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Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results
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The time correlation functions (CF’s) of diagonal and off-diagonal components of the stress tensor of
water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in
the microcanonical ensemble. We present results obtained at wave number k =0 and at a few finite
values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are
due to the potential term of the stress tensor. At k =0, their main features are a fast oscillatory initial
decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities,
calculated via Green-Kubo integration of the relevant CF at k =0, are underestimated with respect to
experimental data, mainly at low temperature, but their ratio (=2) is correctly reproduced. Both shear
and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal
at ~1A°". Also, both viscosities drop rapidly from their maximum at @=0. This behavior has been re-
lated to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite
frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental
data, provided the MD value used for comparison is that corresponding to the frequency range relevant
to ultrasonic measurements. The MD results of stress-stress CF’s compare well with those predicted by
Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k =0, by an application of generalized hydro-
dynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same
model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF’s are essentially
equal in the atomic and molecular formalism, the only minor difference being restricted to the high fre-
quency librational region of the shear function. By a comparison of atomic and molecular results, we
show here that neglecting libration has no effect on the density-density and longitudinal current CF’s
and very little effect on transverse properties. On the other hand, this study points out the importance of
including the oscillation in the nearest-neighbor cage in the memory function of the longitudinal and
transverse current CF. The oscillatory local motion turns out to play an important role in all CF’s and
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hence contributes significantly to the value of viscosity and of rigidity moduli.

PACS number(s): 61.20.—p, 61.25.—f, 62.60.+v

I. INTRODUCTION

Recently [1], generalized hydrodynamics [2] has been
applied to the transferable intermolecular potential with
four points (TIP4P) model of water [3] at 245 and 298 K.
The density-density, energy-density, and the energy-
energy, in addition to longitudinal and transverse current
time correlation functions, have been calculated at
several values of wave numbers k. With this information,
it has been possible to predict [1] the behavior of the time
correlation function CF of the diagonal components of
the stress tensor [2,4,5] in the k =0 limit, and to compute
shear 7 and longitudinal viscosity 7; =4n+§. The cal-
culation [1] is based essentially on an extrapolation to
k =0 of the parameters that describe the behavior of the
memory kernel of the density-density, or of the longitudi-
nal current CF. Though not explicitly considered in [1],
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the CF of the off-diagonal components of the stress ten-
sor can be obtained in the same way from the data on the
CF of the transverse current.

The main features of the predicted stress-stress auto-
correlation functions are a rapid initial drop with an os-
cillation of frequency 45—50 THz (1 ps~'=1THz) and a
long-time tail. The former oscillatory mode is generally
related to the translational motion of the tagged molecule
in the nearest-neighbor case and can be observed in the
spectrum of the velocity autocorrelation function (ACF).
Its average behavior and its dependence on the number of
hydrogen bonds has been discussed elsewhere [6]. The
latter feature, the long-time tail, also present in simple
liquids [7-9], has been shown [1] to determine the shape
of the dispersion curve of the acoustic mode.

The present paper serves two main purposes. First, to
study, by equilibrium molecular dynamics (MD) tech-
niques, the ACF of stress tensor fluctuations both in the
molecular and atomic formalism [10-12], and to recalcu-
late density, longitudinal and transverse current ACF’s in
the atomic formalism. The latter functions were comput-
ed in [1] in an “‘effective” molecular formalism, whereby
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all phase factors appearing in the CF’s were relevant to
the center of mass, although energy was necessarily cal-
culated including all site-site contributions, as required
by the TIP4P model. Thus, only rotational kinetic terms
were neglected. As discussed in [1], this treatment relies
on the time-scale separation between librational and
center of mass motions and on the larger size of the po-
tential energy terms compared to the kinetic ones.

Here most of the attention is devoted the stress-stress
ACEF and viscosity at k =0 and at 298 and 245 K. More-
over, the k dependence of these properties, again in both
formalisms, has also been analyzed. The (k,w)-
dependent viscosities have been used to rationalize the
large narrowing of the acoustic band [1], which, together
with the anomalous sound dispersion, have been the sub-
ject of extensive debates over the last decade [13].

Our second principal goal is to provide “experimental”
data to test the theoretical prediction [1] on the stress-
stress autocorrelation function. Through this compar-
ison, the contribution of water dynamics to viscosity as a
function of the characteristic time scale has been deter-
mined. In particular, the role of librational dynamics,
not included in the theoretical model [1], on viscosity and
rigidity moduli has been tested. The latter are compared
to experimental measurements in the frequency range
they both can cover.

This paper is organized as follows. Section II outlines
the theoretical approach used to analyze the simulation
results concerning the stress tensor. The MD results for
the relevant time correlation functions in the atomic and
molecular formalisms are reported in Sec. III A. Section
III B discusses the comparison of MD data with those
predicted by a slightly modified version of the model in-
troduced in [1] for the time dependence of transport pa-
rameters. The latter is required to improve the descrip-
tion of the transverse currents. The same section also
presents results for vortex viscosity and bulk and shear ri-
gidity moduli. A summary of the main results and con-
clusions is given in Sec. IV.

II. THEORETICAL BACKGROUND

The theory introduced in [2] and applied to water [1]
leads to a set of relations for the Laplace transform of the
CF of the collective dynamical variables of interest. The
general expressions that are used in the following are Egs.
(3.23)-(3.28) of Ref. [1]. They define Gy;(k,t), a set of
orthonormal linear combinations of the CF’s F;(k,t),
with i,j=1,2,3,4,5. These numbers label density, longi-
tudinal velocity, energy, stress tensor, and longitudinal
heat flux, respectively. The G;;(k,?)’s turn out to be more
convenient than Fj;(k,?) from the point of view of the
theoretical analy51s and also have a simpler physical
meaning.

