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We develop one-dimensional equations that describe the dynamics of a highly compressible fluid in the
presence of gravity. We apply these equations to a fluid near its liquid-vapor critical point and discuss
how the coupling between gravity and compressibility affects the fluid bulk response to temperature
changes. To illustrate the effect of this coupling on the equilibration process, we present numerical solu-
tions for a one-phase critical fluid in the earth’s gravity subjected to a sudden temperature step at the
boundaries. We find that the adiabatic effect is responsible for accomplishing most of the temperature
change in the fluid, within seconds, a rate far faster than that of thermal diffusion. On the other hand,
the stratification of density under gravity takes hours, although this time is smaller than the diffusion
time in the corresponding zero-gravity situation. Unlike the zero-gravity case, the adiabatic effect
creates a small but significant temperature gradient immediately after the quench. As a consequence,
diffusion in the fluid bulk begins earlier than it would otherwise. This gradient does not induce buoyant
convective flow in the bulk, however, because of the fluid’s compressibility. In the time range studied, no
single exponential mode has emerged to dominate; a long intermediate regime spans a long period of
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time (many hours), which could lead to erroneous interpretation of experimental results.

PACS number(s): 44.10.+1i, 66.10.Cb, 64.60.—1i, 05.70.Jk

I. INTRODUCTION

Near the liquid-vapor critical point, a fluid becomes
highly compressible and highly expandable: the
coefficients of isothermal compressibility and isobaric
thermal expansion both diverge strongly. This diver-
gence plays a major role in the thermal equilibration of
near-critical fluids. It has been shown that heat transfer
into a near-critical fluid can occur rapidly via a mecha-
nism that creates adiabatic pressure changes in the bulk
of the fluid [1-7].

This adiabatic mechanism, usually neglected in ordi-
nary incompressible fluids, can be briefly described as fol-
lows. If a temperature perturbation (such as a cooling
step) is applied at the boundary of a fluid, it causes a con-
traction of the fluid near the boundary. As a result, in
the interior of the fluid, the pressure drops uniformly and
adiabatically and this causes the temperature to fall.
Since the pressure changes are mediated by sound waves,
the temperature change occurs much faster than could be
accomplished by thermal diffusion acting alone.

This mechanism becomes particularly noticeable near
the liquid-vapor critical point, as the fluid becomes high-
ly expandable and compressible. In fact, we know now
that, given the appropriate temperature changes at the
boundary, the adiabatic mechanism dominates the early
stages of thermal equilibration and even leads to a
surprising critical speeding-up phenomenon [1,2,5]. This
is to be contrasted with the well-known critical slowing
down associated with thermal diffusion, occurring in the
late stage of equilibration.

Using the adiabatic mechanism, it became possible to
explain the puzzling short equilibration times of tempera-
ture observed in some early critical-point experiments
[8,9]. More recently, several earth-bound and low-
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gravity experiments have unambiguously confirmed the
presence of the mechanism [5-7,10] and have observed
the critical speeding-up phenomenon [5].

Following these results, attention has shifted towards
the equilibration of density variations in these fluids and
the role of these variations in the interpretation of some
measurements. While it is now established that the
response time of the fluid temperature is fast compared to
the diffusion time, the corresponding rate of density
equilibration has not been well understood [11-13] and,
in some instances, remains problematic. As an example,
we take the results of recent C, measurements performed
by Straub and Nitsche [13] in microgravity. The investi-
gators did not observe a strong enhancement of the C,
peak as expected and this behavior has been attributed to
density variations in the fluid and their poorly under-
stood relaxation times.

The problem of density equilibration is inherently very
important for understanding earthbound experiments on
critical fluids. Under gravity, a highly compressible criti-
cal fluid collapses under its own weight to form a large
density gradient. This density stratification restricts the
precision of measurements of fluid properties near the
critical point [14]. Several authors have investigated
both theoretically and experimentally the effect of the
density gradient on the interpretation of measurements
taken in an equilibrium state [14—-16]. However, the dy-
namics of the density profile during equilibration have re-
ceived little attention, mostly because the focus has been
on the anomalous properties of the fluids, not on their hy-
drodynamics.

