter-
nal energies of 0.58 (left) and 1.0c (right).

and a path is traced out in the direction of the eigenvec-
tor belonging to the minimum eigenvalue, the system is
neatly divided into a set of cells, as is shown in Fig. 4.

To draw these pictures, X points on a regular grid cov-
ering the simulation box were chosen as starting points
for paths of 200 iterations and a step size of 0. lcd per
it ration. The sign of the eigenvector at the initial points
was chosen randomly. At any point farther along the
path it was chosen such that the scalar product of the
eigenvectors for successive steps be positive. The last 150
iterations were used in constructing Fig. 4. Motion along
the paths can be viewed as a constant-speed "How" with
characteristic strain-rate-dependent mean-squared dis-
placements, ((b,x) ) and ((hy) ). The x and y direc-
tions are, respectively, parallel and perpendicular to the
How. This idea is used in Fig. 5 for the same two exam-
ples. Each curve is an average over at least 150 instan-
taneous configurations (taken at intervals of 200 Runge-
Kutta time steps). The limiting slopes of these
curves correspond to strain-rate-dependent "diffusion
coefficients, " but with units of o, because the "time"
along the path is measured in a. units. At unit reduced
strain rate, we find {D",Di'I is {1.05, 3.83] for E=NE/2
and {1.00, 3.21I for E =No. As one might expect, the
mean-squared displacement in the shear direction is prac-
tically energy independent, but varies significantly in the
perpendicular direction.

The structural anisotropicity introduced by the shear-

FICi. 4. Topological analysis, using Dave's suggestion, of the
configurations of 1024 Lucy particles undergoing shear, at unit
reduced strain rate, with per-particle internal energies of 0.5c
(left) and 1.0c, (right).
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FIG. 5. Mean-squared displacements, divided by o, for the
artificial "Aow" used to characterize the topology of sheared
systems. The shearing motion is parallel to the x axis. Both the
direction of the measured displacements (x or y) and the re-
duced strain rate {0.5 or 1.0) have been used to label the curves.
Each "iteration" corresponds to a path increment of 0. 1o., as
described in Sec. IV.

ing is very pronounced, though it is hardly discernable in
the instantaneous configurations shown in Fig. 3. The
anisotropy vanishes in the shear-free case, but the energy
dependence persists, as shown in Fig. 6, where we have
combined the two directions. We find that the di6'usion
coefficients are 1.6, for E=Xc./2, and 2.1 for E =Re.
This analysis can be modified by permitting the step size
(here 0. 1o ) to depend upon the local values of the eigen-
values of matrix (4.1). This approach might be useful for
the characterization of totally diFerent systems, such as
polymers.

Though we do not show them here, it is important to
emphasize that velocities, in smooth-particle applied
mechanics, can be interpreted in terms of two difFerent
momenta: the individual particle "momenta" I p; I, which
represent velocities relative to the mean streaming
motion

FIG. 6. Combined mean-squared displacements (x plus y),
divided by cr, as a function of energy for the equilibrium zero-
strain-rate case.

of 0.01(e/mo )'~ and that the viscosity is sensitive to
temperature, varying roughly as T in the range con-
sidered here. An extremely interesting feature of the data
at the higher energy, E =Re, is an instability occurring
in the strain-rate range e=(0.010+0.002)(e/mo )'
Though we have not investigated this instability in ex-
haustive detail, its symptom is that a single particle fairly
rapidly attains most of the system kinetic energy. The in-
stability is presaged by dramatic fluctuations in the shear
stress ( —gp p~/mV).

The trajectories traced out by the particles are exactly
the same, whether molecular dynamics, or smooth-
particle continuum mechanics is used. Likewise, the
kinetic part of the shear pressure-tensor component ac-
cording to molecular dynamics, (1/mV)(gp p ), corre-
sponds to the negative of a volume-averaged Reynolds
stress in the continuum, ( —pv„v ), measured in the
comoving frame. On the other hand, the potential part

100

Ip, I =m Iv, —(Ey, 0)I, (4.2)

and the averaged momenta I (p(r)) =cr gw(r —r )p J,
which can be evaluated at any point, and are computed
using the weighting function. The averaged momenta

I (p„) I can, for instance, be computed on a square grid
to facilitate the calculation of (fast) Fourier transforms of
the velocity field, and so are a more useful representation
of the Bow than are the individual particle momenta.

