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Kinetic structure of a two-dimensional liquid

M. M. Hurley and Peter Harrowell
Department ofPhysical and Theoretical Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
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On an intermediate time scale, a molecular dynamics simulation of a two-dimensional (20) liquid of
soft disks exhibits dramatic structural and kinetic inhomogeneities. We introduce a local relaxation time
(defined as the time required for a particle to first travel a distance r from its initial position) in order to
present a quantitative analysis of this kinetic structure. The length r is chosen so as to maximize the
resolution of the kinetic structure. This analysis produces a natural measure of cooperativity. We
demonstrate that caging in the 20 liquid takes place in a subset of particles only, distributed as transient
clusters throughout the liquid.

PACS number(s): 61.20.Ja, 61.20.Lc, 66.10.—x

I. INTRODUCTION

A simple two-dimensional (2D) liquid exhibits striking
transient correlations involving both local structure and
kinetics. Consider the plot of particle trajectories in Fig.
1 collected over a time interval in which each particle un-
dergoes approximately 20 collisions during a molecular
dynamics (MD) simulation of a 2D liquid of soft disks.
(The details are described below. ) Particles are clearly
segregated spatially into those undergoing oscillatory
motion within hexagonally ordered clusters and those ex-
hibiting an enhanced mobility about the edges of these
clusters. This behavior has been noted often in the exten-
sive literature on 2D liquids, having been seen in analog
[1] and computer [2] simulations and in studies of
confined colloidal suspensions using photon correlation
of light scattering [3] and microscopy [4]. At the densi-
ties and temperature of the simulation shown in Fig. 1,
this structure (including orientational "hexatic" correla-
tions) vanishes with long time averaging, leaving us with

an isotropic liquid. Although hidden in long time aver=
ages, the transient inhomogeneities would be expected to
play an important role in phenomena that probe the
liquid at intermediate frequencies. In this paper we
present a quantitative analysis of this transient structure
of the particle dynamics in a 2D liquid and its relation-
ship with the time-dependent diffusion constant. In the
process, we develop a set of general tools for analyzing
such transient structure in any simulated liquid or glass.

To begin we note that the particles depicted in Fig. 1

are distinguished from one another by two features. The
first is local structure as measured by the local hexagonal
order. The second characteristic is a kinetic one, indicat-
ed in Fig. 1 by the distance each particle manages to
move within the time interval the trajectories were
recorded. These two aspects are obviously intimately
linked in the 2D liquid. In this paper we focus on the
spatial distribution of the second of these features, the
kinetic structure. While the less accessible of the two, we
argue that this structure is of more general utility. We
may not always know the measure of local structure
relevant to collective kinetics but we can always, as de-
scribed below, determine a local relaxation time and
hence a kinetic structure. The spatial distribution of a lo-
cal relaxation time provides an explicit link between
liquid dynamics and the particle fluctuations responsible.
This approach has already proved valuable in analyzing
the relaxation kinetics in model glass [5] and liquid [6]
systems.

II. SIMULATION DETAILS

FIG. 1. Trajectories of 780 soft disks at p =0.98 collected
over approximately 20 collision times.

We have performed a series of MD simulations on a
2D system of 780 soft disks. These particles interact via
a repulsive potential V(r)=E(cr/r) ', which is cut

off

a

a reduced distance (r*=r/cr) greater than 2.5 using a
shifted potential [7]. Periodic boundary conditions are
used. Simulations are done at constant total energy, par-
ticle number, and volume. The temperature in reduced
units is T*=1.00 (where T*=k~T/e). A reduced time
step of At*=0.005 is used where bt'=Et(e/mtr )'~
and m is the particle mass. Velocity rescalings were car-
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III. DEFINING A LOCAL RELAXATION TIME

Rather than fix a time interval and record the distribu-
tion of particle displacements as done in Fig. 1, it is con-
venient to define a relaxation time ~ of a particle as the
length of time taken by that particle to first move a dis-
tance r from its initial position. The temporal distribu-
tion of particles over the first passage time ~ obtained for
r =0.8 at p* =0.98 is shown in Fig. 2. The spatial distri-
bution of these relaxation times for a single run can be
represented as a map over the simulation cell. In Fig. 3
we compare relaxation time maps from the same run cal-
culated using different values of the cutoff distance r.
These maps underline a crucial aspect of the length r. If
this distance is too short, then we do not distinguish be-
tween the rattling of confined particles and those free to
move. The result is a spatial map in which the relaxation
times are distributed at random [compare Fig. 3(a) with
Fig. 3(b)]. If r is chosen to be so long that each particle
will have passed through several domains of fast and slow
dynamics before exceeding this distance, we would also
find a map of relaxation times with little correlated struc-
ture. In this case the length scale of our kinetic criterion
would have exceeded that required to resolve the kinetic
structures evident in Fig. 1.