In an early paper, Gitterman and Steinberg [17] ad-
dressed the thermal equilibration of a critical fluid under
gravity in terms of thermal diffusion only. They exam-
ined the effect of a gravity-induced density gradient on
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the relaxation time in a one-dimensional diffusion equa-
tion. For a linear density gradient, Berg [18] recently
gave an estimate of the gravity effects on the fluid dynam-
ics and concluded that the final equilibration time con-
stant is nearly the same in the presence or absence of
gravity. Onuki and Ferrell [4] also estimated the effect of
gravity on the dynamics and suggested a modification to
the zero-gravity equations to include the gravitational
field.

One may expect, however, that these results are not
valid very close to the critical point. Indeed, the density
profile becomes highly nonlinear, especially in the tem-
perature range where the fluid properties are well charac-
terized by their asymptotic behavior approaching the
critical point [i.e., for (T—T,)/T, <10™% see [14] and
references therein]. Further, the analysis of these calcu-
lations do not take into account the effects of the early
adiabatic responses on the late stage of equilibration
dominated by diffusion. As will be shown below, it turns
out that these effects are very important for understand-
ing the overall equilibration. Finally, it is frequently sug-
gested that convective flows must play a significant role
in density equilibration since temperature gradients of
the wrong sign can easily lead to a hydrodynamic insta-
bility of the stratified fluid. As we shall see, however, the
adiabatic response makes it possible to avoid such insta-
bilities.

Most experimental observations indicate that the time
to form the gravity-induced density profile is undoubtedly
rather long, on the order of hours to days [12]. As far as
we know, the only reported measurement of the local
density equilibration times appears to be the recent one of
Zhong and Meyer [19-21]. Using a one-dimensional
model, they also calculated effective relaxation times for a
critical fluid under the presence of gravity and found
good qualitative agreement with experiment. Such obser-
vations and calculations of long density equilibration
times seem paradoxical in light of the fast equilibration
times of temperature (measured in seconds) confirmed by
recent investigations [5-7,10,13].

The purpose of this paper is to explain this difference
by extending our previous zero-gravity study [2,22] to in-
clude the effects of gravity on heat transfer. Specifically,
we shall derive a pair of equations appropriate to describe
heat transfer and slow flow in a compressible, pure fluid,
strongly affected by gravity, in a one-dimensional, slab-
like geometric configuration. These equations completely
take into account one-dimensional fluid motions due to
the effects of thermal expansion and gravitational
compression, which can cause large density variations in
the compressible fluids. Somewhat surprisingly, the
equations are similar in form to those introduced in [2]
for the corresponding zero-gravity case.

To illustrate the combined effects of the adiabatic
mechanism and gravity, we shall present results from nu-
merical solutions of our equations for a one-phase critical
fluid responding to a temperature quench at the boun-
daries. In contrast to our earlier paper [2], where we con-
centrated on the early adiabatic regime, in the present
work we have extended the numerical calculations much
further in time, following some later stages of thermal re-

laxation together with the corresponding process of den-
sity stratification under gravity. In the numerical
method, we allow all thermodynamic coefficients to vary
as a function of time and space, accounting for all the
nonlinearities due to the temperature and density varia-
tions through the equation of state.

We reserve a detailed discussion of the results for Sec.
IV below. We can summarize the main points, however,
as follows. First, we find that, under gravity, thermal
diffusion becomes important at an earlier time than the
corresponding time for the zero-gravity case [1-2,4]: a
small but significant temperature gradient forms in the
bulk rather quickly during the adiabatic process. This
gradient causes the temperature to dip slightly below the
final equilibrium temperature near the top of the fluid,
reversing the direction of the heat flux at the top bound-
ary.

Second, the process of diffusive equilibration is not well
characterized by a single exponential decay time. No
fundamental mode emerges to dominate the relaxation of
the density variations, at least for many, many hours. In-
stead, a long transient regime is observed, intermediate
between the regime dominated by the adiabatic mecha-
nism and the expected diffusive regime dominated by a
single exponentially decaying mode. This conclusion is
consistent with the measurements and calculations of
Zhong and Meyer [19-21]. Certain features of this inter-
mediate regime remain unexplained, but the early adia-
batic process appears to leave a long-lasting mark on the
equilibration process.