The general equations (3.23)-(3.28) of [1] become
much less complex when y(k)=cp(k)/cy(k)—1 and
]zqa(k,z)|—>0. The latter condition amounts to neglect-
ing the correlations between the stress tensor and the lon-
gitudinal heat flux. For water described by the TIP4P
model, we found [1] that these conditions are satisfied to
a good approximation for k <1 A~ ! both at 245 and 298
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K. Hence, we can use a set of simplified expressions
[Egs. (4.19)-(4.23) of [1]], i.e., in the case of the diagonal
components of the stress tensor

(224 f 0 (k)?]

G ulk,z)= )
utloz [z+za(k,z)][zz+z¢(k,z)z + foun(k)?]
(2.1)
where
fuslK* 2
z¢(k,2)=m=fua(k) f,(k,z) . (2.2)
The generalized frequencies f,,(k) and f,,(k) can be

obtained [see Eqs (2.28) in Ref. [2]] from the initial
values [ V;(k)=F;(k,0)] of the F;;(k,¢).

The generahzed transport parameters
za(k,z),zq(k,z),zqa(k,z) [1,2], which determine the k and
o dependence of generalized viscosity 7(k,w), thermal
conductivity A(k,w), and ratio of specific heats y(k,w),
must be described by models at the present state of the
theory. In the case of water, the frequency dependence of
zoq,,(lk,z) can be neglected and y =1, at least for k <1
AT

The Laplace transform of the transverse current
C,(k,t) can be written as [4,5,7]

C,(k,0)

C,(k,z)= , 2.3)
ez = P kz) '
where
3*[C,(k,1)/C,(k,0)
[(k)?*=—lim [, (K0 2.4)

t—0 or?

fi,(k,z), and then n,(k,t) can be obtained from a
model for z,(k,z) and a fit of the transforms of the nor-
malized density-density or longitudinal current CF, or a
combination of these two CF’s, as explained in [1].
Analogously, a fit of the transverse current CF according
to Eq. (2.3) can give 7, (k,z) and n  (k,1).

In the time domain, when the above conditions

y(k)=cp(k)/cy(k)—1 and Iz +(k,z)|—0 hold, G (k,t)
can be written

Gulk,t)
2
Vi (K)FE (k,t)+ (k)[G”(k t)—2Gy,(k,1)]
- v ’
2.5)

where F{}’(k,t) is the normalized CF of the diagonal
components of the stress tensor. In the kK =0 limit, the
decay rates of G;,(k,t) and G,,(k,t) tend to vanish, i.e.,
G 1(k—0,1)=G,(k—0,t)=1 at every ¢, so that

F{ (k,t) behaves as G4 (k, 1).

Moreover, in the same k =0 limit, G,,(k,t) becomes
equal to n,(k,t) as f,,(k) and f,,(k) go to zero with k in
Eq. (2.1). Hence,
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n,(k—0,0)=G 4 (k—0,t)=F{ (k—0,1)

_ Fyu(k—0,1)

= Fukio00) - @9

A similar relation holds for the CF of the off-diagonal

components of the stress tensor [7], hereafter referred to
as F{§ (k—0,1),

F®(k—0,1)
Mk 50,)=—2"""" (27

n,(k—0,t)=
nE F(k—0,0)

Equations (2.6) and (2.7) allow us to compare
n,(k—0,t) and n,(k—0,t), computed directly at k =0
with those obtained in [1] from a fit of the transforms
G, (k,z) [or G,,(k,z)] and C,(k,z), and an extrapolation
to k =0 of the best fit parameters.

From these transforms, longitudinal and shear viscosi-
ty could be calculated in [1]. These results will be com-
pared with that obtained here through the Green-Kubo
relations

= — M *
Ny =4n+¢ LkBTfO F44(0,1)dt 2.8)
and
n= ky Tf F{(0,t)dt 2.9)

where p is the average mass density and M the molecular
mass.

III. RESULTS AND DISCUSSION

A. “Atomic” and “molecular” correlation functions

In the case of polyatomic fluids, the density, the longi-
tudinal and transverse current, the stress tensor, and the
longitudinal heat flux CF’s can be calculated in two
different ways, using either the “atomic” or the “molecu-
lar” expression [10-12]. It has been shown [14] that
both formalism lead to identical values of transport
coefficients and pressure, despite differences in the time
dependent CF’s.

A test run of 40000 steps at 245 K has been performed
where density-density and longitudinal and transverse
current ACF’s have been calculated both in the “molecu-
lar” (m) ando“atomic” (a) formalism at k =0.288, 0.498,
and 0.705 A~ The expressions used to calculate
density-density and longitudinal and transverse current
ACPF’s are straightforward extensions of the definitions
for the simple liquid. The difference between ‘“‘atomic”
and ““molecular” results for the density-density, the longi-
tudinal and transverse currents ACF’s are too small to be
observed on the scale of ordinary figures, so we do not
show them here (see [1]). This substantial identity sup-
ports the validity of the ‘‘effective” molecular approach
adopted in [1] to apply extended hydrodynamics to water
and outlined in the Introduction.

Both formalisms have also been applied to calculate
the stress tensor at k =0 as follows [14,15]:

2VV+ EZ(R RB zzfla_]ﬁ7

a<B

(3.1)

1
U( :H 22'" vzavza+ Ezzz(rta tajﬂ

a< B i

+ 2 2 (ria_rka)giaka > (3.2)
a k

1 <
where v, r, and f are velocity, position, and (intermolecu-
lar) force vector for an atom (Latin index) of a molecule
(Greek index), while M (m) is the molecular (atomic)
mass. The g are intramolecular constraint forces [14].
The average of the CF’s of diagonal components of o(?)
gives F,,(0,t), while that of off-diagonal components
F{(0,1) are

F44(0,t)=%<20""(0)0“"‘(t)> : (3.3)

ng’(o,t)=l< (3.4)

= G“B(O)G“B(t)>.

a,BFa

As usual, in all correlations of diagonal components [Eq.
(3.3)] the average value PV /M has been subtracted.