We have carried out a wide range of calculations in or-
der to determine the viscous response of Lucy's Auid as a
function of strain rate at two different energies. The re-
sulting pressure tensors and potential energies (omitting
the contributions from the self-term at r =0) are given in
Tables I and II. The rate-dependent shear viscosities,
I g= P„ /e I from these —data are displayed in Fig. 7. In
Fig. 8, we show also the normal stress function,
(P„„P~~) /e . The data—indicate that the Lucy "ffuid"
exhibits noticeable shear thinning at strain rates in excess

10
0

o~ o
E/N = 1.0

0.1

E/N = 0.5

0.01
0.001 0.01 0.1

FICx. 7. Dependence of shear viscosity, divided by
(mc)' /o. , on strain rate for E=1Vc and E=No/2. These re-
sults are for thermostatted systems of 1024 Lucy particles. Note
the instability, discussed in the text, at reduced strain rates near
0.01 in the higher-energy case.
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TABLE I. Kinetic and potential parts of the stress tensor for Lucy's potential P( r (h =3cr ) = ( 5so /m li 2)[( 1+( 3r /h ) ][ 1 —( r /h ) ]3

using a Gaussian ergostat imposing a fixed total energy E=gg(ri)+g(p /2m)=Ns/2. The container is square, with V=No'.
The potential energy is given; the kinetic and potential parts of the pressure tensor are arranged in pairs [kinetic, potential). The
time step in the fourth-order Runge-Kutta simulations was 0.005(mcr /c, )' . A simulation of the Green-Kubo viscosity with
N=1024 and for an elapsed time of 20000 provided the estimate g=0.548(mc)' /a with a hydrostatic pressure of 0.5562(c/o. ), of
which 0.071(c/o. ) is the kinetic contribution. In giving these numerical results we have chosen units with m =1, c, =1, and cr =1.
The total time of the run is expressed in units of ~= 1/i.

& e/Ne)

1024
1024
1024
1024
1024
400

1024
1024
1024
400

1024
4096
400

1024
4096

28
27

108
40
80
90

221
614
304
575
500
320
500
760
470

0.001
0.002
0.005
0.010
0.020
0.050
0.050
0.100
0.200
0.500
0.500
0.500
1.000
1.000
1.000

0.429
0.429
0.429
0.429
0.428
0.428
0.428
0.427
0.428
0.431
0.431
0.431
0.442
0.442
0.442

—0.0006
—0.0012
—0.0032
—0.0063
—0.0119
—0.0232
—0.0233
—0.0305
—0.0325
—0.0272
—0.0274
—0.0273
—0.0214
—0.0218
—0.0218

+0.0001
+0.0001
+0.0003
+0.0005
+0.0010
+0.0016
+0.0016
+0.0014
+0.0005
+0.0048
+0.0048
+0.0048
+0.0075
+0.0074
+0.0074

+0.0714 +0.4849
+0.0715 +0.4848
+0.0715 +0.4848
+0.0721 +0.4846
+0.0736 +0.4845
+0.0806 +0.4836
+0.0808 +0.4837
+0.0908 +0.4824
+0.1012 +0.4813
+0.1082 +0.4774
+0.1081 +0.4773
+0.1083 +0.4774
+0.0951 +0.4719
+0.0941 +0.4724
+0.0945 +0.4723

+0.0714 +0.4849
+0.0713 +0.4848
+0.0712 +0.4849
+0.0708 +0.4849
+0.0696 +0.4848
+0.0642 +0.4853
+0.0639 +0.4853
+0.0546 +0.4864
+0.0432 +0.4883
+0.0290 +0.4907
+0.0291 +0.4908
+0.0290 +0.4907
+0.0209 +0.4935
+0.0212 +0.4936
+0.0210 +0.4936

of the molecular stress has no simple continuum analog.
In most of the cases appearing in Tables I and II this con-
tribution to the shear stress is barely significant.