Finally, it is natural to question whether it is reason-
able to model the fluid motions as one dimensional.
When cooling the fluid from the boundaries, it is easy to
imagine that temperature gradients, especially near the
top boundary, would tend to generate significant
buoyancy-driven convective flows. However, we find,
first, that the rapid adiabatic response makes it possible
to avoid the creation of adverse temperature gradients
near the top. Furthermore, the bulk of the fluid remains
mechanically stable against convection, an effect essen-
tially due to the compressibility of the fluid and the adia-
batic nature of the initial response.

II. EQUATIONS FOR SLOW FLOWS WITH GRAVITY

Our starting point is the general hydrodynamic equa-
tions for a compressible fluid with heat conduction and
gravity. We presume that the fluid is in local equilibri-
um, with an equation of state appropriate for conditions
near the critical point (see Sec. III below). Energy dissi-
pation through viscosity is neglected because its influence
is small in the one-dimensional flows that we are consid-
ering. The material time derivative will be denoted by

D d d

Dr - o +v 3% (1
The equations are as follows, expressing the conservation
of mass, momentum, and energy [23]:

Dp du_
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Here p is the density, u the velocity, P the pressure, T the
temperature, s the entropy per unit mass, g the gravita-
tional constant, and A the thermal conductivity. The
fluid is assumed to be contained in a slab of height (or
thickness) L; we assume 0 <z < L.

It will be convenient to use the pressure and tempera-
ture as the fundamental thermodynamic variables. Thus,
by expressing s=s(T,P) and p=p(T,P) through the
equation of state, we rewrite, as in [2], the continuity and
energy equations as

DP DT | du
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Here k is the isothermal compressibility, a, is the iso-

baric thermal expansion coefficient, and ¢, and c, are the

specific heats at constant pressure and volume. These are
defined by
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The system of equations (3), (5), and (6) can be used to
study the influence of hydrodynamics on heat transfer, on
a time scale appropriate for resolving sound waves (or
shock waves). Here we are interested in dynamic
behavior that occurs very slowly compared to the time it
takes for sound waves to cross the cell. A systematic pro-
cedure for obtaining simplified equations for compressible
flows on long time scales was introduced by Majda and
Sethian [24] in the context of combustion theory. (See
also [25] and [26].)

In Appendix A we apply this procedure. We nondi-
mensionalize the equations and estimate the size of the
various terms, taking parameters appropriate to a typical
experiment of interest. We find that the acceleration
term pdu /3t in Eq. (3) has by far the smallest contribu-
tion, at least two orders of magnitude smaller than the
rest of the terms. To obtain a simplified set of equations,
therefore, we neglect this term. Besides the viscosity, we
neglect only this term. The simplified momentum equa-
tion that results is a hydrostatic pressure equation

oP __

Fy plz,t)g . 9)
Integration yields

P(z,t)=Pa(t)-gfozp(h,t)dh ) (10)

Here P,(t) is the pressure at the bottom wall and the in-
tegral term represents the total weight of the fluid below

the height z. By denoting the integral term in Eq. (10) by
P,, we can write the pressure as

P(z,t)=P,(t)+Py(z,t), (1n

which is similar to the equation suggested by Onuki and
Ferrell [4].

We do not intend to neglect the effects of fluid velocity
on density changes in Egs. (5) and (6). However, at this
point the determination of the velocity can be entirely
decoupled from the determination of the pressure and
temperature fields [25]. This is done by introducing the
material coordinates defined by

z'=f0’p(h,t)dh, t'=t . (12)

Let M= [[p(h,t)dh={p)L be the total mass of fluid in
the cell. ({p) is the average density in the cell.) The
change of variables (z,¢#)—(z’,¢') means that derivatives
change via

8 3 D _ B

3z Paz’ Dt o
where the boundary conditions #(0,z)=u(L,?)=0 are
applied. The meaning of these formulas for changing
variables may be stated as follows. Since z’ denotes the
total mass of fluid lying below height z at time ¢, keeping
z' fixed means following a particular material layer of
fluid in the cell. This means that the material derivative
changes into the partial time derivative.