The generalization of Eq. (3.2) to finite k’s can be ob-
tained from the following expression for the average of
the off-diagonal components (the analogous for the diago-
nal components is obtained replacing the cross products
with the dot products):

2

ja

0<a1)(k,,)=ﬁ % ? lm

i |k
+ k

z (tot)
X XFj,;’

}e“"’f" . (3.5)

where F (o) js the total force (intermolecular plus con-
straint) actmg on atom j of molecule a.

The “atomic” stress tensor is symmetric, as all forces
are central forces. However, the “molecular” stress ten-
sor can, in principle, be asymmetric [10-13]. In fact, as
discussed by Olmsted and Snider [10], the total force, and
mainly its Coulomb part in our case, is not directed along
the line of the molecular center of mass. This produces a
torque that is responsible for the small asymmetry of the
“molecular” stress tensor. The ACF of the antisym-
metric part of the tress tensor is related to vortex viscosi-
ty 1,, which will be discussed in the following section.

Equation (3.5) has been used at the same k values
where the density and currents CF’s have been studied.
The functions shown in Fig. 1, where the CF of the diag-
onal components of the stress tensor is compared at k =0
and k =k;,=0.288 A™!, show that the “atomic” and
“molecular” results coincide in this case. The data at
k =0 have been obtained from the definitions (3.1) and
(3.2), while the ‘“molecular” one, at kK =k_; , from the
second time derivative of the molecular longitudinal
current ACF, according to the conservation law. The
latter has also been used as a check of the independent
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FIG. 1. Normalized ACF of the diagonal components of the
stress tensor at 245 K. The full curves are “molecular” results
and the dotted curves are “‘atomic” results. The k =0 data have
been obtained from Egs. (3.1) and (3.2), while that at £k =0.288
A” from Eq. (3.5) (“atomic” ACF) and from the conservation
law (“molecular” ACF). The inset shows an enlarged view of
the short-time region. The ACF’s are averaged on the three di-
agonal components for a 100-ps run.

calculation of the “atomic” F,,(k,t) at all finite k£’s [Eq.
(3.5)]. However, the “molecular” and ‘“atomic” ACF’s
for the off-diagonal components of the stress tensor (Fig.
2) differ in the short-time region, shown in the inset,
where the librational dynamics is visible only in the
“molecular” function.

The main difference between zero and finite k functions
is that their time integral is proportional to the viscosi-
ties at k =0 [Egs. (2.8) and (2.9)], but it vanishes at finite
k due to the conservation law. As a consequence, as
Evans pointed out [16], the generalized viscosities cannot
be obtained from a Green-Kubo relation at finite k. The
discontinuity of the spectra at ®=0 can be observed in
Fig. 3. Notice that these spectra are the transforms of
the ‘“‘atomic” F,,(k,t) calculated from Egs. (3.2)-(3.5),
so that the small deviation from zero at =0 at finite &
can be taken as a measure of the accuracy of the calcula-
tion. Hence, the generalized viscosities must be obtained
from the relevant current or the stress tensor ACF as
follows:

_ (k ) Z—Gzz(k,z)
Z)=p— =
K P 2G (k) 2)
Fo(k, ()2
Ufan (k4 22) 2 2)_ Jun ()
Va k?
=p — 5 , (3.6)
, Z_F“(k,z)k ]
Va

0.4 |

-0.2 L 1 L I
0 0.5 1 1.5 t[ps]

FIG. 2. “Atomic” ACF of the off-diagonal components of
the stress tensor at 245 K. At k=0.288 A ' also the second
derivative of the ACF of the atomic transverse current is report-
ed (full curve). The “molecular” results are shown in the inset
and have been normalized on the corresponding “atomic” func-
tions.

=™ (k2
KMk

ZF'Y (k,z)
2C,(k,0)—F'Y (k,z)k?
3.7)

n(k,z)=p

We remark that Eq. (3.6) is only valid when temperature
and density fluctuations are not coupled
[y(k)=cp(k)/cy(k)—1and |z,,(k,z)| —0].

At finite k’s the most practical route to the general-
ized viscosities is that expressed by the leftmost equali-
ties that rely on currents. At k =0, conversely, where
the Green-Kubo relations hold, only the rightmost for-
mulas involving the stress tensor can be used, so that
7. (0,z) and 7j(0,z) are proportional to the spectrum of
the ACF of the relevant components of the stress tensor.

The above mentioned discontinuity does not affect the
generalized viscosities. They depend weakly on k, espe-
cially in the low-k region. Actually, the k=0 and
k =k, data are almost identical; see Fig. 4. In this
figure the “atomic” and ‘“molecular” generalized viscosi-
ties are reported at some values of k. 7, (k,z) turns out
to be equal at all frequencies, while 7(k,z) has a more
pronounced high-frequency librational part in the molec-
ular version, as noticed above. In view of the conserva-
tion law, the difference in the high-frequency part, hard-
ly visible in the parent C,(k,t), becomes more apparent
in their spectrum times ®?, shown in the inset of Fig. 4(b)
at some values of k. It is also apparent that the z =0
value, i.e., the viscosity, is the same for the atomic and
molecular formalism.
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In the hydrodynamic limit, the sound attenuation
coefficient is " /k? < 7, , when the ratio of specific heats,
v, is very close to 1, as for water in the low-k region [1].
This relation can be extended to finite ., in the spirit of
generalized hydrodynamics, by employing the (k,w)-
dependent viscosity discussed above. Hence, a density
fluctuation that propagates at k =k, essentially “feels”
a viscosity corresponding to the frequency of the max-
imum of the sound wave, i.e., 8 THz. This value is much
smaller (see Fig. 4) than in the =0 regime relevant to
the same wave in the limit £ =0. The consequence of
this is the large narrowing of the acoustic band at finite

0.25 T T T T T
(N)
F44 (k,w)

[ps]

0.05

0.25 T T T T T
(LN
F{N (k,00)

[ps]
0.2 } (b) .