The small-strain-rate viscosities found at the two ener-
gies considered can be estimated on the basis of a simple
argument. Imagine that the thermal velocity, (kT/m)'/
is gradually degraded by a fluctuating random force
F„„d, (which would vary as the mean slope of the Lucy
potential function multipled by the square root of the
number of interacting neighbors). Because the direction

of this force is random, the decay time should vary as the
square of the ratio (kT/m)'/ /F„„d, . The resulting es-
timate for the kinematic viscosity, A,v/3, where A, is the
mean free path, turns out to vary as T . This argument
describes the temperature dependence of our viscosities
very well and also provides semiquantitative agreement
with the numerical values

q=35(mkT)'/ (kT/Ecr ), (4.3)

restricted to the case of unit number density, Xo = V.

TABLE II. Kinetic and potential parts of the stress tensor for Lucy's potential $(r(h=3o) =(5scr /nh )[(I+(3r/h)][1
—(r/h)]' using a Gaussian ergostat imposing a fixed total energy E=gg(ref)+g(p /2m) =Ns. The container is square, with

V=Acr . The potential energy is given; the kinetic and potential parts of the pressure tensor are arranged in pairs
{kinetic, potential]. The time step in the fourth-order Runge-Kutta simulations was 0.005(mn /s)' . A simulation of the Green-
Kubo viscosity with TV=1024 and for an elapsed time of 40000 provided the estimate q=14.0(me)' /cr with a hydrostatic pressure
of 1.024(c, /cr ), of which 0.539(c/cr ) is the kinetic contribution. In the tabulated numerical results we have chosen units with m =1,
c.= 1, and o.=1. The total time of the run is expressed in units of ~= 1/i. The four simulations indicated by an asterisk (*)are in the
instability region discussed in the text.

& e/Ns)

1024
1024
1024
1024*
1024*
1024*
1024*
1024
1024
1024
1024
1024
4096
1024
4096

22
16
20
86

105
189
169
296

78
308
472
550
165
760
250

0.001
0.002
0.005
0.008
0.009
0.010
0.011
0.020
0.050
0.100
0.200
0.500
0.500
1.000
1.000

0.461
0.461
0.461
0.436
0.441
0.424
0.456
0.458
0.458
0.458
0.458
0.459
0.459
0.462
0.462

—0.0129
—0.0271
—0.0682
—0.1317
—0.0806
—0.1384
—0.1150
—0.1802
—0.2557
—0.2675
—0.2549
—0.2124
—0.2120
—0.1733
—0.1735

+0.0002
+0.0003
+0.0009
+0.0005
+0.0009
+0.0000
+0.0016
+0.0026
+0.0040
+0.0042
+0.0036
+0.0012
+0.0014
+0.0016
+0.0013

+0.5398 +0.4847
+0.5417 +0.4847
+0.5538 +0.4845
+0.901 +0.488
+0.907 +0.484
+ 1.055 +0.492
+0.673 +0.484

+0.6774 +0.4832
+0.7465 +0.4818
+0.8281 +0.4802
+0.9028 +0.4788
+0.9761 +0.4775
+0.9769 +0.4771
+ 1.0090 +0.4764
+ 1.0091 +0.4765

+0.5384 +0.4847
+0.5365 +0.4848
+0.5349 +0.4849
+0.227 +0.488
+0.212 +0.484
+0.097 +0.492
+0.415 +0.484

+0.4078 +0.4852
+0.3370 +0.4876
+0.2552 +0.4900
+0.1809 +0.4923
+0.1057 +0.4951
+0.1057 +0.4949
+0.0664 +0.4971
+0.0663 +0.4972
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FIG. 8. Dependence of the normal stress function,
.2

(P„„P») /e—, on reduced strain rate for E =Ne and
E =No, /2, based on simulations with 1024 Lucy particles. Unit
stress corresponds to c/cr while unit strain rate is (c,/m cr )'/ .

We expect that a similar argument would provide an
effective heat conductivity for the Lucy potential, but we
have not checked this notion.

FIG. 9. Green-Kubo integrand for 1024 Lucy particles at an
energy of E =No, and unit density, No. = V. The mean ternper-
ature is 0.539'/k and the integrated viscosity, 14.0(mc)' /o. ,
is not inconsistent with our more-extensive nonequilibrium
simulations. The simulation time is 40000(m o. /c)' . This ex-
tensive simulation was required to eliminate apparent oscilla-
tions in the correlation function. A semilogarithmic plot of the
same data reveals a good straightline exponential decay up to a
time of 80(mo. /c)' . Here unit stress is c./o. .

