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EKects of conductivity in electric-field-induced aggregation in electrorheological Suids
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We examine how the interfacial polarization of the particles affects the electric-field-induced aggrega-
tion in electrorheological (ER) fluids. We derive a microstructure-based equation for the free energy of a
conducting suspension for the case of a random arrangement of the particles, and show that the thermo-
dynamic properties of a suspension are strongly influenced by the dielectric relaxation. According to
our theory, in dc electric fields the particles aggregate only provided that a certain relation between the
ratio of the particle-to-suspending liquid dielectric constants and that of the conductances is satisfied.
Moreover, we predict that the slow aggregation, which takes place when the conductivity effects deter-
rnine the interparticle forces, will occur in relatively low dc electric fields, whereas the rapid aggregation,
when conductivity effects do not contribute to the interparticle forces, will occur in relatively high dc
electric fields. The theory also provides insight into why the electric-field-induced strength of the fully
developed microstructure in ER fluids depends on the particle-to-suspending liquid ratio of the conduc-
tances and why there exists a correlation between the ER activity of a suspension and its dielectric spec-
trum. The predictions of the theory are consistent with the currently available experimental data on ER
fluids.

PACS number(s): 47.55.Kf, 47.65.+a, 64.75.+g

I. INTRODUCTION

An electrorheological (ER) fiuid consists of a suspen-
sion of micrometer-size particles in a low-conductivity
liquid (usually a dielectric oil). Typical volume fractions
are in the range 0.01—0.3. Following the application of.
an electric field of strength of O. l —10 kV/mm, an ER
Quid undergoes a Quid-viscoelastic solid transition exhib-
iting a yield stress at low shear rates. Upon removal of
the electric field, the ER Quid returns to its original state.
In the absence of an electric field, ER Auids have rheolog-
ical properties typical of colloid suspensions. Research in
the area of ER fluids has seen a great deal of activity
within the last few years because devices based on their
remarkable rheological properties may soon allow the
commercialization of interesting electromechanical tech-
nologies. Numerous recently published papers, for exam-
ple [1—14], summarize the state of the art in this field.

It has been found that a large number of materials can
be used as the disperse phase to produce ER-active Auids.
In the ER Auids which were first developed, the particles
(various forms of silica, cellulose, starch, fiour, etc. ) had
to have a small amount of water (or some other polar
liquid) adsorbed onto them in order to render the suspen-
sion ER active [1,4]. Recently, however, ER-active sus-
pensions have been developed which are water free [2,5].
The disperse phase of these ER fluids can be classified in
the following groups: ionic conductors (aluminosilicates
or zeolites), semiconductors [poly(acenequinone) radi-
cals], polyelectrolytes, and composite particles (conduct-
ing particles coated with a thin nonconducting outer lay-
er). The fact that so many diverse types of materials can
be used as the disperse phase is a clear indication that
some general physical features of a suspension underlie

its ER activity.
It is now generally believed that dramatic changes in

the ER Quid rheology result from the field-induced align-
ment of the suspended particles into chains and columns
parallel to the electric field lines. Most of the theories of
electric-field-induced structure formation and aggrega-
tion in ER Auids use the mechanical model of a suspen-
sion which describes the particle motion due to the action
of the viscous, interparticle, and Brownian forces. The
interparticle force includes the electric-field-induced
long-range anisotropic interaction and a short-range iso-
tropic repulsion. The leading term of the former origi-
nates from the equation for the energy of the dipole-
dipole interaction between two particles. The magnitude
of this energy is proportional to 1/R (where R is the in-
terparticle distance) times the square of the strength of an
electric field and the parameter P . Here P is the polari-
zability of a suspended particle in an electric field due to
a mismatch between the dielectric constants of the liquid
and the particles. This model treats an ER Quid as a sus-
pension of nonconducting hard spherical particles in a
viscous nonconducting solvent. Computer simulations
based on this mechanical model are able to predict the
electric-field-induced particle rearrangement leading to
chain and column formation.

Unfortunately, conclusions based on combining the
qualitatively correct computer simulation results, which
are expressed in terms containing P, with the electrostat-
ic model prediction regarding the dependence of P on the
properties of the particles and of the Quid are often in
contradiction with experimental data. For example, ac-
cording to the computer simulations, the ER behavior
should become more pronounced the higher the value of
P. But, according to the electrostatic model, the highest
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value of P is attained when s /s&~ ~, where s is the
permittivity of the particles suspended in a Quid of per-
mittivity of c&. Therefore, it is impossible to explain on
this basis why (i) the ER phenomenon is absent in a sus-
pension of ferroelectric particles (barium titanate where
s = 1600, for instance) if the particles are dry, but (ii) this
suspension becomes ER active if the particles adsorb a
small amount of water [9]. Also, it is impossible to ex-
plain why the ER activity passes through a maximum as
the bulk conductance of the disperse phase is increased,
and that both good conductors and rather poor conduc-
tors, when dispersed, do not induce any measurable ER
efFect [2].

The inAuence of the conductivity of the two phases on
the ER phenomenon has also been examined theoretically
and experimentally but only for the situation where the
suspension microstructure has been fully formed [15—24].
In this case, the particles form chains and columns that
span the electrode gap, and the theoretical models
developed to date have dealt with calculation of the re-
sulting yield stress and of the elastic shear modulus of the
ER Auids. It has been shown that, under dc conditions,
the yield stress is mainly determined by the ratio of the
conductance of the particles to that of the Quid and by
the distance between the particles in a chain [18—24].
The same factors inAuence the value of the elastic shear
modulus. The latter increases with an increase in the ra-
tio of the particle-to-Quid conductance and a decrease in
the distance between the particles [15—17].

The purpose of this paper is to examine the effects of
the conductivity on the initial stages of the electric-field-
induced aggregation in ER Auids. To solve this problem,
we derive an equation for the free energy of conducting
particles dispersed in a conducting liquid for the case of a
random arrangement of the particles. We shall only deal
with the case when the particles and the suspending Quid
have no intrinsic dielectric dispersion and their proper-
ties are described by the model of a leaky dielectric; i.e.,
we suppose that the conductances and dielectric con-
stants are frequency independent. Under these condi-
tions, the induced polarization of the particles arises from
the buildup of charge at the interface between the parti-
cle and the surrounding Quid. The osmotic pressure of
the suspension is then evaluated from the free energy as a
function of the temperature and particle concentration,
and as a functional of the history of the time variations of
the applied electric field. The dependence of the thermo-
dynamic properties of a suspension on the value of an
electric field at earlier times is caused by dielectric relaxa-
tion due to the redistribution of the free charge carriers.
Recall that the osmotic pressure refers to the pressure
acting across a membrane permeable to the liquid but not
the particles. Hence, as long as the derivative of the
osmotic pressure with respect to the particle concentra-
tion is positive, the random arrangement of the particles
is stable. But at suf5ciently strong electric fields, when
the ratio of the electric-to-thermal energy exceeds a criti-
cal value, the derivative of the osmotic pressure becomes
negative. In this case the particles tend to aggregate, and
their random distribution in a suspension becomes unsta-
ble. The initial stage of the electric-field-induced aggre-

gation is therefore determined by the extremum of the
osmotic pressure. This model then describes the phase
separation of the suspension into low- and high-
concentration phases at high electric fields.

The equation for the free energy of an ER Quid con-
tains the expression for the electric energy. In the case of
nonconducting particles and liquids, the macroscopic
theory shows that the electrostatic energy of a suspension
is determined completely by its dielectric constant s(c) as
a function of the particle concentration c [25]. Qn the
other hand, the general expression of the same type for
the electric energy of a conducting system in a time-
varying electric field (Brillouin's formula) can be derived
only when the variations of the electric field are very slow
(as compared to the rate of polarization) and the dielec-
tric loss is negligibly small [25].

We shall develop two microstructure-based techniques
for calculating the electric energy of a conducting suspen-
sion in a time-varying electric field. To begin with, in or-
der to describe the polarization of a suspension, we use
quasisteady electrodynamic equations [25] because the
wavelength of even a high-frequency electromagnetic
field applied to an ER Quid is much larger than the
characteristic interparticle distance in a suspension,
a/c', where a is the particle radius. These equations
contain the complex permittivity of the dispersed and
continuous phases, where the permittivity in its complex
form, involving the dielectric permittivity (real part) and
the dielectric loss (imaginary part), refiects the conduc-
tivity of a substance. But to find the average value of the
interparticle interaction in a suspension it is necessary to
calculate at least the O(c ) term in the expansion of the
electric energy in powers of the particle concentration c.

The first approach is based on a mean-field approxima-
tion (a cell model). For the complex permittivity of a sus-
pension, it leads to the Maxwell-Wagner expression
which correlates well with experimental data unless the
particles start aggregating [26,27]. A mean-field approxi-
mation makes it possible to estimate not only the O(c )

term but the higher order terms as well in the expression
for the electric energy.

The second approach makes use of statistical methods
for calculating the average properties of a suspension. To
begin with, we derive the microscopic-based equation for
the electric energy of N conducting spherical particles in
a conducting Quid for a time-varying electric field. Then
we present the solution of the two-sphere problem for the
quasisteady electrodynamic equations which is based on
the method of twin spherical expansions [28], and calcu-
late the electric energy of two particles in an unbounded
medium. The leading term, proportional to 1/8, refers
to the dipole-dipole interaction between two conducting
particles in a conducting liquid. But, as is well known,
due to the long-range and anisotropic nature of the inter-
particle interactions, straightforward calculations of the
0 (c ) term in the expansion of the electric energy lead to
a two-particle integral which is only conditionally con-
vergent. To overcome this difhculty, we use the group
expansion method of Ref. [29] and also described in Ref.
[30]. This method takes into account the O(c) change in
the average electric field when one particle is removed
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from the suspension. We then show that the main contri-
bution to the average energy to 0 (c ) arises from a term
which is equal to the coefficient of
4na (a /8 ) (1—3 cos 8) in the formula for the energy of
the dipole-dipole interaction between two conducting
particles. Comparison of the results for the average
values of the interparticle interaction in a suspension, as
obtained by both approaches, illustrates the limitations of
the mean-field approximation.

Besides examining the case when the behavior of the
particles and the suspending Quid is described by a simple
model of a leaky dielectric, the theory to be developed
offers a clearer insight into the effects of conductivity on
the electric-field-induced aggregation in suspensions. In
particular, the theory shows that, in dc electric fields, the
particles aggregate only if the ratio of the particle-to-
suspending Quid dielectric constants and the correspond-
ing ratio of the conductances satisfy a certain relation
given by Eq. (35). Furthermore, the theory provides
some insight into the kinetics of the aggregation process.
Specifically, the slow aggregation which results when the
conductivity effects determine the interparticle interac-
tion will occur in relatively low dc electric fields [Eq.
(38)], while the rapid aggregation which takes place when
the conductivity effects do not contribute to the interpar-
ticle interaction will occur in relatively high dc electric
field [Eq. (39)]. Although our theory does not treat the
rheology of ER Quids, it provides a qualitative indication
regarding the dependence of the electric-field-induced
strength of the fully developed microstructure in ER
Quids on the particle-to-suspending Quid ratio of conduc-
tances, as well as on the reasons why there exists a corre-
lation between the ER activity of a suspension and its
dielectric spectrum. The predictions of the theory are
consistent with the currently available experimental data
on ER Quids.