Using the new coordinates, the pressure in Eq. (10)
may be expressed as the difference of a time-dependent
term P,(t'), the pressure at the bottom of the cell, and a
time-independent term gz’. Then it follows that
0P /dt'=dP,/dt'. An equation for this quantity may be
obtained by integrating Eq. (5) over the cell, using
u(0,t)=u(L,t)=0. What results is the system of equa-
tions

(13)

P(z',t'")=P,(t')—gz', (14)
o _ [, e |[ar| 4P _ 1 aTJ 1)
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= - . (16)
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Equation (16) expresses the conservation of total mass.
Notice that both integrals in Eq. (16) are performed over
the total linear mass M =(p)L.

Equations (15) and (16) are coupled integro-differential
equations that, along with Eq. (14), represent the basic
equations studied in this work. In this system, the densi-
ty p is determined from P and T through the use of the
hydrostatic pressure equation (14) and the equation of
state. Thereby, this system, Egs. (14)-(16), describes the
dynamics of the temperature and pressure fields in the
fluid under gravity. Once these equations have been used
to find T and P as functions of the material coordinates
(z',t"), one can determine T and P as functions of height
z and time ¢ by computing
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(T or P can be plotted vs z parametrically).

It is interesting to compare the system of equations
(14)—(16) with the corresponding equations used in [2] for
the zero-gravity case. The latter equations are

h' (17)

P(z,1)=P,(1) (18)
c dP

£ - € p—zﬂ:i% 2L ag)

e - °Lap%{—dz (20)

dt foLKsz )

The new equations (14)-(16) are more general than
Eqgs. (18)-(20) since, in addition to the effect of gravity,
the effects of motion on the density changes due to expan-
sion and contraction are included. Only the inertial
forces due to fluid acceleration are neglected in Egs.
(14)-(16).

Nevertheless, the functional forms of Egs. (15) and (16)
are strikingly similar to Eqs. (19) and (20) studied in [2]
for zero gravity. Consequently, the numerical procedure
used to solve them is little different from that used in
[2,22]. More interestingly, the role of each term in the
new equations can be interpreted in a manner similar to
that in [2]. In particular, Eq. (16) describes the time-
dependent pressure changes responsible for the fast, adia-
batic temperature response in pure fluids near the critical
point. The effect of gravity appears explicitly only in the
hydrostatic equation (14). The new term P,=—gz’ is
what allows the formation of the nonuniform equilibrium
density profile, through the use of the equation of state at
the constant equilibrium temperature.

The adiabatic mechanism of heat transfer due to the
presence of the pressure term in Eq. (15) remains effective
in the presence of the gravitational field. As the critical
point is approached, the divergence of c,, on one hand,
diminishes the influence of the right-hand side of Eq. (15),
confining thermal diffusion to the region very near the
fluid boundaries where the temperature gradient is large.
On the other hand, ¢, /clJ —0 and the adiabatic term on
the left-hand side dominates the time dependence of tem-
perature. Compared to the zero-gravity case studied in
[2], the effect of the pressure term in Eq. (15) on the
overall temperature dynamics in the fluid can be different
because of the density variations caused by gravitational
compression and thermal expansion or contraction.

III. NUMERICAL SOLUTION

In the following, we present numerical solutions of
Egs. (15) and (16) for a critical fluid subjected to a tem-
perature step at the boundaries. Physically, this compu-
tation is meant to model a boundary temperature change
that occurs gradually compared to the acoustic time scale
but rapidly compared to the relaxation times of interest.

We chose xenon as a working fluid since its critical
properties are known, including its equation of state.

Near the critical point, several models have been pro-
posed in the literature for the equation of state, which in-
clude the various scaling laws in a consistent way (see
[14] and references therein). Here we use the “restricted
cubic model” defined in terms of the parametric variables
r and 6. In Table I we list the various thermodynamic
functions as well as the values of the critical exponents
applied in this work. For the thermal conductivity, we
apply the approach explained in [27,28] to calculate the
background term and the divergent part near the critical
point. Moreover, for consistency, we take from Ref. [27]
the expressions describing the transport coefficients as a
function of temperature and density for xenon (although
more recent measurements on fluid viscosity have been
reported [29]).