V. GREEN-KUBO CORRELATION FUNCTIONS
FOR LUCY'S WEIGHT FUNCTION

We found that the Green-Kubo integrand for shear
viscosity, shown in Fig. 9, requires extremely long simu-
lation times for convergence. The convergence is evi-
dently not even relevant [4,5] for times greater than
dt Id E, although the plotted data suggest that exponential
decay is an accurate representation for times from about
5(m rt/ )e~ to 80( mar /e)'~ The .canonical-ensemble
Green-Kubo expression for shear viscosity [3,5, 19] is

g=( V/kT) J (P,h(0)P,h(t) ), „;i;b„„dt, (5.1)

where the time-dependent pressure components P,„can
represent either P or (P „P)/2 in two—dimensions.

By comparing the two correlation functions for P„~ and

(P„„P~~)I2, an id—ea of the uncertainties results. This
comparison, and the long simulation times required to
obtain the correlation function, suggests that nonequili-
brium methods are much more efficient than the Green-
Kubo approach for this soft Lucy potential.

Many theoretical investigations, summarized in Ref.
[4], have concluded that two-dimensional transport
coeKcients are ill defined, based on the large-system
divergence of the corresponding Green-Kubo expres-
sions. On the other hand, our own investigations, past
[5,15] and present, show that the two-dimensional viscos-
ity is apparently well defined in a homogeneously ergos-
tatted large-system "hydrodynamic limit. *'

The situation is still somewhat unclear, at least to us.
Our own viscosity work, along with that of others [20], as
well as diffusion studies, in systems with rigid boundaries,
of Bocquet [21], all suggest no divergence of transport
coeKcients for large two-dimensional systems. Bocquet
and Barrat have recently published their theoretical and

VI. RAYLEIGH-BENARD PROBLEM
FOR TWO-DIMENSIONAL IDEAL GASES

What is Rayleigh-Benard instability? If a Quid expands
when heated, then the effect of gravitational forces on the
resulting density gradient can lead to convection currents
[24]. These convection currents, when excited, typically
transport heat somewhat more efficiently than does quies-
cent conduction. The dependence of the problem on tem-
perature leads to two noticeable transitions. For a nearly
incompressible Quid, these transitions can be described in
terms of the dimensionless Rayleigh number

R =g(B ln V/AT)t, (b.TIL)L /(Dv), (6.1)

where L, is the cell height, D is the thermal diffusivity,
D =a'/(pc), with c the specific heat, and v is the kinemat-
ic viscosity, v=(g/p). The gravitational acceleration g is

computational studies of boundary effects on transport in
three dimensions [22]. Their two-dimensional work is in
preparation.

We imagine that the theoretical predictions of diver-
gence reQect the relative importance of Quctuations in
two dimensions. In two dimensions, both boundaries and
Quctuations produce effects of order N' . This fact led
us to study the boundary dependence of mean-squared-
displacement divergence in two-dimensional crystals
[15,23]. We found that this quantity diverges logarith-
mically for both types of boundaries, periodic and rigid,
although with slightly different coefficients. It appears to
us that viscosity is a useful concept in two dimensions, as
it is in three. Viscosity only becomes well defined in a
large-system limit which incorporates thermostats, or er-
gostats, to ensure a homogeneous steady state.
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discussed below. At the critical Rayleigh number, steady
convection currents form. At a considerably higher Ray-
leigh number, the How becomes chaotic.

The Rayleigh-Benard problem has been both discussed
and solved, in many ways [24—27], both analytic and nu-
merical. We imitate the conditions of a recent numerical
Boltzmann-equation calculation [26] in which the materi-
al is a low-density ideal gas. We found it simpler to solve
the continuum equations numerically than to attempt to
extract a numerical solution from the theoretical work in
Refs. [24,27]. We focus on densities and temperatures
near unity. If we consider the twin effects of gravitation
and a parallel temperature gradient, the vertical accelera-
tions can be chosen to minimize density variations:

pg +(BP/8 T) d T/dy =0 -=.g =kh T!(mL) . (6.2)

We further choose the temperature difference between
the upper and lower walls equal to the mean temperature,
6T= T, so that the Rayleigh number becomes

R =[khTI(mLT)](b, TIL)L /(Dv)=(L kT/m)I(Dv) .