II. THERMODYNAMIC RELATIONS

In this section we shall develop a simple thermodynam-
ic model of aggregation phenomena in a disordered sus-
pension induced by an electric field. The model is based
on a rather general expression for the dependence of the
electric energy on the particle concentration and makes
use of a formula for the entropic factor taken from the
existing theories of a suspension of hard spheres. The re-
lationship between the macroscopic parameters, which
appear in the concentration dependence of the electric
energy, and the strength of the electric field plus the
properties of the particles and of the Quid will be derived
in the following sections using both a cell model as well
as a more rigorous statistical technique.

The free energy of a suspension containing N particles
is defined as a function of the volume V, the temperature
T, the volume concentration of the particles, c, and as a
functional of the history of time variations of an electric
field, E(t), by means of the expression

V= Vo( V, T, c ) "lV
I c; ( E), ] V, —

where 'N is the density of the electric energy, and (E),
denotes the ensemble average value of the strength of the

electric field in the suspension. The first term in Eq. (1)
refers to the free energy of a suspension in the absence of
the electric field, while the dependence of the electric en-
ergy on the history of the time variations of the electric
field reQects the inQuence of the dielectric relaxation phe-
nomena.

The osmotic pressure of a suspension can be evaluated
from the equation of the free energy,

1+c +c —cZ c
(1—c)

which applies for a suspension of hard spheres in the
disordered state when c ~0.4. We also recall that the
compressibility factor of a suspension of hard spheres
diverges at random close packing, c -0.63 —0.64 [27].

The disordered state of the spatial configuration of the
particles in a suspension is stable if (BII/Bc)) 0. As is
well known, in the absence of an electric field a suspen-
sion of hard spheres is stable for c (0.50 [27]. Theories
for such a suspension [27] predict a transition from a
disordered state to an ordered face-centered-cubic solid
for 0.55&c &0.74.

In the presence of an electric field, we have that

a IIUp az=Z+C (2)
ac k T ac

a'
C c' k~T

where the third term on the right-hand side accounts for
the contribution of the interparticle interactions in an
electric field. Specifically, if the particles are attracted to
one another, an increase in the strength of the elastic field
decreases the value of (BII/Bc ) and leads to a phase tran-
sition when (BII/Bc)=0. Under this condition, the ran-
dom distribution of the particles becomes unstable, and
aggregation is induced. According to this model then, at
sufficiently high electric fields, the suspension separates
into two disordered phases with the coexistence region ly-
ing between the particle concentrations given by the two
roots of the equation

IIUp
0

ac k, T
(3)

Since, at the critical point, the particle concentration of
the coexisting phases coincide, this critical point corre-
sponds to the inflection point of II as a function of c, i.e.,

a IIU, a' », a=0, , &0 . (4)
ac k~T ac2 k&T ac3 k&T

It is easy to show that Eqs. (3) and (4), respectively, are

cZ (c)+'N c—
aV N T(E) Up ac

where kz is Boltzmann's constant, and U is the particle
volume. In deriving this expression, we took into ac-
count that (Bc/BV)z = —c/V, and also replaced the
osmotic pressure IIO= —(BPO/BV)z z- of a suspension in
the absence of an electric field by the compressibility fac-
tor Z(c).

For Z (c), we use the Carnahan-Starling equation [27]
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equivalent to the relations defining the conditions for the
existence of a phase transition and for the location a criti-
cal point for a binary system [31]

a a a' a'"=0 and "= "=0, "&0.
Bc BC BC

Here p=56/Mt is the chemical potential of the parti-
cles, and G = 7+IIv is the Gibbs free energy of the sus-
pension.

When the two phases are in equilibrium, the values of
the osmotic pressure and the chemical potential of the
particles in the coexisting phases are equal, i.e.,
II(c, )=11(cz) and p(c, )=p(c2). The latter leads, as
shown in [31],to the following relation between the parti-
cle concentrations in both phases:

f —dII=O .
ci C

(6)

BZ 28Z yC 28ZZ —c —c +- 2Z —c
Bc Qc A

8 Z (7)
2Z —c2 =CA .

BC

Moreover, when the coexisting phases are at equilibri-
um, their concentrations c i and c2 are evaluated from the
equations

The microstructure-based theories for the electric ener-
gy of a conducting suspension in a time-varying electric
field, to be developed in the following sections, allow us
to calculate the first terms in the expansion of the electric
energy in powers of the particle concentration,

'Nv
A+yc + (5)Bc' k~T

where A=v~ 3 {(E),I/ksT and y=v~B{ (E),]/kg T.
The parameters A and y define the ratio of the average
value of energy of the electric interaction between two,
A {( E ), I, and three, 8 {( E ), I, particles and the
thermal energy k~ T. They depend on the dielectric con-
stants and conductances of the particles and of the liquid,
as well as on the history of the time variations of the elec-
tric field. The statistical theory to be developed leads to a
definite expression for A, while the mean-field or cell
model makes it possible to estimate y as well. The expan-
sion of the electric energy in powers of c as given by Eq.
(5) applies only provided that ~yc/A~ &&1.

On substituting Eq. (5) into Eq. (3) we find that, along
the critical line,

BZZ+c =Ac+ye
Bc

On the other hand, the parameters of the critical point,
namely the particle concentration and the strength of an
electric field, are determined from the following equa-
tions which follow from Eq. (4):

which follow from the above expressions for the osmotic
pressure and the conditions of equilibrium.

If three-particle interactions are neglected (y =0), Eq.
(7) yields A„=21.202 and c„=O.13. Figure 1 shows the
dependence of A„and c„on the relative value of the
three-particle interaction parameter y/A. It is seen that
an increase in y/A leads to a decrease in A„and to an in-
crease in c„.At a rather high value of y/A~, Eq. (7) has
two roots; for one of them

~ yc/A ~
& 1, while for the other

~yc/A~ & 1. Since the value of c for which ~yc/A~ & 1 is
inconsistent with the fact that the validity of Eq. (5) is re-
stricted to ~yc/A~ &&1, only the smaller root of Eq. (7)
has been retained in plotting the curves in Fig. 1.

For A&A«, Eq. (6) has two roots which give the
respective particle concentrations in the two coexisting
phases. Figure 2 illustrates, for a few values of y/A,
their dependence on A/A„ in the low- (the lower part of
the curve) and high-concentration (the upper part of the
curve) disordered phases. As can be seen, the particle
content in the low-concentration phase becomes very
small with increasing A/A„, and since Z=1 for c (&1,
Eq. (6) yields that c =1/A for this part of the curve. In
contrast, the particle content of the high-concentration
phase increases dramatically with A/A„ in that c-0.5

at A/A„-2 as seen in Fig. 2. This value almost corre-
sponds to that of an ordered face-centered-cubic solid
state of hard spheres in the absence of an electric field.
This means that the high-concentration phase should ac-
tually experience a disorder-order transition at these
values of A/A„. Describing this transition in the high-
concentration phase is beyond the scope of our analysis,
however, because it requires knowledge of the free energy
of an ordered conducting system.

A thermodynamic description of the electric-field-
induced transition in ER Auids for the case of noncon-
ducting spherical particles in a nonconducting liquid has
been presented in Ref. [32]. But since the compressibility
factor Z(c) was not included in the equation for the
osmotic pressure of a suspension, the model developed in
Ref. [32] has led to the conclusion that the phase transi-
tion should occur when the osmotic pressure of a suspen-
sion changes sign.

It should be noted that the analysis developed above
provides a rather general description of aggregation phe-
nomena when a suspension of attracting particles
separates into two coexisting low- and high-concentration
phases if the attraction becomes high enough, and that

O. 15—
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of the three-particle interaction parameter y/A.
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age on the layers are

(E2+cr2/p)/h2
Q)= Q

(E, +cr, /p)/h, +(E2+o.2/p)/h2

(E, +cr, /p)/h,
Q2- Q

(E,+o, /p)/h, +(E2+o2/p)/h2

Hence we have that

e2/h 2
u, (t) = u (t)

E, /h, +e2/h2

(e1o'2 e2cr1)+ j(t),
(E1/h1+e2/h2) h1h2

c.i/h i
u2(t) =— u (t)

e, /h, +E2/h2

( 8lo2 e2o 1 ) j(t),
(E1/h, +E2/h2) h, h2

where the dielectric relaxation time of the composite is

same as that of two capacitors connected in series and,
thus, is determined solely by the dielectric constants of
the layers. On the other hand, at long times, when t )&t,
and j(t)=ut„an interfacial charge

~&oz
Q, = Q

O. ,h 2+ o.2h,

that has developed due to the conductivity of the layers,
renders the voltages on the layers the same as those of
two resistors connected in series and thus depends solely
on the conductances

o.2/h2 o, /h,
Q] ~ Q, Q2 Q

o1/h1+cr2/h2 o, /h, +o2/h2

Therefore, for t )&t„ the electric energy of the composite
becomes the same as that of two ideal capacitors placed
in parallel with these resistors connected in series, i.e.,

1 E, o2/h2
2 h, o1/h1+o 2/h2

c, , /h, +E2/h2

cr, /h, +o 2/h 2

E,2 cr]/h
&+

h 2 cr1/h 1+o 2/h 2

2

j(t)= I exp
0

t —t'
u(t')dt' .

The main goal of the theory to be developed in the fol-
lowing sections is to examine how the interfacial polar-
ization of the particles affects the electric-field-induced
aggregation in a suspension.

A charge at the interface between the layers,

e1 E2 (Elo2 E2o 1 )
Q, (t)= u, (t) — u, (t)= j (t),

1 2 El 2+e2 1

builds up only if the time constants of the layers are
different, i.e., if E, /o, &e2/cr2.

According to the model of a leaky dielectric, we as-
sume that the electric energy is stored only by its dielec-
tric constituent. In this case, the total electric energy per
unit square, 8' of the two-layered composite is

W(t) =
—,
' [c.,h, (t)h, +e2@2(t)h2],

where 4;(t)=[u;(t)/h;], i =1 and 2. On substituting the
expressions for u, (t) and u2(t) into this equation, we ob-
tain

E,E2/h1h28'(t) =- u (t)
2 c., /h, +c2/h~

(, ,—,, )'+- j (t) .
2 ( s1/h 1 + e2/h 2 ) h 1h 2

Here the first term equals the energy of two ideal capaci-
tors placed in series, while the second term corresponds
to the energy required to build the charge at the interface
between the layers and to redistribute the electric field in-
side the layers.

Consider the case of a suddenly applied voltage,
u(t)=uM(t), where the Heaviside function H(t)=0 for
t & 0 and II (t) = 1 for t )0. For short times, when t « t,
and j(t)=0, the electric energy of the composite is the

B. Single spherical particle in an unbounded Auid

l. Equation for the electric energy

Let C(t) be the probe electric field acting on a spherical
particle. The change in the electric field induced by this
particle is given by the well-known expressions [25,26]

a A(t) r
pf = —C(t) r+.

r

a
V'yf = —4'+ 3 A.r

A — r, r~a,
r

g =[A(t) C(t)].r, V'y = A ——4, r &a.

+2@ Cp +2Ef
3(crz ef ofez )—'

(e~+2Ef ) p + 1/t~

where tz=(ez+2ef)/(o +2crf) is the relaxation time
for the charge redistribution caused by the particle and
fiuid conductivity. Henceforth the subscripts p and fwill
refer to the particle and the fIuid, respectively. Hence,
we have that

The Laplace transform of the relative dipole strength of
the particle is equal to A =P(p) 4, with
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A(t)= u f C(t)+ t f fE E 3(os cr—e)
EP +2Ey (s~+2ef )

t

X f exp — g(t')dt' .
0

QI, =efE V+ef f (C.n) (A r)
S~ r

3 A.r
r 3 r 3

n (C.r) .dS .