The numerical method involves the finite-difference ap-
proximation of functions of the two variables z’ and
t=t'. The fluid’s linear mass M is divided uniformly into
N small segments, or “spatial” steps, of constant size
8z'=M /N, N being an integer number. To ensure con-
vergence, the spatial and temporal steps 6z’ and 8¢ must
satisfy the condition D f8t /82’2<%, a criterion derived
for the thermal diffusion equation. Here D,=pl/c,,
where the values in this expression are calculated at the
final temperature and the critical density. Also, we find
that N must be kept large enough to ensure good resolu-
tion, especially near the boundary in the early, fast adia-
batic regime. Typically, we take N =400 for the compu-
tations in this work. This number represents a reason-
able compromise between computational cost and accura-
cy.

The computation proceeds stepwise according to the
flowchart in Fig. 1. We start by calculating the initial
density distribution at the chosen initial temperature T3,
using the expression given by Eq. (14) for the pressure
and the equation of state (see Appendix B for details).
For this purpose, we take 2z’ in the interval
—M/2<z'<M/2 and set z'=0 as the reference point
corresponding to P(p.,T;), T; being the initial equilibri-
um temperature. [A corresponding change is made in the
ranges of integration for the integrals in Eq. (16).]

After each time step, the new temperature distribution
is computed. This is followed by the calculation of the
new density distribution, calculated from the equation of
state P(z',t)=P[p(z',t),T(z',t)], expressed in (r,0)
space. Then, we take the old value of pressure P at point
z' and the value of the temperature 7T newly calculated at
the same location and determine the new value of the
density. Appendix B gives the details of the numerical
method applied to switch back and forth between (P, T')
space and (r,0) space. From the newly calculated densi-
ty and temperature distributions, we evaluate the new
values of the various thermodynamic coefficients at each
spatial point. Then we determine the pressure change al-
lowing the calculation of the new value of the time-
dependent part of pressure P,(¢). The process repeats:
from the pressure change, we go back to the heat trans-
port equation and advance the temperature. Notice that,
with this approach, all the thermodynamic coefficients
are allowed to vary spatially and in time.

To illustrate the results, we start with the example of a
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TABLE 1. Restricted cubic model equations used in the calculations. For details, see [14] and references therein.

Dimensionless T*=T/T,, P*=P/P,, p*=p/p., ¢, =c,T./p.P.
units
Variables AT*=r(1—5%0%)
Ap*=rPkO(1+c6?)
Symmetrized Kf=(k/a)y™7
compressibility
Pressure P*=(14+5.92AT*)+rPab(1—6*)+r* *ak[6H(1—6*)(1+c6)—£(0)]
Pressure (8P* /0T*),=5.92+r'~%aks(0)-+(1+Ap* )rP~1aBO{S(1—67)(1+3c6%) — (1— 02, 1—c6?)} /q(0)
coefficient
Heat capacity e /T*=—14.83/T*+r %ak{(1—a)(1—3c6%)s(8)—B(1+c6%)6s'(0)} /q(6)
Correlation E=r""ER(0)
length
Auxiliary £(6)=—0.770+2.3596%— 1.6608* —0.0596°
functions 5(6)=1.456—2.2746*—0.0736*

g(0)=1—0.2816*—0.1666*
R(6)=1+0.166*
Constants a=15.4
b2=1.2766
k=0.89
¢=0.055
Exponents a=0.11
p=0.325
y=1.24
v=0.63
5=4.85
Critical values T.=289.72 K
of xenon P,=5.84X10° Pa
p.=1110 kg/m?
Amplitude of £=178X10"1m
correlation length

Definition of the . xenon sample whose boundaries are rapidly cooled from
START | functions and e s T,=T,+20 mK to T,=T,+10 mK. The fluid is initial-
parameters ly in thermal equilibrium at 7}, with a fully developed
density gradient. The fluid’s total linear mass is taken to
Y be M=p L, where L =5 mm. Because of the choice of