What criterion should we use to choose this important
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FIG. 2. Distribution P(~) of relaxation times at p*=0.98.
The fastest 40% and the slowest 40%%uo of the particles are indi-
cated by gray and black shadings, respectively.

ried out every 4000 time steps in order to correct the nu-
merical creep in total energy without introducing any
significant perturbation to the relaxational dynamics of
the liquid. The phase diagram for this system has been
studied by Broughton, Gilmer, and Weeks [2], who re-
port that, at T = 1.00, the first long-ranged structure ap-
peared at a scaled density of approximately
pcs =p*=0.986. To ensure that we are studying the dy-
namics of disordered liquid only, we work at a range of
densities from 0.91 to 0.98 and test the pair correlation
function g(r) and scattering function for isotropy to
confirm that all results refer to phases whose average
structure is that of an isotropic liquid.

length? We argue here that the spatial segregation ob-
served in intermediate time trajectories (as in Fig. l) is
real. We shall therefore choose r =r, such that the
heterogeneity of the kinetic structure is maximized. This
choice is simply the value of r optimized to resolve the
different types of particle motion, i.e., localized rattling
from extended translations. As such, r, plays a role simi-
lar to the transition state of chemical kinetics [8] and
constitutes an important length in liquid kinetics.

We now need to quantify the heterogeneity of a spatial
distribution of relaxation times. To do this we generate a
series of increasingly coarse grained distributions by plac-
ing a subcell of dimension l Xl around each particle and
assign to the ith particle the mean local relaxation time
~; &

of the ith cell of size l. The idea is that as we vary the
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FIG. 3. Maps of the relaxation times of one simulation run at
p* =0.98 in which the following values of the cutoff distance r
are used: (a) r =0.2 and (b) r =0.8. The circles represent the
particle positions at an initial time. The slowest 40%%uo are
colored black, the fastest 40%%uo are shaded gray, and the inter-
mediate 20~o are unfilled circles. Note the distinct clustering of
slow particles seen in (b) but not (a).
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subcell dimension l from l to I., the system size (and
hence the coarseness of our graining), the spatial struc-
ture of the relaxation time map disappears. The amount
of structure is measured by the second moment m2(l) of
the mean local relaxation time. We define m 2(l) as

4.Q
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m2(l) =

1.0

0.8

r=0.2
r=0.5
r=0.8
r=1.1

r=1.4

where ( ) indicates an average of the subcells indexed by
i and r; I =r„. The values of this function vs l from the
simulation of a liquid of density p'=0. 98 are presented
in Fig. 4 for a range of lengths r. Note that a maximum
in the decay length of m2(l) appears to occur for a value
of r =0.8. This information can be expressed in a charac-
teristic length g, calculated as the integral of mz(l) over l
from 1 to I.. The larger the extent of clustering of anom-
alously slow and fast particles, the larger the characteris-
tic length g of the decay of m2(l) with respect to l It is.

this quantity that we shall use as our measure of the
heterogeneity of the relaxation time distribution. Plots of
g vs r for three densities are shown in Fig. 5. A number
of points of this figure are worth noting. (i) The hetero-
geneity does in fact exhibit a maximum with respect to
the choice of the cutoff length r, just as the qualitative
discussion above suggested. (ii) The value of r at this
maximum (i.e., r, ) appears to be independent of density
(see Table I). (iii) The characteristic length of the kinetic
structure at the maximum g' is considerably larger than
the length associated with random clumping as given by

g for r =0.2. (iv) The characteristic length is a rapidly
increasing function of density (see Table I), consistent
with a divergence at the onset of the ordered phase. Note
that g provides an explicit measure of dynamic coopera-
tivity without the need to know the mechanism responsi-
ble for relaxation. This feature, we argue, makes the
analysis developed here a powerful tool for the general
study of cooperativity in liquids and glasses. The ex-
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FIG. 5. Characteristic length g, calculated as the integral un-

der the curve m~(l), plotted against the cutoff length r for three
densities p*=0.98, 0.96, and 0.93. Note the presence of distinct
maxima in g at each density. The value of r at the maxima r, is
the cutoff length that maximizes the amount of transient struc-
ture. Both g and r are in reduced units.

IV. RESOLVING CONTRIBUTIONS
TO SELF-DIFFUSION

With r, determined, relaxation times can be assigned
to each particle. This allows us to investigate how
different subsets of particles, grouped according to their
relaxation times, contribute to a transport coeScient, in
this case the self-diffusion coeScient. A plot of the mean
squared particle displacement vs time (see Fig. 6) is linear
except for very short times, an unremarkable result. The
value of the diffusion constant, defined here as
d((b.r*) )/dt, is provided in Table I. We now resolve
the contribution of this curve into the slowest 40%%uo and
the fastest 40%%uo of the particles. Even this crude fraction-
ing presents us, in Fig. 6, with some important results.
First, particles retain their identity of "fast" or "slow"
for a time period we shall call the Inixing time ~;,. This
time is defined graphically in Fig. 6 and ~;„for a range
of densities are presented in Table I. If we define a col-
lision time as the time at which the first negative
minimum occurs in the velocity autocorrelation function
(see below), than at p'=0. 98, r;„is roughly 20 collision
times. The extent of this lifetime underlines the stability
of the kinetic structure. Second, the distinctive plateau

istence of these two new lengths r, and g', defined in

terms of the optimized resolution of the transient kinetic
structure of the liquid, make up the first major result of
this paper.