(6.3)

Chandrasekhar's analysis [24] (see also Ref. [27]) estab-
lishes that quiescent heat How becomes unstable to con-
vection if the Rayleigh number exceeds a critical value
R, . With the horizontal boundaries at the top and bot-
tom of the convection cell free of friction, A, is 658.
With these boundaries rigid, with vanishing normal and
tangential velocity components, the critical value is
R, = 1708. We choose periodic vertical boundaries (rath-
er than the rejecting boundaries of Ref. 26), as shown in
Fig. 10. This choice is the simplest consistent with
Chandrasekhar's analysis. Because his choice of rigid
horizontal boundaries (with v vanishing there) corre-
sponds to an aspect ratio within a percent of 2, we adopt-
ed that choice for a numerical test of the smoothed-
particle method.

The lateral periodic boundaries are straightforward to
implement, and require no discussion. For reproducibili-
ty, the top-and-bottom boundary conditions need to be
discussed in some detail. We consider the three steps in-
volved in solving the smoothed-particle equations of
motion: (i) calculation of densities {p,], (ii) calculation of

OO 00 O 0 O O PO
o o 0 p 0 cP 0 O p 0 0 (g 000 0 p 0

0 p 0 00 p 0 00 0 o 0 p 0 00 0 0
0 0 0 0 O 0 r o 0 O 0 0 0 A

/

t

n O

FIG. 10. Rayleigh-Benard flow of a macroscopic ideal gas us-

ing 800 Lucy particles and smooth-particle applied Inechanics:
Th„= 1.5(c.lk), T„,d =0.5(c,/k), with gravitational acceleration

k 6T/fplLy The volume is 800cr =L„X.y . The Aow patterns
for (g/p)=D=a/(pcv)= { 01 0, 015, 02 0}(E/m)'~ cr are not
significantly di6'erent despite "Rayleigh numbers" of 40000
(shown here), 22 500, and 10000. Notice that the vertical boun-
daries are periodic and that rejected "image" particles enforce
the horizontal top and bottom boundary conditions of fixed
temperature and vanishing How velocity. The image particles
are shown as open circles.

gradients {(Vv);; (VT), ], (iii) calc.ulation of time deriva-
tives {v,;e, ].

First, the densities of bulk particles inside the con-
tainer include contributions from rejected image parti-
cles, as shown in Fig. 10. Next, contributions from the
images are used in the calculation of the velocity and
temperature gradients. In the bulk Quid, these gradients
can best be calculated by starting from the identity

pVf=V(pf) fVp, — (6.4)

where f can represent either the velocity or the tempera-
ture. This choice leads to the highly desirable absence of
Aux contributions between smooth particles having the
same values of f. Expressing the two gradients, on the
right-hand side, in terms of the smoothed-particle weight-
ing function m, and dividing by a symmetrized density
p;, leads to the following definitions:

(Vv);=m +[V;w; ][v —v;]/p;, (VT); =m g [V;w;. ][T —T, ]/p J~; w J
=w. (r J ),

J J
(6.5)

where Vv is a second-rank tensor, VT is a vector, and where we can choose either the arithmetic-mean density,

p; =(p;+pj)/2 or the geometric mean den-sity, p;. =(p,p~)' . These choices lead to very similar results. For the
rejected boundary contributions of {i,j ], the images of {i,j ], we include all pairs of contributions {i,j ] and {j,i ] for
which a particle-image pair has a separation less than the range of the weighting function. See again Fig. 10, in which
image particles are indicated by open circles. For the image of particle i, v-, , and T,-are taken equal to the boundary

values rather than to the bulk values v; and I';.
The equations of motion are based on a different identity,

(Vf )Ip=V(f/p)+(f Ip')(Vp), (6.6)

where f can represent either the velocity v or the interna. energy e. This choice is motivated by the fact that it leads to
the conservation of f in the interaction of particle pairs. For smoothed particles in the bulk Auid, the corresponding
equations of motion are
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dv, /dt=g [(mo Ip ), +(mo Ip ), ] V, ut, , (6.7)

The conductive contribution to the energy change has a similar form:

(de,. /dt)„„d„„;,„=—g [(mQ/p )~+(mQ/p );] V;ut j . , (6 &)

where Q is the heat Aux vector, IEV—T In .these cases,
the rejected image values of the stress tensor and the
heat Ilux vector for ti,j I are taken equal to the corre-
sponding bulk values of particles Ii,j]. In calculating
the smoothed-particle boundary contribution to the
compressive energy change, pde/dt=cr:Vv, the image
stresses are equal to the bulk stresses while the image ve-
locities are given by the boundary values.