rm— g:;z}‘t‘;“;rgg’lei"“i“‘ Set cime step the origin z’, the actual thickness of the fluid slab is
sotution TE |-a—] and Compute - and
initial: Cv, Cp,... spatial step M2 dz’
L= [
-M/2 p
ggnf;gg;fu'r‘:“' " | Compute new This is extremely close to L because of the near symmetry
distribution density profile of the density profile [see Fig. 3(a)] and so the average
l density {p)=M /L, is very close to p,. The fluid mass
M is divided into 400 segments and the time step is
C -
Compute new 81=0.05s. '
We show in Fig. 2 the temperature profile in the first
i Y 60 s. While the effects of diffusion remain confined near
Calculate change the boundaries, the temperature in the bulk of the fluid
of adiabatic pressure . . .
has changed quickly due to the adiabatic effect. Com-
* pared to the corresponding zero-gravity case where the
 yes Comtine caloutation temperature change is uniform in the bulk (far from the

boundary layer), a small, almost linear temperature gra-

* dient develops (but only in these early times). The gra-
End dient is negative, raising the concern that convective
flows may be generated physically. Why this gradient
forms and its relation to hydrodynamic stability will be
FIG. 1. Flowchart used to solve numerically Egs. (14)-(16). discussed in some detail below.
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FIG. 2. Temperature profiles are shown along the height of a
one-dimensional sample of xenon under gravity immediately fol-
lowing a temperature quench from T;—7.,=20 mK to
T;—T,=10 mK. Each profile is labeled by the time following
the quench.

But notice also that the temperature locally near the
top boundary has dropped below the final temperature.
This surprising phenomenon is evidently due to the for-
mation of the small temperature gradient, at the same
time that the adiabatic mechanism is acting to lower the
temperature at an almost uniform rate in the bulk. When
the temperature near the top boundary arrives close to
T, or is slightly below, there remains a sharp tempera-
ture gradient at the bottom boundary, causing a further
contraction of the fluid there and continuing to lower the
pressure in the bulk via the adiabatic effect. It appears
that this effect continues roughly until the temperature
gradient near the top reverses sufficiently to create a
balancing effect. Fluid will expand near the top bound-
ary, with an effect on pressure changes opposing that of
the contraction near the bottom. When the two effects
achieve approximately equal strength, the adiabatic
mechanism ceases to strongly affect the bulk of the fluid.

In Fig. 3(a) we show the dynamics of the density profile
corresponding to the temperature profile shown in Fig. 2.
While the temperature in the bulk has significantly ap-
proached its final temperature T, within the first minute
(close to 99% of the 10-mK step, Fig. 2), the change of
density in the bulk is very small compared to the change
needed to adjust to the final density profile. Thus the adi-
abatic mechanism has little effect on the density profile,
as already explained by Onuki and Ferrell in [4].

Figures 3(b) and 3(c) show in detail the large density
variations near the boundaries that are due to thermal
diffusion. Because of the large thermal expansion
coefficient of the critical fluid, the fluid at the boundaries
experiences a significant change of density after the sud-
den temperature drop.

The large negative temperature gradient and dense
boundary layer at the top suggest that some amount of
convection may begin in the top boundary layer, al-
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FIG. 3. (a) Density-profiles, in reduced units (p—p.)/p,., are
shown along the height of a one-dimensional sample of xenon
under gravity immediately following a temperature quench
from T;—T,.,=20 mK to T;—7,=10 mK. (b) Details of the
density changes as well as the initial and final density profiles
are shown near the top boundary. The time in seconds follow-
ing the quench labels each profile. (c) Details of the density
changes as well as the initial and final density profiles are shown
near the bottom boundary. The time in seconds following the
quench labels each profile.
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though it is possible that viscosity or dynamic processes
might retard the development of such convection until
the bulk temperature near the top wall is forced below
the wall temperature by the adiabatic effect and a positive
temperature gradient is established in the boundary layer.
A multidimensional hydrodynamic stability analysis
would appear to be necessary to assess the influence of
convection during the initial stages of the quench.

Our analysis here will proceed under the assumption
that the flow remains essentially one dimensional and
that any convection in the top boundary layer has little
influence on the later dynamics. We point out, however,
that the sudden change of temperature that we have im-
posed here is an idealization of some more gradual ad-
justment of temperature on the boundary and it is rela-
tively easy to alter the cooling procedure to completely
avoid the creation of a negative temperature gradient in
the top boundary layer. The bottom wall should be
cooled first and the temperature at the top wall brought
down at a rate designed to trail the behavior of the bulk
temperature as determined by the adiabatic effect. In an
experiment, such a delay could be achieved without re-
quiring separate control of top and bottom temperatures
by using materials of different heat conductivities for the
top and bottom walls, for example, which respond at
different rates to changes in bath temperature.