0.05

0 r =

1 1 1 I 1

0 20 40 60 80

®[THz]

FIG. 3. (a) Spectra of the normalized ACF of the diagonal
components of the stress tensor at 245 K. The curves are la-
beled according to the value of (k /Ky, )% (b) The same as (a)
for the off-diagonal components. Note that throughout this pa-
per 1 ps~!'=1 THz.

1703

k’s, compared to its hydrodynamic behavior; see Figs. 15
and 16 of Ref. [1]. This effect is particularly remarkable
in the supercooled region, while, as can be seen in Fig.
4(a) and the inset, the drop of viscosity between »=0 and
the frequency of the acoustic mode is less substantial at
298 K, in agreement with a smaller narrowing of the
band.

Finally, we computed separately the CF of the poten-
tial and kinetic contributions to o and found that the CF

10 T T T T
n, (ko)
1107 g/em 5]
8 L 1.5
1.0
6 L
= 0.50
4 L
0.0' 1 1 1 1 |
L 0 10 20 30 40 50 |
I N (a)
3 0
AN 0
O 1 1 0 L 1
0 50 100 150 200 o[THy
3
Yn(k,(l)) T I' l T . Il
107 g/
[ g/lem  s] .
2 L B
1+ 0 50 100 150 200 -
6
™ (b)
N\ °
\._l/\ 0
N\ 0
0 1 1 — 4 1
0 50 100 150 200 w([THz)

FIG. 4. (a) o dependence of the generalized longitudinal
viscosity at a few values of k [Eq. (3.6)]. The inset shows the
same function at 298 K at k =0, full curve, and k =k, dotted
curve. (b) The same as (a) for the shear viscosity [Eq. (3.7)]. The
curves are shifted along the vertical axis for clarity. The inset
shows w?[C{™ (k,w)—C{? (k,w)]/[k>*C{* (k,t=0)].
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of the potential part accounts for =99% at ¢t =0, at both
temperatures and for diagonal and off-diagonal com-
ponents, while that of the kinetic term decays very fast
into the noise.

B. Comparison of MD and hydrodynamic medel results
for the ACF of the stress tensor

In view of the long runs required to obtain reliable data
for collective transport parameters via equilibrium time
correlation functions, two MD simulation runs have been
carried out at average temperatures of 245 and 298 K, on
samples of 343 molecules. The runs were 450 and 370 ps
long, respectively, with time steps of 2.5 fs at 245 K and
2.0 fs at 298 K. These runs have led to pressures of —0.3
and —O0.1 kbar at 245 and 298 K, while the shorter test
run gave —0.16 and —0.19 kbar for “molecular” and
“atomic” definition at 245 K. The difference between
these data, which should be equal [14,17], is an indication
of the statistical uncertainty of the relatively short test
run mentioned in Sec. IIT A.

In these long runs, the stress tensor has been computed
at k =0 according to the “molecular’ definition. In Fig.
5, the normalized MD CF of the diagonal components of
the stress tensor is compared with that predicted by ex-
trapolating to k =0 the data of Tables V and VIII of Ref.
[1]. The same comparison for the CF of the off-diagonal
components is shown in Fig. 6. In both figures the libra-
tional contribution has been removed from the MD CF’s.
This contribution is shown separately in the insets to-

0.8

0.80 -

0.60

0.20 -

0.0 1 1 1 1 1

o
(=}
W
—
—
W
8]

t{ps]

FIG. 5. Comparison of the normalized CF of the diagonal
components of the stress tensor obtained from generalized hy-
drodynamics (dotted curve) and from the simulation (full curve).
The librational (lib) contribution has been removed from the
latter curve and is shown in the inset with the total CF and the
rest (cm). 7 =245 K.
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0.40 +

0.20

_0.20 Lt 1 1 I 1
0 0.5 1 1.5 2 tlps]

FIG. 6. Same as Fig. 5 for the off-diagonal components of the
stress tensor. The dot-dashed curve is obtained from a fit of
C,(k,z) according to Eq. (3.12).

gether with the total CF’s obtained from simulation. Ac-
tually, the librational contribution has been extracted
from the rest of the CF in the frequency domain, thanks
to the clear separation of the frequency scales. An exam-
ple of this separation at 245 K is shown in Fig. 7. (Asin
[1], the transform shown has been obtained after writing

[ps]
0.30 +
0.02¢
0.01H)
0.20 F :
0 ..
0.10
0.0

0 20 40 60 © [THz]

FIG. 7. Spectra of the CF’s of the diagonal and off-diagonal
(1) components of the stress tensor at T=245 K. The full and
dotted curves correspond to simulation CF and a fit based on
Eq. (3.12), respectively (see text). The inset shows the higher
frequency part of the spectra, with the differences between MD
and fitting functions, that are negligible in the low frequency re-
gion (dot-dashed curves).
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the relevant CF as a sum of a fitting function with a
known analytical transform, and a rest that decays fast to
zero and is numerically transformed. The two contribu-
tions are then added to give the desired transform).

The amplitude of the librational contribution, i.e., the
value of the librational part of the total CF at t =0, is
about 15% and 40% for the diagonal and off-diagonal
components, respectively; see the insets of Figs. 5 and 6.
These librational contributions also explain the disagree-
ment between the values of f,,(k)* and w,(k)* obtained
from the initial value of the appropriate CF and the
second moment of the transverse current CF, and those
derived from the fit (see Tables V, VI, VIII, and IX of
[1D.