On account of the model of a leaky dielectric described
in Sec. III A2, the total electric energy 8'of the particle
and the Quid in a volume V containing the particle is

2W= f ef(Vyf) dr+ f e~(Vy~) dr =I, +I—2, (8)
P P

where

3a 3A.r
r 3 r 2

I, =f sflpfVyf. ndS,
S~

I2= fg ("~.V~. Ef~f ~—f)
with v and S being the volume and surface of the parti-
cle, and SI denoting the surface enclosing the volume V.

Let us analyze the first integral in Eq. (8) for the case
R&~ ~, where R& refers to the distance from the parti-
cle to the surface S&. For RI—+ ~, we have that

qfVq)f =C(C r)—

(10)

The integral in Eq. (10) can be written as

a ' a(A r)V(C r) n —(8 r)V A r n dS,
r3 r3

but since both 8 r and (a /r ) A r satisfy Laplace's
equation for ~r~ )0, this integral is independent of the
size and shape of the surface S&, as long as the latter en-
closes the point r=0. Hence, letting SI be a sphere, we
obtain that

2 4~a 3

I, =sf@ V+ ef3A 4 .
3

On the other hand, in view of the expressions for cp&

and yz, the second integral in Eq. (8) becomes

4 aI2= [E (A —8) +sf(A —C)(2A+8)],

Q 1(A r)+0
r 3 fR

which, when substituted together with the expression for
I& into Eq. (8) and using the integral relation between
A(t) and C(t), leads to

and therefore

I, =Eff (C.n)(@.r)dS
s~

3A r—Ef f A — r n (C.r)dS

E. E8'= — V+ v
2

3Ey EP Ey E2
2 EP +2FI

9(crpsf 0'f K~ )P P J2
2(E +2Ef )

a 1—Eff (8 n)
3

(A r)dS+0 . (9)
f

The first integral in Eq. (9) is equal to sf@ V, where
V-Rf, while the second and the third integrals in Eq. (9)
are O(1/Rf).

To link the probe electric field 8(t) to the actual elec-
tric field E in the system, we use the expressions

—E=(1/V) f Vgfdr+ f Vy dr
P

=(1/V) f yf ndS

=(1/V) f —8 r+ ndSa (Ar)
S~ r

A.+(1/V) f ndS .
r

The above illustrates the physical meaning of the probe
field in that the value of 8 takes into account the change
in the potential distribution over the Quid surface caused
by the presence of a particle within a Quid sample. Thus
this value depends on the shape of the Quid sample.

On substituting this expression for 4 in Eq. (9), we ob-
tain (for Rf~ &n ) that

where U~
=4m.a /3 is the particle volume and

t

J(t) = f exp — E(t')dt' .
0

In the second term of Eq. (11), we have replaced 8 by
E because E=8+0 (1/V) C.

The second term of Eq. (11) equals the energy of a par-
ticle at the fixed value of the external charge generating
the electric field. But to obtain the energy of a particle at
the fixed value of the external potential generating the
electric field (i.e., the fixed value of the strength of the
electric field), we require the negative of this term [25].

2. Force and torque exerted on a particle
in nonuniform electric fields

The ponderomotive behavior of electrically uncharged
particles in nonuniform electric fields has been analyzed
in many papers (see [33,34]). Since the force and the
torque have been calculated only for some particular
cases (oscillating and rotating fields, transient regimes,
etc.), we briefiy outline how general expressions can be
derived for the force and torque acting on a conducting
particle in slightly nonuniform electric fields.

In a slightly nonuniform electric field, the disturbance
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On substituting the Laplace transform of these expres-
sions in the boundary conditions on the particle surface,
we find that the relative quadrupole strength of the parti-
cle equals 8=—,'pz(p)VC(t) with

Ef 3(O'psf o'f E~ )+
E +—E E + Ef 2(E + E ) P+l~tp2

where t~z=(E„+—,'Ef )l(oz+ ', crf —) is the relaxation time
for the quadrupole strength. Hence we have that

i Ep EfB(t)=—,V C(t)+
-2 E, +—cf

3((Tref (TfFp )

2(E +—3ef )

X exp V C(t')dt'

The components of the net force F and of the torque L
on the particle are [25]

F, =Eff (E,E, ,'E,E,5(()—n, —dS,

L; =e;k EkEIX nIdS,S

where E;(t)= [u, (t)/h, ], i =1 and 2. On substituting the

field due to the presence of a particle contains a quadru-
pole moment in addition to the dipole. Hence the electric
field can be written as [25]

a A(t) r a B(t):rr
2 3 r'

r~a,

known relations

4~f n;nkdQ, = 5,k,
4m

n;n n„n, d 0= (5,"5„,+5;k5,, +5;,5,„),
4n. is

we obtain
- 8@k(t)

F, (t)=4~Efa' f p(t t'—)C„(t')dt'
0 Bx;

L, (t) =L. ,'"(t)+L,''(t), .

where

L,'"(t)=4~Efa'e... f p(t t')C,—(t')dt' C„(t),
04, , ae, (t')

I. '(t)= mfa e;ik f p2(t t') —dt'
0 ~Xn

Bhk(t)
clx „

C. Solution for the two-particle problem

The solution of the two-sphere problem for the Laplace
transform of the quasisteady electromagnetic equations is
based on the twin spherical expansion method used in
Ref. [28] for the solution of the corresponding two-sphere
electrostatic problem

In the above, L"' is induced by the dipole moment of the
particle and corresponds to the torque acting on the par-
ticle in an uniform field, while L' ' is induced by the
quadrupole moment of the particle and is due to the
nonuniformity of the electric field. For oscillating fields
and in a transient regime, the expressions for F and L'"
reduce to those derived in Refs. [33,34], whereas the for-
mula for the correction L' ' appears to be new.

oo~(i) j + y y g(i)
m=0 n=m

n

P„(cos8, )

cosmic,

r, ~ a,

((pf
= —8 r+

m=0 n=m
g (1)

mn

' n+1 n+1
P„(cos8, )+b' „'

r2
P„(cos8~)

cosmic,

r„rz ~ a,

where the subscripts 1 and 2 identify the appropriate particle; r; (i = 1 and 2) is a vector from the center of a particle i
to an arbitrary point r; R is the vector from the center of particle i to that of particle 2; 01 and 92 are the angles be-
tween the vectors r, and R and between rz and —R, respectively; and the angle (t is common to both coordinate sys-
tems.

On using the identity [28]

a
rp

n+1
aP ( cos8 )=2

n+1 n+s
X

s =m

S

P, ( cos8, )

and substituting the expressions for y" and yf in the boundary conditions on the surface of the first sphere, we obtain
n+s+1

n+m m'

(12)
(n+ i)S"„'

nc. +sfa a

ng s+n—X
s =m

' n+s+1
=( —1) (E~ —Ef)( 5)„.
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Here we used the expression

R.e'„"=6'0cos8, + b, sin8, cosP

oo

( —1) 8 5,„
m=O n=m

n

I —1 2

t+ —2 I+m ~'i~in+m

the lowest power of P, is determined by the highest num-
ber of s in the sum of Eq. (15). For k =21+1,1~3, we
get s,„=l—2, and this term is

t+n —2

E~n +Ef (n + 1) b"„'

E,p f a

s+nmsn-
s=m

n+s+1
(13)

Letting n =0 in the above, we conclude that b "o=0.
To solve Eq. (13), we expand b",', s ~ 1 in powers of

(a/R):

n+p+1
=( —1) P, b 5,„+ g A „—,(14)

a p=1

where P„=(E Ef )—/[E +(n +I/n) Ef]. We remark
that Pi equals the parameter P, defined earlier at the start
of Sec. III 8, which determines the dipole strength of one
particle. Substituting this series in Eq. (13), we find the
relationship

XP„(cos8, ) cosmic .

Taking into account that b', '=( —1) 'b",', from Eq.
(12) we derive the relation

For k =2I, l ~ 2, we get s „=I —1, and this term is

1 Mi

Since

s+n
n +m

n+m
for s »1,

(n +m)!

=( —1) (E~ —Ef )8 5,„.
Letting n =1 in the above, we conclude that &'

o 0.
The substitution of Eq. (14) into this relation yields

the main contribution to the sum of Eq. (15) is given by
the term having the highest number for s. Thus expres-
sions corresponding to the term with the lowest gower of
P; also determine the asymptotic behavior of A „k for
k»1.

Using the first and second expressions in Eq. (12), we
obtain the following relation:

(1) (1)
~mn b „

n (E~ Ef ) —+Ef (2n + 1)

A „k=( —1) p, A'

1&k —2s —1

+
s=1

n+1
n+m 5

s+n
n+m ms k —2s —1

g(1)
=( —1) Pl@ 5,„

2n+1 & a
A mn, p

Fp Ff n p=1

n+p+1

Equation (15) yields

+1
Amn, l ~n~l@m li + & Amn, 2 Amn, 3

(15) To calculate the integrals over the particle surface, let us
present a more compact form for the following expres-
s1ons:

2n +1 mn

A n4=
n+1

( —1) P„A, „A „~=0,
a ri=a &f m=o n=m

XP„(cosOi ) cosm P,

A

n+2
( —1) P„A

n+1
( —1) P„A

( Ep V IPp Ef V f&f )„=n 'll

~( 1 )
EpEf EfEp b

~p ~f m=O n=m

Clearly, A nk can be represented as a polynomial ex-
pression in powers of Pi. In this expression the term with

XP„(cos8, ) cosm P,
which on account of Eq. (14) become, respectively,

a r&=a m=0

OO

(l(3l —1)( —1)
n=m Ep Cf

21l +1 0
tel n, p

p=1

n+p+I
P„(cos8, ) cosmic

and
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oo

(EpVlpp EfVlpf )„,n= g g [(E~+2Ef )pi (E~ Cf )](—1 )
m=0 n=m

EpE,f E,f Ep (2n+1) g A
Ep Ef p=1

n+p+1
P„.( cosOi)

cosmic,

D. Electric energy of two particles in an unbounded medium

The calculation of the electric energy of two particles closely follows that of one particle. The total electric energy 8
of the two particles and of the surrounding fiuid in a rather large volume Vis given, as before [cf. Eq. (8)], by

2W f Ef(V'pf ) dr+ f Ez(Vlp ) dr =Ii+—I2 (17)

where

2

I, = f sfyfVyf. ndS, Iz= g f (8 lp Vp sfpfV—yf)ndS .
f i=1

To calculate these integrals, we take the solution of a two-particle problem for the probe electric field C(t).
For Rf —+ co, where Rf is the distance from the particles to the surface Sf (Rf ))R, R being the distance between the

particle centers), we have

a
Ipf = —8 r+ g 1", .r;+0 ( 1/Rf )

t=1 P1

where b'1'=b0'1'eo —b 1'1 e1, b0'1' = —b01, and b 1'1' =b11, with e0 and e1 being unit vectors, respectively, parallel and per-
pendicular to the line of centers of the particles.