In Fig. 4 we plot computed temperature profiles corre-
sponding to such a modified cooling procedure. In this
computation, the temperature at the bottom wall is
stepped from 7;=T,+20 mK to 7,=T7.+10 mK sud-
denly, but the temperature at the top wall is decreased
more gradually; the temperature as a function of time at
the top wall is T, +(T;—T,)/(1+3t) mK. Due to the
influence of the bottom boundary layer via the adiabatic

2.5 T T L T

height (mm)

180s\ \60s\20s 10s

25 L
-0.2 0 0.2 0.4

T-T, (mK)

FIG. 4. Temperature profiles are shown along the height of a
one-dimensional sample of xenon under gravity immediately fol-
lowing a sudden temperature quench at the bottom wall and a
gradual decrease of temperature at the top wall of functional
form Ty +(T;—T;)/(1+3¢). The initial and final temperatures
are 7;—T,=20 mK and T,—7,.=10 mK, respectively. Each
profile is labeled by the time in seconds following the tempera-
ture quench at the bottom wall.
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effect, the temperature in the bulk near the top remains
below that of the top boundary and the gradient in the
top boundary layer remains positive throughout the com-
putation. After 180 s, the temperature profile is very
close to that obtained from the sudden quench as illus-
trated in Fig. 2. Profiles at much later times are indistin-
guishable. Corresponding density profiles in the top
boundary layer are plotted in Fig. 5. Here we notice that
unlike the dense, possibly unstable layer seen in Fig. 3(b)
for a sudden quench, the gradual temperature change at
the top boundary is helpful in avoiding the appearance of
such a layer. (Note that in the absence of the adiabatic
effect, in order to avoid negative temperature gradients at
the top, the top wall temperature would have to be de-
creased much more slowly, on the time scales of hours as-
sociated with heat diffusion.)

The appearance of the temperature gradient in the
bulk very early in the equilibration can be attributed to
the adiabatic effect and explained by the presence of the
gravitational field and the sensitive dependence of ¢, on
temperature near the critical point. We may understand
this as follows. Taken with respect to material coordi-
nates, the pressure gradient and temperature gradient are
always related to the entropy gradient via

as _[as | ar [as | ap

oz’ oT |, 9z’ oP |, o0z’
_% 3T _¢=¢ [aT | 8P on

T 9z’ T oP paz’

In the initial equilibrium state, temperature is constant,
so 87 /9z'=0. From Eq. (14), the pressure gradient is al-
ways given by 0P /9z'= —g. As long as the processes in
the bulk proceed adiabatically, the entropy gradient and

2.5 T

LA B A N B

|

T T T T T

initial

24 F

height (mm)

-0.04 -0.03
P=p)/p,

FIG. 5. Details of the density changes as well as the initial
and final density profiles near the top boundary corresponding
to the temperature profiles of Fig. 4.

-0.02
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pressure gradient will remain the same. As the values of
temperature and pressure change, however, the
coefficient (ds /3P ), in Eq. (21) will change and it is this
change that creates the temperature gradient.

We may estimate the magnitude of this temperature
gradient generated by the adiabatic mechanism as fol-
lows. We shall apply the superscripts (i) and (a) to
quantities corresponding, respectively, to the initial time
and a time after the adiabatic mechanism has largely
equilibrated the temperature near the final value 7'/ (see
Fig. 2). According to the above considerations and Eq.
(21), we find that

Cp(,a) aT(a) (a) (1)
T(ll) az’

B
JP

85
aP

(22)

T T
To obtain an approximation for the magnitude of the re-
sulting temperature gradient, it suffices to observe that
the coefficients in Eq. (22) depend on (P,T) most sensi-
tively through the fact that ¢ ~AT ™7 along the critical
isochore, where AT=(T—T_,)/T, and y=1.24. Thus,
making the approximations (37 /0P),=T,/5.92P,
TW=TW=T,_andc, /¢, =0, we find that

AT(i)
AT(a)

aT(a) _ aT(a)

_ PpET,
9z P oz

5.92P,

~

-7
] . @3

For the quench from 20 to 10 mK above T,, Eq. (23)
yields the value 87'?/3z~—0.5 mK/cm, which com-
pares favorably with the slope observed in Fig. 2 (T, P,,
and p, values are listed in Table I).