The model introduced in [1] assumes a time depen-
dence of the normalized memory function of the longitu-

27570 + 9 =l + 2y el + (i =y (7))

1705
dinal current CF, G,,(k,1), of the form
—(0)
ny(k,)=(1—al\"—a\)e " !
X [cos('?'t)+m ) sin(w!)1)]
+a(1°)e_y(‘o)t+a(2")e_y(zg)t ) (3.8)

where y{°) and %"’ are the decay rates of the fast and

slow exponentials that describe the analogy of the col-
lisional regime and the long-time tail, respectively.
. a(la)y(la)+a(20)y(20)+( 1 _a(lu)_a(zo)),},(ao) 5.9
mp = ()] — o) — (o) :
, (1 ay a, )

and

(0) —
az -
5+ 27Nl + (=777

In Egs. (3.9) and (3.10) the k dependence of the parame-
ters is omitted for brevity.

In the frequency domain the above equations corre-
spond to assuming a z dependence of the transform
fi,(k,z), such as

N
Rolk,2)= z+z,(k,z)
_ 1
z2+a,(k)z+ay(k)
z+J,(k,0)

z23+a(k)z2+b,(k)z+by(k)
(3.11)

J,(k,0) is the initial value of the memory kernel of
n,(k,t) and has been shown in [1] to be related to the
binary collision time. The six parameters that enter Eq.
(3.8) can be calculated [1] from the five parameters of Eq.
(3.11). Earlier models [4,7] only require three parame-
ters, as they do not include the description of the oscilla-
tory motion of the tagged molecule in the nearest-
neighbor cage. This motion, however, turns out to play
an important role in the CF’s relevant to the stress ten-
sor, and hence in viscosity, and its inclusion in the model
demands two additional parameters, which are its fre-
quency '’ and decay rate y57).

Equations (3.9) and (3.10) insure that #_,(0,0) and
#,(0,0)=0, respectively. The latter constraint amounts
to imposing that the derivative of the me’nory kernel of
n,(k,t) also vanish at t=0, i.e., j(,(k,O):O, and
translates into an amplitude of the slow exponential,
al?), or of the oscillatory function, (a{”’=1—a{"’—a}”’),
which is a function of the other five fitting parameters.

The same time dependence as n,(k,t) has been as-

(3.10)

sumed in [1] for the ACF of transverse memory kernel
n,(k,t). As can be seen in Figs. 5 and 6, the agreement
between MD and predicted CF’s is better in the longitu-
dinal case, while the damping of the ‘“cage mode” is too
small in the transverse case. This could be anticipated
from the results obtained when fitting the transforms
C,(k,z) (see the inset of Fig. 22 of Ref. [1]) and is a conse-
quence of imposing #',(k,0)=0 or Eq. (3.11) with too few
parameters.

This constraint can be released by letting a;(k)7b,(k),
where a; and b; are the coefficients of z/ in the numera-
tor and denominator of z(k,z) in Eq. (3.11). The num-
ber of parameters would then increase from five to six
and the correct short-time behavior would be lost, i.e.,
J 1(k,0)70. The latter feature can be maintained, with a
satisfactory description of the decay rate, by increasing
the degree of the polynomial in z in the numerator and
denominator of z ,(k,z) [or z,(k,z)], so that

z,(k,z)

23+a,(k)z?+a,(k)z+a,(k)
=J,(k,0)——— s . = .
z*+a,(k)z°+by(k)z*+b(k)z+by(k)

(3.12)

Refitting C,(k,z) according to this procedure, we ob-
tain a correct decay rate of the ‘‘cage mode,” as can be
seen in Fig. 6. Moreover, we find that @,(k)~ 10 THz,
i.e., much larger than the frequency of the “cage mode”
and of the libration, so the z3 and z* terms can be
neglected in the numerator and denominator of Eq.
(3.12), respectively. Dividing both by a@,, z,(k,z) would
again be described as in Eq. (3.11), with parameters
scaled by @,. So, the coefficients of n (k,t) can be calcu-



1706 DAVIDE BERTOLINI AND ALESSANDRO TANI 52

lated as described in the Appendix of Ref. [1], with a time
dependence given by Eq. (3.8), but without the constraint
expressed by Eq. (3.10).

Table I allows us to compare the fitting parameters ob-
tained from the direct calculation and from the predic-
tion based on the model introduced in Ref. [1]. As al-
ready mentioned, this requires an extrapolation to k =0
of the values derived from G, (k,z) and G,,(k,z) for the
longitudinal part [Egs. (3.8)-(3.11)] and from C, (k,z) for
the transverse part [Eq. (3.12)].

The agreement between the two sets of data is fair for
the longitudinal part and good for the transverse part.
This difference probably occurs because it is easier to ex-
tract the behavior of the “‘cage mode” from the data of
C,(k,z) rather than from G, (k,z) or G,(k,z). The
‘“cage mode” is in fact less separated from the acoustic
mode than from the shear one, especially at 298 K [see
Figs. 12 and 22 (b) of Ref. [1]). However, the difference
between the predicted and MD slopes of the long-time
tail in the longitudinal case (Fig. 5) is to be traced back
to the fluctuation of the slower part of F,;(k,t); see Fig.
21 of Ref. [1]. This might prevent the model, originally
based on a subset of the MD data, from reproducing
more accurately the long-time tail of this CF. An addi-
tional source of error for the model is the extrapolation
to k =0 of the data obtained at finite k’s.