0.0
0.0 1 0.0 20.0 30.0 TABLE I. Density dependence of the diffusion constant D,

the mixing time w;„, and the length scales r, and g (all in re-
duced units).

FICx. 4. Second moment m2(l) of the coarse grained relaxa-
tion time distribution plotted against the (reduced) coarse grain-
ing length l. Data are presented from relaxation time distribu-
tions obtained for five different choices of the cutoff length r.
Note the nonmonotonic dependence of the decay length of
m&{l) on r.
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FIG. 6. Mean squared displacement (hr ) of particles as a
function of time at p*=0.98. The total average is indicated by
the solid line. The contributions of the fastest 40% (circles) and
the slowest 40% (diamonds) of the particles to (h, r ) are
identified. The mixing time ~;„is defined as the time intercept
of the linear fit to the long time values of ( hr ) of the slow par-
ticles.

FIG. 7. Velocity autocorrelation function C„(t) at p =0.98
is plotted against time. The contributions to the fastest 40%
(circles) and the slowest 40% (diamonds) of the particles are
identified. Note the distinct negative minimum in the fast com-
ponent, despite the absence of any evidence of confinement.

in the squared displacement of the slow component is
consistent with the physical idea of a transient cage. We
consider the implications of this result below. Finally,
over the period ~;„ the fast fraction exhibits diffusive
motion with a diffusion constant that, at p*=0.98, is 1.5
times that of the liquid as a whole. It is not clear whether
this enhanced diffusion has its origin in specific dynamic
correlations (e.g., the "stringlike" motions reported in
earlier studies [1,4]) or in a general density difference be-
tween fast and slow domains.

V. SPATIAL CORRELATION
OF CAGED PARTICLES

We have demonstrated that slow particles tend to
occur in clusters and that caging is restricted to this par-
ticle fraction. Together, these results indicate that caging
in the 2D liquid is a heterogeneous phenomenon, involv-
ing, at any time, only a clustered subset of the liquid par-
ticles. [The clustering of the slow particles is easily seen
in Fig. 3(b)]. This direct visualization of the spatial dis-
tribution of the cage effect through the 2D liquid is the
second major result of this paper. We note that the
analysis of single-particle dynamics presented here can be
immediately extended to 3D liquids. Previous discus-
sions of caging in liquids [9] have regarded the negative
values of the velocity autocor relation function
C„(t)= ( [v;(0).v;(t) ] ) l(U,. ) as a signature of
confinement. If we look at the contribution of the same
slow and fast fractions to C„(t) in Fig. 7, we find little
difference between the two fractions in the first negative
region. The significant negative velocity correlation in
the fast fraction, which shows no evidence of particle
confinement in Fig. 6, suggests that this feature of C„(t)
need have little to do with transient caging.

As the fraction of particles experiencing caging ap-
proaches 50%, the overall diffusion constant will be
determined by the confinement lifetime r;„. (Zwanzig
[10] has analyzed a simple representation of this situa-
tion. ) In this simple 2D liquid, however, there is an
upper bound on the extent of caging due to the onset of
crystallization. Interactions between the hexagonally or-
dered slow domains ultimate1y leads to the ordering tran-
sition to hexatic or crystal [2]. In a liquid in which the
slow domains exist without any associated crystalline or-
der, an uninterrupted increase in the extent of such
domains (with decreasing temperature or increasing den-
sity) becomes possible and would be expected to lead to a
glassy state.

VI. CONCLUSION

In conclusion, we have presented a quantitative
analysis of the spatial extent of inhomogeneities in the re-
laxation kinetics of a simple 2D liquid. In the course of
this study it has been demonstrated that the optimization
of this transient heterogeneity leads naturally to the ap-
pearance of two new lengths of importance to the inter-
mediate time scale kinetics of the liquid. These quantities
are r„ the length of the critical Auctuation associated
with "cage" escape, and g', the characteristic linear di-
mension of the kinetic inhomogeneities. While we may
expect for the one-component 2D liquid that g' will scale
as the size of the transient hexagonal clusters, there is, in
general, no reason for this kinetic correlation length to be
simply related to a particular n-body equilibrium correla-
tion length. By way of a counterexample, a range of
kinetic lengths are reported in Ref. [5] for the facilitated
kinetic Ising model, which (due to the absence of inter-
particle interactions) has a correlation length of zero for
all n-spin equilibrium correlations.

In choosing to address kinetic structure, we have
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developed an approach that is equally applicable to more
complex liquids in three dimensions as it is not tied to
any system-specific structural signature. The existence of
long-lived populations of slow and fast particles suggest
that the van Hove self-correlation function may exhibit a
non-Gaussian form over a time interval considerably
longer than has been reported in 3D liquids [11]. We are
currently examining this point, along with completing a

complementary study of the kinetics of the structural
fIuctuations in the 2D liquid of soft disks.
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