Thus the integral I, in Eq. (17) can be written as

2

Ii=Ef@ V —Ff g f . (8 n)
3

(1", .r, )+
3

b", — (1", .r, )r; n(C r) .dS+0
Rf

Once again, to link the probe electric field C(t) to the actual electric field E(t), we use the expression

1 1 1 a (;) 1—E=—f Vlpfdr+ f Vlp„dr =—f qlfndS= —4+—g f 3
(1", r,. )ndS+0

"p . f i=1 f

which, when substituted into the expression for I„yields
2

I, =EfE V+Ef g q;+0
Rf

where

q, = f . (8 n) (bI'' r;) —(8 r) 3
1'i' — (bi' r;)r; n .dS .

f

Once again, since the functions 8 r and (a /r, ) (b", r, ) satisfy Laplace's equation for ~r; ~
)0, the value of q; does not

depend on the size and shape of the surface around the point r, =O. Choosing Sf to be a sphere, we find that
q;=(4'/3)a 3C 1'i'. Therefore, for Rf~oo we have

2 (i)
2 4~I, =EfE V+sf a g 3g

a

where

(1)
a

EfA 8 +g
m =0 s=1

's+2
( —1) Efh X 'IA

m=0

The terms for s =2, 3, and 5 vanish.
Substituting the expressions for yf and y"' in the equation for the integral I2 yields, for the first particle,
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4 1

a3 g [(E. +2Ef)A —(E —Ef)C ](A —4 )
3

Q

' s+2
a—3 g R ( —1) [(E, +2Ef ) A —

(Ep
—Ef )6 ]

+ 3 a
R

S

A, , +(A

s =2(n+ I)+k+k' (n +tn)!(1+$ )(2n + 1)m0

n, k, k'& 1
(n —m)!n

Ep Ef EfEp
ml, s

Ep Ef

xX
p fE,

A A
EpEf EfEp

Amn, k' '+ ' ~ ~ mn k

p fE, E

and similarly for the second particle. For the first series, the terms for s =2, 3, and 5 vanish; for the second series, the
term for s =7 vanishes.

Combining the expressions for I
&

and I2 and subtracting EfE V, we arrive at the equation for the energy of two parti-
cles at the fixed value of the external charge generating the electric field. The first term in this equation coincides with
the expression for the energy of one particle, Eq. (11). The second term, which is proportional to (a/R), refers to the
energy of the dipole-dipole interaction 8'""between conducting particles. For a fixed orientation of the electric field,
we get

$V" = —4m.a
R

1

, + Efs X 'I13'E ]
m=0

+3 u-'. Ef ~ GpEf EfEp

Ep +2Ef Ep +2'
Ef ~~ EpEf EfEp ~

Gp +2Ef Ep +2Ef

Consider the case of a suddenly applied electric field,
E(t)=EH(t). For short times, when t « t (p~ao, re-
spectively), we obtain the same expression as that for
nonconducting particles in a nonconducting Quid:

where ( )T denotes the time average, and X'(p) and $ (p)
are arbitrary functions. As a result, we get

3 d 2a( W ) T =2ma Ef4"Eo (1—3 cos 8),
QW" "=4~a E 4" E (1—3 cos 8)

r 2

ql d —p2— Ep Ef

Ep +2Ef

while, for t ))tp (p ~0, respectively), we have that

(19)
Fp Ef

Ep +2Ef

2

3(2E 5Ef )(o Ef o—fEp )—'

Ef(Ep+2Ef ) (op+2of ) 1+co t

(21)

aW""=4naE 4"E .(1 —3cos 8)f
(20)

Crp 0 f CFp CJf CFf(EpCTf EfCTp )+6
p+2of o +2of Ef(o +2of)'

Here 0 is the angle between the vectors E and R.
To derive the expression for the oscillating field,

E(t)=Eosincot and t » tp, we use the relation

(X '[+(p)E (p)jX 'j~(p)E (p)])T
=

—,'E ORe[X'(ice) $ *(iso)],

18(opEf 0 fep)

Ef(E +2Ef ) (crp+2of ) (1+~ tp)

Clearly, 4"~%'" when co—+ ~, and 4'"~%o when co~0.
On comparing Eq. (19) with Eqs. (20) and (21), we see

that the effect of the interfacial polarization of the parti-
cles on the interparticle interaction is reflected by the
difFerence between the coefficient lsd„=p for noncon-
ducting particles and that of Vo and 4'" for conducting
particles. Moreover, whereas 4" is always non-negative,

%o and '0" could become negative if the dielectric con-
stants and conductances of the particles and the Quid do
not satisfy certain specific relations which will be present-
ed in Sec. V, Eq. (35).
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The currently available theoretical predictions regard-
ing the structure formation in ER fluids have been ob-
tained from computer simulations based on the mechani-
cal model which describes the motion of nonconducting
particles in a nonconducting liquid under the action of
the viscous, Brownian, and electric-field-induced dipole
forces between particles; see for example, [35—41].
Therefore, the fact that Eq. (19) is of the same form as
Eqs. (20) and (21) for the case 4'o) 0 and 4 )0 makes it
possible to use the results of the available computer simu-
lations in order to estimate the kinetics of the structure
formation in a conducting suspension, by merely replac-
ing P with%'0 and/or 4 .

IV. EI.ECTRIC ENERGY OF A CONDUCTING
SUSPENSION

In this section, we shall develop the microstructure-
based theory of the electric energy of a conducting sus-
pension in a time-varying electric field. First, in Sec.
IV A, we shall use the mean-field approximation which is
based on the cell model. It leads to a simple compact
equation which estimates the concentration dependence
of the electric energy and allows us to analyze various

I

forms of the time variation of an electric field. In Sec.
IV 8, we shall develop the statistical theory of the electric
energy in a disordered suspension and use the renormal-
ization technique in order to account for the difFerence
between the average electric field in a suspension and the
average electric field acting on a test particle. The statist-
ical approach leads to a relation between the interparticle
forces and the macroscopic electric energy of a suspen-
sion, and also illustrates the limitations of the cell model.

A. Cell model

A number of methods have been developed, based on
the mean-field approximation, which lead to the deriva-
tion of the Maxwell-Wagner expression for the complex
permittivity f, of a suspension [26]

E E, E, E,s f p f
Es+2Ef Ep+2Ef

This expression is actually based on the assumption that
the dipole strength of a suspension is equal to the sum of
the dipole strengths of all the particles.

According to the Maxwell-Wagner relationship,

E, (P) =E/

Ep Ff

Ep +2Ef

l c
Ep +2Ef

1+2'
Of 0 p +20f+

~f
1 —c

0'p +20 f
9c(1—c)(eIo. —E o/)

2

(I+pt, )(E +2E/) 1 —c (cr +2crI ) 1 —c
Ep Ef 2 ~p

E +2Ef op+20 f

Ep Ef
(E~+2E/) 1 —c

Ep +2E,f
0'p Of

(cr~ +2o./) 1 —c
op+20 f

The value of t, determines the relaxation time of the
redistribution of charge at the particle surface in a sus-
pension caused by the conductivity of the Quid and the
particles [26]. The substitution of ice for p into the above
expression yields the frequency dependence of the real
and imaginary parts of the complex permittivity of a sus-
pension, E, (ice) =E,'(co)+i E,"(co).

To derive the equation for the electric energy of a sus-
pension, we use the mean-field approximation based on a
cell model. It assumes that the complex permittivity and
electric energy of a suspension are equal to the corre-
sponding values of a spherical fiuid cell of radius a/c'
containing one particle at its center. At first, we brieAy
outline a method for deriving the Maxwell-Wagner rela-
tionship. We begin by noting that the average parame-
ters of the electric field in the cell are defined by the fol-
lowing expressions:

& D &
=E/(1 —c)(E/ &+e,c & E, &,

(E)=(1—.)&E, &+.«„),
where the symbol ( ) denotes the volume average. Let 8
be the probe electric field acting on a particle. Using the
expressions for yf and y of the electric field induced by
a particle in an unbounded medium (Sec. III B), we have,
for a cell of volume V = v /c, that

&E/& = — f V~/dr=I,

vp p Ep +2E

As the result of these expressions, the Maxwell-Wagner
relationship stems from the definition of the complex per-
mittivity, e, =(D)/(E). It is important to keep in
mind that the relation for E, was derived using the formu-
la for the electric field induced by a particle in an un-
bounded medium with boundary conditions at r~~,
even though the calculation was made for a cell of radius
a/c' . This means that the boundary condition on the
cell surface was not taken into account.
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Now, as in Eq. (8), the average energy density w in the
cell is defined by (cf. Sec. III B)

2wV=Ef f (Vrpf) dr+E f (V pl~) dr= Ii—+Iz,
I i f Ipf EfVlpf n dS

Sf

I, = f (E,q, vq, Efl—pfVlpf) ndS,

where I& is the energy of the charge distributed over the
cell surface, and I2 is the energy of the charge distributed
over the particle surface. Using the expressions for yf
and y of the electric field induced by a particle in an un-
bounded medium (Sec. III B), we calculate the integrals
for I, and I2 and substitute the average electric field in
the cell, &E& =C(1—Pc), for C. As the result of these
calculations, we arrive at

where

I(t)= f exp
0

& E(t') &dt' .

& w & =-,'E, (c)&E&',

where

The first term in Eq. (22) is consistent with the macro-
scopic relationship for the electric energy of a noncon-
ducting system [25]

w(t)=
2

1+2c
'

Ep +2Ef

Ef
1 —c

Ep +2Ef

E, (c)=Ef

1+2c
Ep +2Ef

1 —c
Ep +2EI

9c (1 c)(Ef0 p
—Epcr f )

2(E +2E, ) 1 —c
E +2E.f

. , I'(t), (22) For a suddenly applied electric field, &E(t) & =&E&H(t),
the second term in Eq. (22) for the steady-state regime,
t ))t„reduces to

9c (1—c)
2

(EfOP EJlo f )'&E&'
T

Ep Ef Op 0f
(E~+2Ef ) 1 —c (o~+2of ) 1 —c

Ep +2Ef 0p +20 f

' 2

while, for the oscillating field, & E &
=Eocoscot, and t )&t„we have that

w(t)=
2

1+2c
'

Ep +2Ef
Eo' cos'mt +

Ep Ef
1 c

Ep +2E.f

9c ( 1 c)(Ef0'& E&o'f ) Eo cos (cot +4 )

2(1+0 )(E +2Ef) 1 —c (cT +2crf) 1 —c

'2 (23)

where Q =~t„tan% =0,.
For a slowly oscillating electric field, cot, « 1, Eq. (23) yields the expression for the time average of the electric ener-

gy, & w & T, of a suspension

&w&T=

1+2c
'

E~ +2Ff +
Ep Ef

1 —c
Fp +2Ef

9c (1 c)(Efo——E o f )

Ep Ef Op Of
4(E~+2Ef ) 1 —c (oz+2of ) 1 —c

Ep +2Ef 0p+20f

2~o

which is consistent with the expression given by the sub-
stitution of the Maxwell-Wagner relation for the frequen-
cy dependence of the real part of the complex permittivi-
ty of a suspension into Brillouin's formula [25]

& &,=—' ' [.;( )]&E'( )&,2 dco

for the electric energy of a low-conductivity macroscopic
system and a slowly varying oscillating electric field,
iE,"(co)i «E,'(co), cOt, «1.

The 0 (c) term of the expansion of Eq. (22) for the elec-
tric energy of a suspension in powers of c is consistent
with Eq. (11) for the energy of one particle.
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B. Ensemble average equations

General equation

The total electric energy 8' of a suspension is defined

dr+ c Vg dr
P

&I—, &, ++&I, &, , (24)

where ( ), denotes the ensemble average, I(f is the num-
ber of particles, and

I, = f sflpfV(pf ndS
Sf

I2 = f ( e~ y~ Vy~ ef—pf Vyf ) n dS .

The integral I2 in Eq. (24) is over the surface of one parti-
cle, while Sf is a large surface within the Quid enclosing
all the particles.