Shear and longitudinal viscosity that has been calculat-
ed according to the Green-Kubo relations (2.8) and (2.9)
can be compared to that obtained in [1] at both tempera-
tures. As can be seen in Fig. 8, it is necessary to extend
the function to times longer than actually observed to en-
sure convergence of the integral, mainly at 245 K. Equa-
tions (2.8), (2.9), and (3.8) indicate that the formula we
must use to do this is

P()=gHF +pLlF(1—¢ T2 | (3.13)

[10 2g/cm s]

6.0

4.0

2.0

0.0

FIG. 8. Running integrals of the CF of diagonal and off-
diagonal components of the stress tensor (full curves). Their
time extension (doted curves) and asymptotic value has been ob-
tained from a fit based on Eq. (3.13). For both shear and longi-
tudinal viscosity the higher curve corresponds to 245 K and the
lower to 298 K. The inset shows a detail of the short time re-
gion.

where @ can either be shear or longitudinal viscosity. In
Eq. (3.13) ¢"F and ¢'F represent the contribution of fas-
ter and slower dynamics to the integral, respectively.
The fits shown in Fig. 8 cover all times beyond 0.2 ps, but
it must be noted that the fitting parameters and mainly
@"F+ @'F depend weakly on where the fit starts.

TABLE I. Comparison of the fitting parameters of the normalized (N) CF of the diagonal and off-
diagonal components of the stress tensor obtained from generalized hydrodynamics [G44(0,¢) and
n,(0,£)] and directly computed [F(0,2) and F§(0,1)]. The results of columns 2 and 3 are derived
from a fit that includes the constraint of the vanishing third derivative of the memory kernel of Eq.
(3.8), while for those in parentheses and in the remaining columns this constraint is released. (a)

T=245K,; (b) 298 K.

G(0,1) [2] F(0,0) n,(0,1) F$M(0,1)
(a)
y{° (THz) 14.8 18.9 (13.3) y{" (THz) 8.3 6.5
y$?) (THz) 0.4 0.62 (0.61) y5) (THz) 0.68 0.60
vy (THz) 10.9 11.9 (14.6) v$" (THz) 10.4 10.7
\?) (THz) 54.3 51.2 (48.5) o (THz) 45.8 46.6
af® 0.504 0.446 (0.338) a® 0.11 0.10
ot 0.174 0.222 (0.214) it 0.16 0.16
(b)
y{") (THz) 25.4 29.8 (12.2) v (TH~) 4.8 4.3
v5” (THz) 1.62 2.7 (2.55) y§" (THz) 2.14 2.18
v§” (THz) 25.9 20.6 (22.1) ¥§" (THz) 16.6 15.2
o\’ (THz) 65.7 54.8 (46.3) o' (THz) 45.4 453
al 0.716 0.51 (0.272) al® 0.10 0.11
ay’) 0.10 0.20 (0.163) as? 0.07 0.07
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The low-frequency part ?) F is described by the slow
exponential, so that y,,=y5” (or Y20 =y in n, (k1)
while the higher-frequency part (pHF can be related to the
fast exponential, with amplitude a{’’ (or a{"’) and decay
rate ¥'\” (or y{")) and to the “cage mode,” characterized
by ¥$7,(v§") and {7, (0').

At 298 K, the three modes contribute 62%, 23%, and
15% to shear viscosity and 66%, 23%, and 11% to longi-
tudinal viscosity. These figures become 92.5%, 5%, and
2.5% for shear viscosity and 91.5%, 6.7%, and 1.8% for
longitudinal viscosity at 245 K. Hence, the contribution
of the ‘““‘cage mode” to viscosity cannot be neglected,
especially at 298 K. This mode also causes the oscilla-
tion visible in Fig. 8 in the range 0.03-0.15 ps. However,
neglecting librational contributions to the integrals pro-
duces very minor effects on the off-diagonal components
and essentially no effects on the diagonal ones. Actually,
there is no difference between curves obtained with or
without librational terms beyond 0.2 ps and hence,
viscosity does not seem to be affected by this kind of
motion.

The behavior of the integral corresponding to bulk
viscosity { can be obtained by subtracting the shear
viscosity curve (times %) from that of longitudinal viscosi-
ty 0, (Fig. 8). The most apparent feature of the resulting
curve is a remarkable reduction of the oscillation in the
region 0.03-0.15 ps, while the asymptotic value, i.e., £, is
4.75X1072 g/cms at 245 K and 1.07X 1072 g/cms at
298 K. In agreement with the experimental data for wa-
ter [18,19], these values are roughly twice as large as the
corresponding data of shear viscosity reported in Table
II. A similar ratio between bulk and shear viscosity is
obtained by Wojcik and Clementi [20] and by Kataoka
[21] with the Matsuoka-Clementi-Yoshimine (MCY) [22]
and related models of water [23]. Moreover, the values
in the supercooled region confirm that the TIP4P model
also underestimates the increase of viscosity at low tem-
perature, as noticed in [1].

Vortex viscosity that is related to the ACF of the an-
tisymmetric part of the stress tensor cannot be obtained
via Green-Kubo integration. Hence, following Evans and
Hanley [24], we calculated vortex viscosity from the
ACF of the antisymmetric part of the stress tensor and
assuming a Lorentzian behavior of the low-frequency
part of this function. The value we obtain,
(1.940.4)1073 g/cm s, is roughly one order of magni-
tude smaller than 7, while the corresponding data for a
Lennard-Jones model of nitrogen are 6.7X107° g/cm s
and 1.13X 1073 g/cm s [24,25]. With this procedure the
relaxation time 7 can also be estimated at 0.08+0.02 ps.
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This turns out to be very close to that relevant to a
Lennard-Jones model of liquid nitrogen, 0.085 ps [24],
and much smaller than that obtained from the slope at
long time of the stress-stress ACF, namely 1.6 ps; see
Table I.