In relatively small-scale simulations of Rayleigh-
Benard Aow, with 800 smoothed particles, we found that
the Aow field, shown in Fig. 10, was essentially indepen-
dent of the "transport coefFicients. " We used state-
independent Newtonian shear viscosity and Fourier heat
conductivity throughout our work. W'ith the three
choices ri/p=D =ic/(pc)= t0. 10,0. 15,0.20](e/m)'/ Er,
the How fields are statistically indistinguishable from one
another, and correspond to a kinetic temperature of
-0.004E/k. This indicates that the intrinsic viscosity of
the Lucy Aow, though evidently less than our estimate for

II I

~ ')I

an energy E=X E/2, is still suKciently great to exceed
the speci+ed viscosity, and dominates the liow. To em-
phasize this point, we carried out a simulation with the
viscosity set equal to zero. (Thermal conductivity is still
required, in order to drive the Sow. ) Again rolls formed,
though irregularly and many in number, suggesting the
presence of viscous dissipation in the smooth-particle
model of an inuiscid fiuid

A slightly larger system, with 5000 particles, is already
suSciently large to give a good representation of the
macroscopic Aow, accurate to a few percent. Figure 11
shows two Aows, at Rayleigh numbers of 40000 and
10000. In order to compare these Aows to the predic-
tions of continuum mechanics, we have salved the com-
plete compressible continuum equations on a variety of
rectangular grids, using centered space differences and
the fourth-order Runge-Kutta method to integrate Bp/Bt,
Bv /Bt, and Be IBt to a fully converged steady state.

After several failed efforts, we found that a square grid,
with v, and e evaluated at the grid points and p, 7'v, Ve,
o, and Q evaluated at the squares' centers provided a
robust and stable scheme. A fully converged centered-
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FICz. 11. Rayleigh-Benard Aows of a macroscopic ideal gas
using 5000 Lucy particles and smooth-particle applied mechan-
ics: Th„= 1.5( c/k), T„&d=0.5( c, /k), with gravitational ac-
celeration g =khT/mr. y The spatially averaged Aow patterns
[(v)] for (TI/p)=D=/EI(pcr)= [0.2S, O. SO]( / )E' moc/orre-
spond to Rayleigh numbers of 40000 (top) and 10000 (bottom).
The volume is 5000o. =I. Ly. The kinetic energy per unit
mass, for the lower Aow, is 0.0046(c/m ).

8.188E~SS
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FIG. 12. Rayleigh-Benard Aow, under conditions identical to
those at the bottom of Fig. 11 with a Rayleigh number of
10000. The solution, shown at the top, was obtained by solving
the compressible Auid equations on a 61 X 31 Eulerian mesh, us-
ing centered spatial di6'erences and Runge-Kutta time integra-
tion. The kinetic energy per unit mass is 0.0048(c/m). The
solution for 5000 smoothed particles, evaluated at 1800 grid
points, is shown below for comparison
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difference How field for a Rayleigh number of 10000, cor-
responding to the lower illustration in Fig. 11, appears as
Fig. 12. The agreement found is quite satisfactory. See
the figure captions. Though smooth particles can easily
produce Rayleigh-Benard Qows with a convincing ap-
pearance, using fewer particles than required by molecu-
lar dynamics simulations, quantitative results, in two di-
mensions, require on the order of thousands of smooth
particles for velocity errors of order a few percent.

the atomistic simulations, though quantitative agreement
still requires thousands of particles. See Ref. [9] for addi-
tional examples. The unusual size dependence of contin-
uum Rayleigh-Benard simulations, carried out with
smooth-particle applied mechanics, can be understood in
terms of the intrinsic viscosity due to the smooth-particle
weighting function, characterized here.
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