Let us prove the following equality:

&I, &, = f Ef(q f) (V+f) (25)e S

It is evident that this applies equality for a charged sur-
face (where the value EfVyf n is fixed) and a metallic
surface (where (pf is fixed). For the case of a large fiuid
volume Sf -Rf', Rf~ M, where Rf is a distance from
the particles to the surface, we have that

qf ———(E&, r+ g
a'A, (r —r,. )

r —r, /

+0
Rf

A, (r —r;) l
V@f

———(E),+ g A, —3 (r —r, ) +0

Hence

3 A; (r —r;)(1, ),= rrj((E), r)((E), n)dS —rr j ((E), r) X —,A; —3 (r —r;) )
ndS1 e f S e

A
rrl ((E), n)(X r )

dS+0
7

I' I'; e

Clearly, the main terms 0 (Rf ) and 0 (Rf ) of this expres-
sion as Rf~~ are exactly the same as those given by
averaging the expansions listed above for yf and Vyf in
powers of 1/Rf and substituting them into the right-
hand side of Eq. (25).

Next, using the identity

&I, &, = —f

V (D), dr
Ef (P)

—&rr&rqr) =(r Df

(Df ),
Ef (P)

= V(E&,u-'. f &D), - .
Ef (P)

where account has been taken that V (D ),=0. But, as

( D ), =Ef ( E ), +c(e~ —Ef ) ( E~ ), ,

where Df = —ef(p)V(((3f, we can write the right-hand side
of Eq. (25) as

we arrive at the following result for the total electric en-
ergy:

(I, ),= —f, (Vqf &,&
f

-(Df), -ndS .
Ef (P)

(26)

++&I,), . (27)

But, since according to the boundary conditions for the
equations for a quasisteady electric field, y and D are
continuous at the fiuid-particle surface, Eq. (26) can be
rearranged into

Here ( ) denotes the volume average, while
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where the integral is calculated over the surface of one
particle.

The derivation of Eq. (27) is based on the permutability
of spatially integrating over a large surface [Eq. (25)] and
ensemble averaging, followed by the transformation of
the surface integral into the volume integral, which is
typical of the continuum electrodynamics theory [25].
Note that the actual electric field acting on a particle and
the dipole strength of a particle, which are the key in-
gredients of any microstructure-based theory, are not ex-
plicitly used in this approach.

Next we briefiy outline how Eq. (27) emanates from the
microstructural point of view. The calculation of the
electric energy for X particles makes use of the probe
field 4', acting on a particle and repeats the steps of the
earlier analysis for one and two particles in an unbounded

I

medium ( V~ ~ ). As a result, we obtain the equation

2W=Ef&E),'V+3ef¹ &E&, & A), ++&1,), , (28)

which contains the average dipole strength & A), of a
particle. To calculate the second and third terms of Eq.
(28), we can also substitute & E)& for the probe field 8.
To relate & A), in Eq. (28) to « 8), ) in Eq. (27), we use
the identity

f [(C r)Vyf Ipf V(C r)].ndS
Sf

= $ f [(8 r)Vyf IpfV(g r)].ndS,
l

which follows from the fact that both yf and 4 r satisfy
Laplace's equation in the Quid. For Rf —+~, the left-
hand integral of this identity is equal to

a A, (r —r, )

g f (@r)V
Sf

a A;(r —r, )
V(C r) "ndS= —g 3v A, 8

Moreover, on account of the boundary conditions

E,p
pfls p, lg, V pf nlrb =& ' '

Vp, n
E,f S

on the particle surface, the right-hand integral of the
identity equals

f Edr
1 Pt.

which corresponds to the second term of the right-hand
side of Eq. (27). Thus we have shown that Eqs. (28) and
(27) are identical.

The second and third terms of Eq. (27) represent the
energy of the particles at the fixed value of the external
charge generating the electric field. For a nonconducting
systems we note that Iz 0 Ep E'p and Ef =Ef, and
hence Eq. (27) reduces to the macroscopic relationship
for the electric energy of a nonconducting system [25]

2 =&D&, .&E&,=,( )&E&,',
where E, (c) is the permittivity of the suspension.

2. I'irst and second approximations

To derive the expression for the energy of one particle
in a suspension, we need to calculate two integrals in Eq.
(27), i.e., « E ), ) and &I2), . To obtain the first and
second approximations for them, we use the group expan-
sion method developed in Ref. [29] and also described in
Ref. [30].

Specifically, for k + 1 particles in an electric field

Ck+ „let us write U [r„.. . , ri„Ck+, ] as the general no-
tation for these integrals over the surface of the test parti-
cle placed at the origin r„.. . , rk being the set of posi-
tion vectors of the other particles. To a first approxima-
tion, (k =O, Bi= &E), ), and hence using the value of
U[", & E), ] for a single particle yields the same expres-

I

sion for the energy as derived from either the cell model
when c~0 or from the energy equation for a single parti-
cle in an unbounded medium

Nv

where

3Ef E~
—Ef 9(o~Ef 0 fE )

2 E +2sf 2(E +2Ef)

I

J=f exp — &E(t')),dt' .
0

R, = &E),—f (R, [r, ; &E), ]
—&E), )P[r, Idr, .

Here 8, Ir, ; &E), I is the electric field in an unbounded
medium induced by the particle located at r „while P [r, ]
is the unconditional probability density for a particle be-
ing at r, . The expression for the electric field induced by
one particle yields

To construct the second approximation (k =l), we
place the test particle at the origin and a second particle
at r, . Note that to order O(c), we can neglect the
difference between Cz and & E)„hence the average incre-
ment & b, U') due to the presence of the second particle is

&aU'&= f (U[r, ;&E&I—,U[;&E),})P[r,l0}dr, ,

where P [r, l0] is the conditional probability density for a
second particle being at r, given that the test particle is at
the origin. The expressions for U[r, ; & E), ] are given by
the corresponding terms in the solution of the two-
particle problem in an unbounded medium.

We also have to take into account that the average
electric field acting on the test particle, gi, is different
from &E), because one particle is removed from a sus-
pension. To calculate this field to order O(c), the aver-
age field. induced by one particle needs to be subtracted
from &E),. Hence we get



1684 BORIS KHUSID AND ANDREAS ACRIVOS 52

R. [r, I &E&, j
—&E),=

—P&E&, «r Irl, ~a

3&E), r,
for IrI1) a .

The average increment ( b, U" ) merely corresponds to a change in the expressions for I, and Iz in Eq. (8) for the en-

ergy of a single particle due to a change in the electric field acting on it:

&aU" &=[U[",8, j
—U[;&E&,j] .

For the first and second integrals in Eq. (27), respectively, we obtain

U[;R, j
—U[",(E), j =3P(@1—(E),),

U{;R,j —U[ "(E),]=vp 'X '[[(Ep+2Ef)P—
(Ep

—E )](E) j X '[(P—1)(@1—(E), )j

(29)

+X '{(P—1)&E&, j X '[[(,+2 )P—(,— )](@,—&E&, )j

As the result, the 0 (c ) term of the group expansion is
(SU) =(SU')+(aU").

In performing the evaluation of the integrals which ap-
pear in the expressions for ( b, U), we shall consider only
the case of a well-mixed suspension for which

0 for Ir, I

~2a
~{,j=, ~{,I0j= „... I, I...

where n is the number density of the particles. The re-
gion of integration for these integrals consists of three
parts: Ir, I

~a, a (Ir, I
~2a, and Ir, I)2a. The first and

second parts do not contribute to the average increment
(b, U'), which is caused by the presence of the second
particle. Moreover, since

3&E&, r,

for a ~ Ir, I

~ 2a,
the contribution to ( b, U" ) from the second part is also
nil. On the other hand, the contribution to ( b. U" ) from
the region r, I

~a can be obtained simply by replacing
8,—( E ), in Eq. (29) with cP( E )„which is the change

in the average electric Geld acting on the test particle in
the region

I r, I

~ a because one particle has been removed
from the suspension.

For the region Ir, I
~2a, the contribution to the first

and second integrals in Eq. (27) stems from both (b, U')
and ( b, U" ) . The expressions for ( b, U' ) as expansions
in powers of (a/Ir, I) are given by the corresponding
terms in Eq. (17) for the energy of two particles in an un-
bounded medium. The expressions for (b.U") are de-
rived by making the substitution

3(E&, r,

ri l
r

into Eq. (29). For the region Ir, I
~2a, it turns out that

the integrands for both (b U') and (b U") contain
terms proportional to (a/Iri I ), which cancel each other
when combined. This procedure has been justified in Ref.
[30]. This leads to an absolutely convergent integral for
Ir, I

~2a.
Finally, on performing the integration, we arrive at the

equation for the O(c ) term of the electric energy of a
suspension at the fixed value of the external charge, gen-
erating the electric field

3c Ef(E&, X '{p &E),j+3 X ' ' &E&, "X
cp +2Ey

+r-', f &E), "Z-'
Ep +2Ey

r

A +2A

Ep +2af

+ y, Ef(E), X '{(g„,—2$„,)P&E&, j
, 2' '(s —1)

Ep Ef Ef Ep

Ep +2'
&E), "X-'

Sol s 511 s e
Ep +2Ef

+X-' f (E),
Fp +2Ey

r

p f f p ~ r
(

r
)

Ey
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2s —
3( 3)

s =2(n+1)+k+k'
~—i

n, k, k'~ 1
n

.(E)
+2 On k' e

Ep Ef

—i p f f p~~
&On, k e

Ep E/

+(n +1)nX
Ep +2Ef

XX i
~

~ f f ~g (E
+2 1nk e

Ep Ff
(30)

Here g „,=A „,/P, 6, where the coefficients A. „,
are calculated from Eq. (15), which was obtained from
the solution of the two-particle problem.

The O(c ) term represents the average value of the in-
teraction energy between two particles. The sum of the
first two terms in Eq. (30) equals the coefficient of
4rra (a/R) in Eq. (18), which gives the energy of the
dipole-dipole interaction 8'" " between two particles.
Also, this sum coincides with the corresponding O(c )

term of the expression for the electric energy as derived
from the cell model and expanded in powers of
c (E&

—s/)/(E„+2s/) and c (o' —o'/)/(oz+2cr&)
For a suddenly applied electric field, (E),=EoH(t),

and for t (& t (p ~ ao, respectively), we obtain the same
relation as that for a nonconducting system when E =E. ,
Ef Ef and thus E. Ef EfEp 0:

3C EfEo F1 )
2 2

Ep +2Ef
(31)

F, =1+ E E, E

Ep +2Ef Ef

I

where

2
a —1 f, (a)

1 E.p
O1, s

3c EfEo F1F2
(o +2o/)

~p 1 op
X 6 — 2+ (6F2 —1)

Ef F2 ' af
where

2

(32)

Equation (31) gives the 0 (c ) term in the expression for
the efFective dielectric constant of a suspension, and is
identical to that derived in Ref. [28].

For t ))t (p ~0, respectively), we have

o —o/ fz(cr~/o&)F2=1+—
6 0'p +20 f F1

F, =1+
Op+20 f o f

a —1 1,(a)=a+2, 6
2' (s —3)

s =2(n+1)+k+k' op
t. 00 , 4n0kkn+n (n + 1)g,n k.gin k ], a =

n, k, k'~1 n of

The difference between Eqs. (31) and (32), respectively,
for t &&t and t » t as derived from the statistical
theory and those given by the cell model for these cases,
lies in the fact that, for the latter, F, =F2 = 1. The values
of the coefficients f„fz, F„and Fz for various a [and
the corresponding value of P=(a —1)/(a+2)] are
presented in Table I. The numerical values given in
Table I required the summation of over 100 terms in or-
der to achieve an accuracy to three significant figures.
The reasoning why all the functions shown in Table I are
relatively insensitive to variations in a can be traced to
the asymptotic behavior of A n k for k &)1, and stems
from the fact that the terms of the series for f, and fz
contain the coefficients g „k, which depend only weakly
on a when k )&1. Specifically,

( ) ppl +i
for k =2l, l ))1,

Pi P, (n +m)!(1 m)!—

and

0., k

p2

0
0.02
0.1

0.5
1.0
2.0
5.0

50.0
104

P, (n +m)![(I—m)!] (1+m)!

for k =2l+1, l »1 .