The k dependence of the generalized viscosities, calcu-
lated according to Egs. (3.6) and (3.7), is shown in Fig. 9.
As can be seen, the statistical uncertainty is still too large
to safely assess if the kK =0 data are actually smaller than
that at k =k_;,. The overall shape of these curves is
similar to that found for hard sphere [26], Lennard-Jones
[7], and rubidium liquids [27]. However, bulk viscosity is
here much larger than shear viscosity, in contrast to that
observed in Lennard-Jones liquids [7]. Also, { decays fas-
ter than 7 as a function of k, so that the two curves
should merge at about 1 A~

Finally, the infinite frequency shear G (k) and bulk
K (k), rigidity moduli, and the corresponding relaxation
times are reported in Table III as a function of k. The
relevant definitions are [28,29]

_ (L) a’l(k)z
(k)= V44(k) PR (3.14)
B
K,=K_,—Ky,= <2 > aa“aﬁﬁ> (3.15)
Ko(k)= Ny T (3.16)
of T VS(k)’ '
o (k? 932G, (k, 1)
P e~ T kS a2
ﬁv“(k)
4G (k)
~K L (+—5— (3.17)

The behavior of S (k) for TIP4P water in the low-k
range [1,13] allows us to assume a constant value of
Ko(k)=1.85X10'° g/cms?. There is a general decrease
of the value of the rigidity moduli as a function of k,
more apparent for K,(k) than G _ (k).

Unlike transport coefficients, which have been proven
to be independent of the formalism adopted, care must be
taken in the case of rigidity moduli. We notice that the
results of Table III, calculated in the ‘“‘atomic” formal-
ism, automatically include both translational and rota-
tional degrees of freedom of water, while only transla-
tional dynamics is accounted for by the center of mass
currents. As a consequence, “molecular” and ‘“atomic”

TABLE II. Longitudinal and shear viscosity obtained from generalized hydrodynamics [1] (columns
2 and 4) and from Green-Kubo integration of the CF’s of diagonal and off-diagonal components of the
stress tensor (columns 3 and 5). Experimental data [18,19] are in parentheses.

T 4n/3+¢ 4n/3+¢ 7 7

(K) (1072 g/cms) (1072 g/cms) (1072 g/cms) (1072 g/cms)
245 10£2 (27) 7.6+1 2+0.3 (8) 2.14+0.2
298 2+0.5 (3) 1.71+0.25 0.5+0.15 (0.9) 0.47+0.07
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TABLE III. Infinite frequency “atomic” shear and bulk moduli and corresponding relaxation times
at T =245 K. The corresponding data at 298 K are given in the second part of the table. The data in
the second column are calculated from the two equilavent definitions of Eq. (3.14). In the third column,
the value at k =0 has been obtained from Eq. (3.15), while the data in parentheses are calculated from
the rightmost part of Eq. (3.17). From the fourth column on, the data in parentheses are experimental

results.
°k_1 G, (k)/10%° K,(k)/10% G /10" KD /100 T Te
(A ) (g/cms?) (g/cms?) (g/cms?) (g/cms?) (ps) (ps)
0 9.5 (9.5) 11.6 (11.0) 1.2 (2.0)? 3.1 (4.2)* 1.6 (3.2)° 1.6 (3.2)°
0.288 9.1 (9.4) (10.3)
0.498 9.3 (9.1 9.3)
0.705 8.9 (8.9) (8.0)
0 8.6 (8.4) 9.2 (9.9 074 (1.36)* 1.9 (3.2)° 0.46 (.65)° 0.4 (0.8)°

#Reference [32].
"Reference [33].

results for G, (k) differ unless the conservation law that
links translational currents to pressure tensor is supple-
mented by an analogous relation between the time depen-
dence of the angular momentum and the couple tensor
[25]. For example, at T =245 K, in the “molecular” for-
malism we obtain G, =12.2X10' instead of 9.5X 10"
g/cm s?, and this difference is to be traced back to the ro-
tational terms included only in the “atomic” treatment.
Conversely, the molecular K, is smaller than the atomic
value. Moreover, the agreement between the results ob-
tained for K, from Egs. (3.15) and (3.17) at kK =0 seems
to indicate that water can be considered to interact with
central forces [29] in the atomic formalism.

The alternative definition [28] of the shear,

1 O T T T T

[107°g/cm s]

0 0.2 0.4 0'6k2[A'2]

FIG. 9. Generalized shear, 7(k) (triangles); bulk, (k) (cir-
cles); and longitudinal, #%,(k) (squares), viscosity at 245 K.
Open symbols: averages on a 166 ps run [1]; filled symbols:
averages on a 450-ps run. The curves are drawn as a visual aid.

G(w)=iwfw), and bulk, K(w)—K,=iwf(w) modulus
allows us to analyze the frequency distribution of the
various “modes” that contribute to it, shown in Fig. 10
for both formalisms. Roughly speaking, three frequency
regions can be distinguished. The highest frequency, the
librational mode, which is more apparent in the molecu-
lar function as already mentioned, contributes ~20% of
the total atomic modulus. The largest part, =~60%, is
provided by the mode centered at 45 THz, the “cage
mode.” [In the case of K, it is the low-frequency dynam-
ics that gives most of the value, i.e., =~80%, with the
remaining ~20% due to the cage mode and no contribu-
tion from libration]. However, only the slowest mode is
in a frequency range that can be matched by experimen-
tal ultrasonic measurements. Hence, a sensible compar-
ison of MD and experimental data for shear modulus
should be restricted to the contribution of the first band,
Table III. It can be seen that there is a fair overall agree-
ment between experimental results and our G¥ and K{P.
However, these data confirm that TIP4P water exhibits a
faster dynamics than real water at the same temperature.
Notice that the infinite frequency values for TIP4P water,
as well as other potential models [20,30], would picture
water as a liquid more rigid than ice, for which
G, =3.5X10" g/cms? and K,=8.7X10'° g/cms? [31],
at 245 K. This underlines the necessity of comparing ex-
perimental data [32] with simulation results in the same
frequency range, which would restore a more sensible ri-
gidity order, namely TIP4P water, real water and ice. It
must also be observed that the use of a rigid model for
water might affect the shear and bulk moduli by neglect-
ing vibrational contributions.