TABLE I. Values off&, f2, F„and F2 for various a.

1.398
1 ~ 386
1.348
1.272
1.264
1.308
1.466
1.940
2.071

0.432
0.431
0.428
0.421
0.421
0.427
0.445
0.488
0.498

—0.500
—0.485
—0.429
—0.200

0.000
0.250
0.571
0.942
1.000

0.784
0.791
0.817
0.916
1.000
1.107
1.254
1.460
1.498

0.851
0.858
0.882
0.954
1.000
1.049
1.111
1.209
1.230
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Moreover, for the transient period t-t, the cell model
involves only one relaxation time of t„while the stati-
stical theory equation contains a band of relaxation
times, r „=[a~+((n +1)/n )sf ]/[o~+((n +1)/n )of ],
n =1,2, . . . , of multipoles. However, as seen from
Table I, the overall contribution of the multipolar terms
is only about 50%%ua, since the values of F, and Fz do not
differ that much from unity.

The results obtained thus far indicate that the main
contribution to the electric energy of a suspension is
given by multiparticle interactions leading to a change in
the average electric field acting on a particle. The contri-
bution of the direct two-particle interactions is not so
essential. An analogous behavior of interparticle interac-
tions in a suspension has been described in Refs. [42] and
[28]. That is the reason why the cell model, which takes
into account only multiparticle interactions, can yield an
expression for the electric energy of a suspension which is
of acceptable accuracy.

The main advantage of the statistical theory which has
been developed lies in fact that it reveals the connection
between the coefficient of the term 4ira (a/R) in the ex-
pression for 8' "given by Eq. (18), which determines the
dependence of the dipole-dipole interparticle interactions
on the electric field, and the macroscopic electric energy
of a suspension. Moreover, the microstructural theory
shows the dependence of the macroscopic electric energy
of a suspension and therefore of its thermodynamic prop-
erties, on the ratio of the particle-to-fIuid dielectric per-
mittivity and conductivity. Also, it provides a connec-
tion between the real and imaginary parts of the complex
permittivity of a suspension and its thermodynamic prop-
erties which, for example, determines the conditions for
aggregation. In Sec. V, we shall use these relations to as-
sess the degree to which the present theory is consistent
with the currently available experimental data on ER
Quid s.

V. DISCUSSION AND COMPARISON
WITH EXPERIMENTAL DATA

The theory developed above predicts that the applica-
tion of an electric field of sufficient strength induces a
separation of a suspension into low- and high-
concentration phases when A(t) & A„(Fig. 2), where A is
the ratio of the average energy of the electric interaction
between two particles and the thermal energy. The aver-
age energy of the interparticle interaction is equal to the
0 (c ) term in the expansion of the electric energy of a
suspension in powers of the particle concentration, c [Eq.
(5)], and its dependence on the time-varying electric field
is given by Eq. (30). The main contribution to the value
of this energy arises from the dipole-dipole interaction
W ", between two particles [Eq. (18)]. The expression
for the electric energy of a suspension, Eq. (22), as ob-
tained from the cell model, yields the leading dipole-
dipole term in Eq. (30), and allows us to estimate the
coefficient y of the 0 (c ) term of Eq. (5) which
represents the ratio of the average energy of the three-
particle interaction to the thermal energy. Figures 1 and
2 show that the contribution of the three-particle interac-

tion is of minor importance when ~y/A~ & 3.
To analyze the dependence of the aggregation phenom-

ena on the particle-to-Quid ratio of the dielectric con-
stants and of the conductances, we consider first the case
when an electric field is suddenly applied, i.e.,
E( t ) =EoH ( t). Then, on account of the presence of
dielectric relaxation phenomena leading to the redistribu-
tion of the charge at the interface between the particle
and the surrounding Quid, the thermodynamic driving
force which causes the aggregation of the particles be-
comes time dependent. Specifically, when t ((t, where
t =(E +2Ef )/(o~+2crf ) is the characteristic time scale
of dielectric relaxation, the interaction between conduct-
ing particles [Eq. (19)] is the same as that between non-
conducting particles. In this case, the statistical theory
yields Eq. (31) for the suspension energy, and the random
arrangement of the particles becomes unstable if

2 '2
3' EfEp

F, , (33)
BT

Ep Ef

Ep +2Ef

where the superscript (x) denotes the high-frequency
(short time) limit. On the other hand, when t » t, the
interaction between conducting particles [Eq. (20)] differs
from that between nonconducting particles. In this case,
the statistical theory yields Eq. (32) for the suspension en-
ergy, and leads to the prediction that aggregation will
occur if

2U~Ef Ep
Ap= 4p ~ A„,

B

qlo= F,F~ ~ 6 — 2+(6F~ —1)
(o —o )o 0

((7 +2of ) Ef Fp of

(34)

where the superscript 0 denotes the low-frequency (long
time) limit.

The coefficients Fi(a) and F~(a) where a=E /ef for

Sp/8 t:

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
ap/a

&

FIG. 3. The lines To=0, +O=O, and y0=0 in the c.~/cf and
o~/of plane. The expressions for %0 [Eq. (20)] and yo are ob-
tained from the cell model [Eq. (22)], when the expression for +0
is derived from the statistical theory [Eq. (34)].
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Eq. (33} and a=crp/crf for Eq. (34) incorporate the
influence of all multipolar terms on the interaction be-
tween two particles. For the cell model expressions,
F, =F2=1, and, thus, qi =4 and +o=+0 [see Eqs.
(33) and (34)]. However, since the deviation of F, (a) and
Fz(a) from unity, the latter being the value for the

dipole-dipole term, is less than 50% (Table I), the
difference between the expressions for 4 and %p as ob-
tained from the cell model and from the statistical theory
is not of crucial importance (Fig. 3).

As seen from Eqs. (33) and (34), '0 &0 if spAEf,
.whereas %p & 0 only in two cases:

Op ~p 1 Op
(1) ) 1 and 6 & 2+(6Fz —1)

C7y I'2 Oy

(2) & 1 and 6 & 2+(6F2 —1)
0)

2

2 (35)

and

2 3
9vp cyEp Ep Ey

00 k~T c. +2m, ~
at t«t

9u efEQ (crp of) 0 f
Vp k~T (cr +2crf)

Ep Op
X 9 —2 —8 +

EI Oy

2

ai t»t

where the superscripts 00 and 0 once again denote the
high-frequency (short time) and low-frequency (long time)
limits, respectively. It turns out that the role of the
three-particle interaction is different depending on
whether t & t or t ) t . Specifically, in the former case,
since ~y /A„~ =3~(ep —ef )/(Ep+2Ef )~ & 3, the contri-
bution of the three-particle interaction energy does not
radically alter the values of the aggregation process pa-
rameters A„and c„(Figs. 1 and 2). For t » t, however,
the lines AO=0 and yo=O in the s /ef and o p /crf Planes
do not coincide (Fig. 3). Therefore, near the line A0=0,
the thermodynamic driving force causing the aggregation
of the particles is mainly due to the three-particle interac-
tion, a case which is not covered by our theory.

The coefficients +" and +p determine the relative con-
tribution of the particle properties relative to those of the

This means that, in the short-time limit, there always ex-
ists a threshold value of the strength of the electric field,
above which the particles having Ep&sf will start aggre-
gating as soon as the electric field has been applied. On
the other hand, the redistribution of charge over the par-
ticle surface gives rise to the dependence of %p on the
particle-to-fluid ratio of the dielectric constants ep/sf,
and conductances cr /crf. Thus, in the long time limit,
the electric-field-induced aggregation of the particles will
occur only if the dielectric constants and conductances of
the particles and of the fluid lead to positive values for
%o. The conditions for this to occur are given in Eq. (35)
and Fig. 3.

The cell model also allows us to estimate the energy of
the three-particle interaction. Thus on expanding Eq.
(22) in powers of c, we obtain

]

Quid, i.e., E /ef and crp/crf, to the thermodynamic driv-
ing force, leading to the aggregation governed by the
dipole-dipole interaction. As seen from Eq. (19), qi in-
creases monotonically to unity with increasing E /ef.
On the other hand, the dependence of qio on Ep/Ef and
o p/crf is much more complicated. Thus, from Eq. (20),
we obtain that

Iaf —1)

c}(sp/Ef ) (cr /crf+2)

8+0 6(5—2crp /crf ) s crp

c}(crp/crf ) (cr Icr +2) sf crf
p f

Therefore, when crp/crf ) 1, Vo increases linearly with
e /ef. But, with increasing cr /crf, %0 grows only if (1}
crp /o f & 5 /2 and crp /crf & sp /ef, or (2) 5/2 & cr /o f
and sp /ef & cr /crf. In addition, along the line

Ep /Ef crp Icrf, we have that 4'o = (crp Icrf —1 ) /(crp I
crf +2), while, for constant e /Ef, %'0~ 1 for

crp/of —+ ~. These results show that the optimal way of
increasing Vp and, thus, the dipole-dipole interaction be-
tween the particles and the thermodynamic driving force
responsible for the aggregation process, is to increase
E /Ef and to maintain cr /crf equal to 5/2.

We shall next compare the predictions of our theory,
which is based on the relation between the energy of the
dipole-dipole interaction between two particles [Eqs. (19)
and (20)] and the thermodynamic driving force [Eqs. (33}
and (34)], with the relevant results available in the litera-
ture. We begin by discussing the various simulation
models [37,38,43,44]. The threshold value of the electric
field above which polarizable nonconducting particles in
a nonconducting fluid start aggregating was estimated by
means of a simulation model [37,38,43] which involved
particles, each having an induced dipole moment along
the direction of the applied electric field. The dipole mo-
ment was assumed to be the same as that of an isolated
particle, i.e., the contribution to the electric field at the
center of a given particle due to all the other particles
was ignored. The interparticle forces included the point-
dipole interaction and a short-range repulsive force, while
the influence of the fluid was represented by Brownian
and Stakes drag forces. The simulations reported in
Refs. [45] and [46], which include a much more complete
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treatment of hydrodynamic and electrostatic forces, do
not consider thermal fIuctuations. The relative strength
of dipolar interactions and the thermal energy was
characterized by a dimensionless parameter X which
equals A/8Fi(p) in our notation. The simulations de-
scribed in Ref. [43], which were performed at a particle
concentration of c =0.31, showed that the electric field
required for phase separation was given by A,, -Q.48.
For k(k„small clusters of four or five particles were
found to form and to break up, but they never grew
larger. The simulations in Refs. [37] and [38] which were
performed at c =0. 1, 03, and 05, showed that
A., -6.5 —7; below A,, the suspension was found to have
an amorphous structure. Another approach to the calcu-
lation of A,, was described in Ref. [44], where the induced
dipole moments were treated as internal degrees of free-
dom and the equilibrium two-particle distribution func-
tion, which included the direction of the dipole moments,
was also calculated in a self-consistent manner within the
mean-spherical approximation. This model considered
the enhancement of the mean dipole moment over its
value for an isolated particle, but only on account of the
nonuniformity in the dipole moment angular distribution.
Numerical calculations which were performed at c =0.25
for a few values of p showed that A, , decreased from -5
to -2 with increasing p from 0.5 to 1.0; for p=0. 25, a
phase transition was not predicted to occur. Despite
some difFerences in the model of a nonconducting suspen-
sion, the range of our values [A„/8F, (p) varies between
3.4 for p= —0.5 and 1.5 for p=1] correlates well with
those reported in the papers referred to above.

Reference [47] reported the results of computer simula-
tions of the phase behavior of soft-sphere dipolar Quids (a
sphere has a permanent dipole moment) in applied field.
When the applied field was sufficiently high (in compar-
ison with the thermal energy), the dipole moments of the
spheres aligned predominantly with the field. In this
case, the phase behavior of the dipolar Auid was similar
to that of a suspension of the polarizable particles except
for the contribution of all other particles to the induced
dipole moment of a given particle. The simulations at
various field strengths revealed a coexistence curve [47].
The value of X„was found to decrease from 8.9 to 5.5
(the infinite field limit) with increasing strength of the ap-
plied field, whereas the critical density (6c,„/ir in our no-
tation) was independent of the field strength and equaled
-0.03. Since increasing the field strength in the model
of dipolar fluids enhances the alignment of the dipole mo-
ments of the spheres, these results correspond to our cal-
culations in the sense that A,„decreases with increasing p,
whereas c„is independent of p and of the strength of the
electric field. However, the value of the critical density
(-0.25) from our model is difFerent from that of the
model of dipolar fluids. This difFerence Inight result from
the fact that we considered only the case for which the
suspension separated into two disordered phases. On the
other hand, simulations [47] showed that the coexisting
phases contained chains of spheres.

The relation between the energy of the two-particle
dipole-dipole interaction and the thermodynamic driving

force also provides some insight into the kinetics of the
aggregation process. Let t, be a characteristic time scale
for structure formation. The behavior of the suspension
depends on the ratio of t, to t, the dielectric relaxation
time. The time scale t, can be estimated by considering
the time taken for a particle to move a characteristic dis-
tance between the particles, -a(1/c'~ —1), under the
action of the dipole-dipole attraction and the Stokes drag
force. To estimate t, for the relatively rapid aggregation
when t, (&t, in which case there is no contribution of
the conductivity efFects to the interparticle interaction
[Eq. (19)], we can use the expression [48,39] for the time
of the structure formation in a suspension of nonconduct-
ing particles in a nonconducting fIuid, which is applicable
for rather high electric fields when Brownian motion can
be neglected, A »A„. In our notation, this is written as

5/3

t,"=
2 g(c), g(c) =4

c~%' Eo
(36)

where t," is the time scale of the rapid aggregation, gI is
the viscosity of the base fiuid, and g(c) is a concentration
dependent coeKcient. Computer simulations reported in
Ref. [39] have shown that the first percolating chain ap-
pears at roughly t, . Qn the other hand, for relatively
slow aggregation t, » t, the dipole-dipole interaction be-
tween conducting particles is described by Eq. (20). Since
this leads only to a change in the relative strength of the
interparticle forces in the mechanical model which de-
scribes the particle motion, the time scale for the slow
structure formation can be represented by an expression
similar to Eq. (36),

d;g(c),
Ef% pap

(37)

where t, is the time scale of the slow aggregation. Equa-
tions (36) and (37) show that the mode of the structure
formation kinetics depends on the strength of the electric
field. Specifically, the slow aggregation will occur at a
relatively weak electric field

il/g(c)
Ep +WE() where E() =

c,g%'otp
(38)

while rapid aggregation will occur at a relatively strong
electric field

7)J g(c)
Eo »Eo where Eo =

Eg%' t
(39)

As seen from Eqs. (38) and (39), there exists an upper
bound for the thermodynamic parameter Ap responsible
for the slow aggregation

3u il g(c)
A «A ——

k rtB p

as well as a lower bound for the thermodynamic parame-
ter A responsible for the rapid aggregation

3u~il/g(c)
A »A' =

k~ Tt
(41)
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It should be noted that increasing %o and, hence, the
interparticle interaction by raising Ep /Ef while keeping
o. and o& fixed, is also accompanied by an increase in
the dielectric relaxation time. As seen from Eqs. (38) and
(40), this lowers the range of electric fields where this
mode of structure formation can occur. The interesting
case when the random arrangement of the particles be-
comes unstable in the short time limit and the electric-
field-induced aggregation can start [i.e., Eqs. (33), (39),
and (41) are satisfied], but where this random arrange-
ment retains its stability in the long time limit [i.e., Eq.
(34) is not satisfied] is beyond the scope of this analysis.

Simple reasoning based on the pondermotive behavior
of uncharged particles in electric fields provides some in-
sight into how the type of aggregation pattern depends on
the properties of the particles. Recall that, for short
times, the particle dipole moment is aligned with the ap-
plied electric field when c )c&, and is opposed to it when
c, & c&. Thus an anisotropic cluster formed by a few par-
ticles tends to rotate so as to render the longest axis per-
pendicular to the electric field, when c & c&, and parallel
to it, when c )c&. Moreover, for the rapid aggregation,
the rotational time for the orientation of a cluster is es-
timated to be t,"-nf/Efq'". Eo by equating the hydro-
dynamic torque on an ellipsoid to the electric torque ex-
erted on a nonconducting ellipsoid in a nonconducting
fiuid [49]. On the other hand, for t »r, the dipole mo-
ment of a conducting ellipsoid in a conducting Quid is ob-
tained by substituting cr /o/ for e /e/ in the expression
for the nonconducting case [26]. Therefore, an anisotrop-
ic cluster formed during the slow aggregation tends to ro-
tate so as to render the longest axis perpendicular to the
electric field when o p

& 0 f and parallel to it when

o~ )o&. Consequently, for slow aggregation, the rota-
tional time for the orientation of a cluster is estimated at

g/(o +2o/)
E/(o„cr/) E—

D

The nonuniformity of the electric field around an an-
isotropic cluster also contributes to the aggregation pat-
tern formation due to the force exerted on a polarized
particle by a nonuniform electric field. This has been
called the dielectrophoretic force [50]. In the short-time
limit, this force is the same as that for a nonconducting
particle ([25], Sec. III 82):

Fp EyF=4-E/a (E.V)E.
Ep+2cy

Therefore, the particle is attracted toward the high elec-
tric field regions when c ) c&, and is repelled from the
high electric field regions when E. &c&. For a cluster
consisting of a few particles, the characteristic scale of
the spatial variation of the electric field around it is

Eo
Ep+2Ey a

Due to the dielectrophoretic force, a particle, when add-
ed to a cluster, moves toward its narrower part if ep ) Ef,

and toward its wider part if cp & c&. The particle velocity
along the cluster is determined by a balance between the
dielectrophoretic force and the Stokes drag force, and
hence the time required for a particle to move a charac-
teristic distance -a is estimated at td -g//E/O'" E0. In
the long-time limit, the dielectrophoretic force is (Sec.
III82)

F=4m'&a
Op Oy (E V)E
0p+2o y

so that the particle is attracted toward the high electric
field regions when o )o&, and is repelled from the high
electric field regions when O.

z & o.j. Thus a particle add-
ed to a cluster moves toward its narrower part if o )o.&,
and toward its wider part if o~ &o.&. On equating the
dielectrophoretic force to the Stokes drag force, we then
estimate that the time required for a particle to move
along the cluster over a characteristic distance —a is

g/(a +2cr/)

Ef(CT CTf) ED

In the short- and long-time limits, the time scales of
the rotational and dielectrophoretic mechanisms respon-
sible for the orientation and shape of a cluster are of the
same magnitude as the time scale of the rapid and slow
aggregations, respectively. Therefore, three processes-
i.e., aggregation of the particles, rotational alignment of
the clusters already created, and the generation of a
nonuniformity in the distribution of particles added to a
cluster —proceed simultaneously. As a result, for rapid
aggregation at c. ) c& and slow aggregation at o.

p )o f,
there is a tendency for these combined eff'ects to lead to
chainlike formations which are observed in ER Auids.
On the other hand, for rapid aggregation at c & c& and
slow aggregation at o. & o&, disklike formations are pre-
dicted.

For the oscillating field E(r) =EQsincot, the behavior of
the suspension depends on the relative magnitudes of the
three time scales, i.e., t, t„and 2m/co. In the limit of
high electric fields and high frequencies, when t~ is much
larger than both t, and 2"/co, the conductivity effects do
not contribute to the rapid aggregation. In this case, the
interparticle interactions are determined by the instan-
taneous value of E(t) for 2m/co»t, [Eq. (19)], and by
the time average value (E(t) ) T for t, »2"/co [Eq. (21)].
On the other hand, for very low frequencies, when 2m/co
is much larger than both t, and t, the dielectric relaxa-
tion and the aggregation processes are faster than the
variation of the electric field. Hence the interparticle in-
teraction corresponds to that for the long-time limit [Eq.
(20)], and the slow aggregation begins (if 40&0) as soon
as the electric field reaches the threshold value [i.e., as
soon as Eq. (34) is satisfied].

The case of the relatively low electric fields and inter-
mediate frequencies, when t, is much larger than both t
and 2~/co, shows a greater variety in the aggregation
mode. Under these circumstances, the interparticle
forces are determined by the time-averaged value of the
dipole-dipole interaction, ( W" ")T [Eq. (21)], where the



1690 BORIS KHUSID AND ANDREAS ACRIVOS 52

E,
p 5

and
cg. 2

2'+ 10E,y)
0 y 2E~+Ky

attains a minimum (Fig. 4) at the intermediate fre-
quency

O~(2Ep+7sf) CTf(8E~+10Ef)
6)

(o +2o~)(58~ —2s )

Note that, for this case, the high-frequency limit 4 is
also less than the low-frequency limit q'o (Fig. 4).

As was already mentioned in Sec. I, besides examining
the case when the behavior of the particles and the
suspending Auid is described by a very simple model of a
leaky dielectric, the theory developed above o6'ers a
clearer insight into the efFects of the conductivity on the
electric-field-induced aggregation in suspensions.
Specifically the theory shows that, in dc electric fields, the
particles aggregate only if the ratio of the particle-to-fIuid
dielectric constants and conductances satisfy Eq. (35),
whereas the electrostatic model predicts that aggregation
should occur in all suspensions of polarizable particles
having E WE~. In particular, the theory explains why
dry particles having high dielectric constants (E~ )E~) do
not aggregate, but that these particles start aggregating if
they adsorb a small amount of water [9]. The reason is
that the dry particles have a low conductivity (o. (cr~)
and thus 4'o&0, while the addition of water renders the

5 ——L

2cp+loz&
2hp+ C~

1 1O/7 6/2

FIG-. 4. The possible forms of the dependence of +" on fre-
quency depending on the values of cp/E'g and 0 p/of.

coefficient 4" determines the relative contribution of the
particle properties relative to those of the base Quid,
c /c& and o. /o. &, to the thermodynamic driving force
causing the aggregation. The possible forms of the
dependence of 4„" on frequency are depicted in Fig. 4.
Since '0"—+4 )0 when mt —+ ~, there always exists a
threshold value of the strength and frequency of the oscil-
lating electric field, above which the particles having
E As~ start aggregating regardless of the ratio o /cr~
(see Figs. 3 and 4). In fact %'„decreases monotonically
with increasing frequency (Fig. 4) only if

Ep 5 o. 8c +10'&——)—and
CI 2 0'y 2' +7cy

In contrast, when

particle conductivity higher than that of the base fIuid
(o~) crI) and, therefore, %o becomes positive. Experi-
mental data on corn starch/corn oil suspensions [51]pro-
vide support for this view. First of all, the authors of
Ref. [51] found that the addition of humidified corn
starch did not change the dielectric constant and conduc-
tivity of the oil. On the other hand, the increase in the
dielectric constant of the suspension with the particle
concentration and with their average water content,
which was observed in Ref. [51], signifies that the dielec-
tric constant of the dried corn starch particles is higher
than that of the oil and that it increases with the addition
of water. The dependence of the current density of the
suspension on the particle concentration, the average wa-
ter content of the particles, and the dc electric field
strength reported in Ref. [51] shows that, for a water
content less than 3% by weight, corn starch particles
have a conductivity less than that of the oil, whereas at
higher water contents the opposite applies. According to
the prediction of our theory then, the corn starch parti-
cles should aggregate when the water content exceeds 3
wt%%uo, i.e., when the particle conductivity becomes higher
than that of the oil. This result correlates well with ob-
servations using optical microscopy that the particles
formed chainlike structures under the action of the elec-
tric field for water contents higher than 3 wt % but only
incomplete chains and partial alignment of the particles
at lower water contents [51]. The theory also predicts
that the application of ac electric fields of sufficiently
high frequency would cause the particles to aggregate,
even for cases when these particles do not aggregate in dc
electric fields (Fig. 4). This phenomenon was observed in
suspensions of anhydrous particles consisting of a con-
ducting core and a nonconducting layer [52]. A more de-
tailed analysis of a suspension with composite particles is
beyond the present scope of our theory.