Also the relaxation times 7,=1/ y$Y and the analogous
for bulk viscosity, reported in Table III, are relevant to
the first band. It should be stressed that these times de-
pend weakly on k and tend to coincide as temperature is
lowered to the supercooled region, as the experimental
data do [33]. More importantly, their value, provided
they correspond to the dynamics underlying the first
band of Fig. 10, can be identified with that obtained by
ultrasonic  or  Brillouin  scattering experiments
[18,19,32-34].
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15 L 10'° [g/cm sz] |
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FIG. 10. Frequency dependence of shear modulus at kK =0 in
the atomic (a) and molecular (m) formalism. The horizontal
lines on the right indicate the infinite frequency limit according
to Eq. (3.14). The dot-dashed curve corresponds to the results
of the model defined by the parameters of Table I. The dotted
curve is due to the lowest-frequency dynamics (I band) and
leads to the value of the TIP4P model used for comparison with
experimental data (see text).

As is apparent from Eq. (3.14) and noticed above,
o,(k)?, which was obtained in [1] from a fit of the molec-
ular transverse currents, is underestimated by =40% [see
Eq. (2.3)] with respect to that obtained from Eq. (2.4).
This is due to the use of molecular data (by =~25%) and
to the librational contribution (by =~15%). Librational
contributions also determine a value of f,,(k)? smaller
than the computed one by =15% [see Eq. (2.2)].

IV. SUMMARY AND CONCLUSIONS

In this paper a number of dynamical collective proper-
ties of water, modeled by the TIP4P potential, have been
studied in the atomic and molecular formalism. We have
computed the ACF of the density, longitudinal and trans-
verse currents fluctuations at some finite k’s (0.288, 0.498,
and 0.705 A™!) at 245 K. The stress-stress ACF has also
been calculated at the same values of k and at k =0,
again with both formalisms.

The identity of “molecular” and ‘“‘atomic” results for
density, longitudinal currents, and stress tensor ACF sup-
port the validity of the “effective” approach adopted to
apply extended hydrodynamics to water [1]. As to the
ACEF of transverse currents and off-diagonal components
of stress tensor, the difference between ‘“‘atomic” and

“molecular” results is restricted to the high-frequency re-
gion typical of librational dynamics, more apparent in the
“molecular” functions.

The main results we have obtained for viscosity can be
summarized as follows:

(i) In all cases studied the stress-stress time correlation
functions are determined by the potential part of the
stress tensor to =~99%.

(ii) Both longitudinal and transverse stress-stress
ACF’s show a fast, oscillatory, initial decay followed by a
long-time tail. The latter is more apparent in the shear
function at 245 K.

(iii) At kK =0, the MD longitudinal and shear viscosity
of TIP4P water underestimate the experimental data.
This defect is shared by other models [20,21]. The
disagreement increases in the supercooled region. How-
ever, the ratio of 2 between bulk and shear viscosity is
correctly reproduced.

(iv) Overall, the k dependence of bulk and shear viscos-
ity is similar to that of hard spheres [26] and Lennard-
Jones [7] liquids, with a decrease as a function of k, more
apparent for bulk viscosity.

(v) Both shear and bulk viscosity decrease rapidly as a
function of w at the k values considered, and this
behavior can be used to account satisfactorily for the sub-
stantial narrowing of the acoustic band, compared to the
hydrodynamic prediction.

(vi) Vortex viscosity has been estimated to be an order
of magnitude smaller than n and some two orders of
magnitude larger than vortex viscosity for a Lennard-
Jones model of nitrogen [24].

(vii) Unlike viscosities, the values of bulk and shear
moduli might depend on the formalism adopted in their
calculation, unless the rotational degrees of freedom are
included in the molecular formalism, through the couple
tensor [25]. The atomic treatment takes all degrees of
freedom into account, though it does not separate rota-
tional and translational terms from the outset. We re-
mark, however, that the lowest frequency contribution,
the only one that can be sensibly compared to experimen-
tal ultrasonic data, does not depend on the definition, be-
ing related to the center of mass dynamics.

This set of MD data has also been used to test the re-
sults we have obtained for the stress tensor CF’s, in an
extended hydrodynamics framework, by an extrapolation
to k =0 of the parameters relevant to a new model of the
transport coefficients [1]. Compared to the two-
exponential model of Levesque et al. [4,7], the new model
has the advantage of correctly describing the short-time
behavior of the CF’s and including the oscillatory local
motion (45-50 THz) we have called “cage mode.” Thus,
the overall agreement between MD and theoretical re-
sults is satisfactory and both the general shape of the
curves and the ‘“cage mode” oscillation are correctly
reproduced. It must be stressed that the contribution of
the latter mode to bulk and shear viscosity cannot be
neglected, being =15% of n at 298 K. Its role is even
more important for shear and bulk moduli. Librational
motions (80-170 THz), however, practically do not affect
viscosity; their only effect is a scaling of the amplitude of
the memory kernel for shear and longitudinal viscosity,
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which leads to underestimating w,(k)? and f,,(k)? in the
fitting process.

There is also a good agreement between computed and
predicted shear and longitudinal viscosity, i.e,. the in-
tegral of the stress-stress ACF’s, at £k =0. Most of their
value is due to the long time tail of the CF’s, described by
the slow exponential in the model. In this connection, it
is worth mentioning that the time dependence of our data
is better fitted by an exponential than a power law. An
analogous conclusion has been drawn for the Lennard-
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Jones fluid at the triple point in a much longer simulation
study [35]. The best fit exponent we find for the power
law is close to —2 at 298 K and to —Z at 245 K for both
shear and longitudinal function. We recall that the
theoretical prediction that leads to the value —3 is ap-
propriate only for the kinetic part of the viscosity [36],
which is negligible in our case. Work is in progress to ex-
tend this kind of study to Gs5(k,t), the CF relevant to the
longitudinal heat flux and generalized thermal conduc-
tivity.
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