Although our theory does not deal with the rheology
of ER Auids, it provides qualitative insight regarding the
dependence of the electric-field-induced particle stress on
the particle-to-suspending liquid ratio of conductances
when the microstructure of the suspension has attained a
fully developed state. Specifically, since an increase in
the stress of the suspension due to an applied electric field
is determined by the interparticle forces, its value in dc
electric fields should be proportional to the coefficient +o
in Eq. (20) for the energy of the dipole-dipole interaction
between conducting particles. As shown above, when
Ep/E f )5/2, Vo increases initially with increasing cr~/o ~
to a maximum at o. /o. &=5/2 and then decreases. The
efFect of the water content on the strength of the corn
starch/corn oil suspensions for a particle volume fraction
between 0.06 and 0.28 [51] refiects the predicted relation-
ship. Experimental data reported in Ref. [51] cover the
broad range (between 10 ' and 10 ) of variations of the
ratio of the conductivity of the suspension, o.„to that of
the oil, o.&, in that the maximum of the strength of the
suspensions (the difFerence between the stress at shear
strain equal to 5 with the electric field and that without)
in applied electric fields of 0.5—2.5 kV/mm was found to
occur within the range of the water content from 6 to 10
wt%%uo when cr, /o.

&
—1 —10 and cr -cr&. The variation of
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the electric-Geld-induced static yield stresses produced by
six semiconducting poly(acenequinones) dispersed in a
chlorinated hydrocarbon oil, Cereclor 50LV from ICI, at
a volume fraction of 0.35 also shows a peak when plotted
vs the bulk conductivity of the particles in their initial
state [2]. In experiments reported in Ref. [2] the bulk
conductances of the poly(acenequinones) ranged from
10 to 5 X 10 S/m, with the dc electric fields varying
from 1.2 to 3 kV/mm. The static yield stresses were
found to peak for values of the conductivities between
10 and 10 S/m. These values are much higher than
the conductivity of Cereclor SOLV, 4.6X 10 S/m, mea-
sured in Ref. [53], but are of the same order of magni-
tude as the conductivity of the suspension, as calculated
from the data presented in Ref. [2], of the current density
as a function of the static yield stress; the current density
of —1 —2 A/m corresponds to the electric field of -2—3
kV/mm. A possible explanation for this discrepancy is
that the values of o. and O.I in a suspension could differ
by an order of magnitude from those of the pure sub-
stances.

The relation between the electric-field-induced particle
stress and the coefficient 4 in Eq. (21) for the energy of
the dipole-dipole interaction between conducting parti-
cles in oscillating electric fields clarifies the reason why
there exists a correlation between the ER activity of a
suspension and its dielectric spectrum. Such interrela-
tionships were recorded in many papers (see the review
provided by Ref. [1]). As seen from Eq. (21), 4„increases
when the difference between the time constant of the par-
ticles, e /o, and that of the suspending liquid, ef/cJ f,
increased, i.e., with increasing (e~/o~ —s//o/) . Ac-
cording to the Maxwell-%'agner expression for the com-
plex permittivity of a suspension (see Sec. IVA), this
difference also determines the contribution of the interfa-
cial polarization to the dielectric response of the suspen-
sion.

Reference [53] presented results of a detailed study of
the initial stages of the aggregation of particles suspended
in an ER Quid in which the time variation of the electric-
field-induced change in the diffuse optical transmittance
of a sample was measured. The ER Quid consisted of
particles of hydrated lithium salt of poly(methacrylic)
acid suspended, at a concentration c =0.35, in a hydro-
carbon oil, Cereclor 50LV. The strength of the dc elec-
tric fields ranged from 0.05 to 2.4 kV/mm, and a few
measurements were made at 300-Hz ac electric fields.
Several parameters of the ER Quid were estimated:
a —1.1 pm, g -0.089 Pas, o.~-4.6X10 S/m, and
Ef/Eo 8. 1, and therefore t/ —16 ms. It was found that
the time for structure formation, t„varied as Ep for ac
and low dc electric fields and as Ep ' at high dc electric
fields. Utilizing the expression in Ref. [39] for the time
of structure formation in a suspension of nonconducting
particles in a nonconducting Quid when Brownian motion
can be neglected, the relative polarizability P of the parti-
cles was estimated in Ref. [53] and yielded t' -0.39 for
low dc electric fields, while for ac electric fields
P -0.037. The crossover in the electric field dependence
of the time for structure formation was attributed in Ref.

[53] to the presence of monopole forces, i.e., to a nonzero
surface charge of the particles.

The experimental data reported in Ref. [53] fit natural-
ly into the scheme of the aggregation processes predicted
by our theory. In particular, the relation t, -Ep corre-
sponds to the regime of the slow aggregation in dc elec-
tric fields where t, » t, while the relation t, -Ep cor-
responds to the transition region between the regimes of
slow and rapid aggregation in dc electric fields where
t, —t . The aggregation in 300-Hz ac electric fields cor-
responds to the regime where t, is much larger than both
t~ and 2'/co, and the interparticle forces are determined
by the time-averaged value of the dipole-dipole interac-
tion. For these cases, the parameters estimated in Ref.
[53] correspond to the coefficients in Eqs. {37) and (36),
i.e., Vp-0. 39 and 4" -4„"-0.037 since, for 300-Hz ac
electric fields, 2~ft —30. On substituting the parameters
of the ER fiuid into Eqs. (33) and (34), we estimate the
magnitude of the dc electric field which induces aggrega-
tion: E„-44 V/mm for t(&t~ and E,„—14 V/mm for
t » t . Hence the experiments in dc and ac electric fields
were performed under conditions such that A »A„,
which is the case when Eqs. (36) and (37) can be used to
evaluate the time scales of rapid and slow aggregations.
On the basis of Eqs. (38) and (39) we then obtain that the
slow aggregation should occur at Ep (&Ep 0.87
kV/mm, while the rapid aggregation should occur at
Ep »Ep -2.83 kV/mm. Thus the intermediate regime
in which t, -Ep should lie in the range from 0.87 to
2.83 kV/mm, as revealed by Ref. [53]. For this range, an
increase in the strength of the electric field is accom-
panied by a decrease in the interfacial polarization of the
particles, which decreases from its value corresponding
to the case of conducting particles in a conducting liquid
[Eq. (20)] to that for nonconducting particles in a non-
conducting liquid [Eq. (19)].

VI. USEFUI. PREDICTIONS
AND CONCI. UDING REMARKS

In this section we summarize the main results of our
theory, which provide some insight into how dipole-
dipole interaction between the particles in ER Auids can
be optimized. First of all, it should be emphasized that,
in dc electric fields, the interparticle forces are deter-
mined by the interfacial polarization, which in turn de-
pends on the interparticle forces since the latter govern
the ratio of the time scale for the particle motion, t„ to
the time scale for the dielectric relaxation,
t~ =(cz+2c/)/(o~+2o/). We resolved this feedback re-
lation in two limiting cases: relatively weak and strong
electric fields.

For weak dc electric fields [Eq. (38)], when t, »t and,
hence, when the interfacial polarization adjusts itself to
changes in the interparticle distances, the energy of the
dipole-dipole interaction is described by Eq. (20). The
electric-field-induced aggregation of the particles will
then occur [Eq. (34)] only if a certain relation between the
ratio of the particle-to-suspending liquid dielectric con-
stants, c. /cI, and that of the conductances, o.p/0 f is



1692 BORIS KHUSID AND ANDREAS ACRIVOS 52

satisfied [Eq. (35) and Fig. 3]. Therefore, the optimal
way of increasing the dipole-dipole interaction between
the particles and the thermodynamic driving force re-
sponsible for the aggregation process would be to main-
tain the ratio of the particle-to-suspending liquid conduc-
tances, cr lo& —1 —10, and to increase the ratio of the
particle-to-suspending liquid dielectric constants. On the
other hand, raising c /cf while keeping both o. and of
fixed is also accompanied by an increase in the dielectric
relaxation time, which in turn narrows the range of elec-
tric fields where this mode of interfacial polarization can
occur [Eqs. (38) and (40)]. However, as seen from Eqs.
(38) and (40), this range can be extended by raising the
vise. osity of the suspending liquid, qf.

On the other hand, for strong dc electric fields [Eq.
(39)], when t, « t~ and, hence, when the interfacial po-
larization is the same as that for nonconducting particles
in a nonconducting liquid, the energy of the dipole-dipole
interaction is described by Eq. (19). In this case, the in-
terparticle forces are determined only by the ratio of the
particle-to-suspending liquid dielectric constants and a
threshold value of the strength of the electric field always
exists [Eq. (33)], above which the particles having E HEI
will start aggregating as soon as the electric field has been
applied. However, if Eq. (34), which involves the ratio of
conductances, is not satisfied —cf. also Fig. 3—the ran-
dom arrangement of the particles will retain its stability
in the long-time limit.

For ac electric fields, however, the interfacial polariza-
tion and the energy of the dipole-dipole interaction be-
come frequency dependent, and the behavior of the sus-

pension depends on the relative magnitudes of the three
time scales, i.e., tz, t„and 2m/co. Specifically, for weak
electric fields and intermediate frequencies, when t, is
much larger than both t and 2~/co, the interparticle
forces are determined by the time-averaged value of the
dipole-dipole interaction [Eq. (21) and Fig. 4]. In this
case, there always exists a threshold value of the strength
and frequency of the oscillating electric field, above
which the particles having E WE& start aggregating re-
gardless of the ratio o. /of. The other cases, treated in
detail in Sec. V, have much more in common with those
in dc fields.

To understand the nature of the effect of the interfacial
polarization on the electric-field-induced aggregation of
the particles beyond the model of a leaky dielectric, it
would be necessary to consider the general case of parti-
cles exhibiting intrinsic dispersion. The theory developed
above provides a framework for embarking on such a
generalization.

Note added in proof The p.rediction of disklike forma-
tions is in agreement with recently published [M. Trau, S.
Sankaran, D. A. Saville, and I. A. Aksay, Nature 374,
437 (1995)] experimental data on the electric-field-
induced pattern formation in BaTi03/castor oil disper-
sions.
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