It is striking that the temperature gradient generated
in this way is negative, i.e., temperature decreases with in-
creasing height, as in Fig. 2. This naturally causes one
to consider whether the one-dimensional flow might be-
come unstable and develop into multidimensional,
gravity-driven convective flows. A fundamental criterion
for the mechanical stability of an inviscid, compressible
fluid in mechanical equilibrium is that if an element of
fluid rises adiabatically, it will remain denser than the
fluid it displaces. As discussed by Landau and Lifshitz
[23], the ensuing condition for the absence of convection
is that the entropy increases with height, i.e.,

O >0. (24)
oz
(This presumes that the fluid expands on heating at con-
stant pressure, i.e., a,>0.) It is evident from the discus-
sion above that this condition remains true in the bulk of
the fluid as long as processes proceed adiabatically.

Indeed, a small negative temperature gradient is per-
mitted. This point has been previously discussed by
several authors, e.g., Jeffreys [30], Gitterman [31], and
Moldover et al. [14]. (Also see Sec. IV below.) Using
Eq. (21), the condition from Eq. (24) is equivalent to

T ¢ | [ar
— S cpg 1= ||| . 2
az P8 e, | |ep ], 23)

The quantity on the right-hand side corresponds to a crit-
ical temperature gradient of about —1 mK/cm for near-
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FIG. 6. Temperature profiles are shown along the height of
the one-dimensional sample of xenon under gravity in the later
stage of equilibration following a temperature quench from
T;,—T.,=20mK to T;—T.=10 mK. Each profile is labeled by
the time in hours following the quench.

critical xenon. It corresponds to the gradient generated
in a fluid starting at equilibrium in zero gravity, when the
fluid is accelerated adiabatically (as if gravity is switched
on rapidly). The gradient generated by our adiabatic
quench does not exceed this, so the bulk of the fluid
remains mechanically stable against convection.

In Fig. 6 we show temperature profiles up to 6 h after
the quench. We notice that the linear profile observed in
the early stage disappears. Both the maximum and the
minimum of the temperature profile in Fig. 6 tend to

2.5 T —
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P \
N \&—1h
R 3h
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N
~ ﬁnal\\ \ “
g NN
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=
50 .
R
)
: ~
.
A\ .
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FIG. 7. Density profiles, in reduced units (p—p.)/p,, are
shown along the height of a one-dimensional sample of xenon
under gravity in the later stage of equilibration following a tem-
perature quench from T;—7.=20 mK to T,—T7.=10 mK.
Each profile is labeled by the time in hours following the
quench.
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move inward to the center as time progresses. It is evi-
dent that this is due to diffusion and within a couple of
hours, the magnitude of the temperature gradient near
the boundaries has decreased to become comparable to
that near the center.

In Fig. 7 we plot the density profile corresponding to
the temperature profile in Fig. 6. The density profile
remains close to symmetric around the center. Notice
that the initial, larger density changes, which occurred
early on at the boundaries (see Fig. 3), have disappeared
within 1 h after the application of the quench.

A more interesting plot is the relative changes of the
density at different heights. For this purpose we plot in
Fig. 8 the distance of density from equilibrium as a func-
tion of time, for h =22 and +0.5 mm. Here h=z'L /M
and for convenience we regard h as height, making the
approximation that density is constant. The reference
h =0 corresponds to the center of the slab. In order to
reduce the computational time and extend our calcula-
tions to later times (z > 36 h), we set 6¢'=0.2's, but we
use the same number of segments (N =400).

As can be noticed in the semilogarithmic plot, it seems
that the density equilibration is exponential for ¢ >5 h,
approximately. One expects a single fundamental mode
to dominate the late stages of equilibration, with the same
exponential decay rate at every height. But surprisingly,
the decay rates measured from Fig. 8 distinctly appear to
vary with height, in no obvious systematic way.

To examine this apparent height dependence, we plot
in Fig. 9 a calculated decay rate as a function of time for
h==2 and £0.5 mm. Specifically, we plot a smoothed
value of

1
At’

Prn+2"Pn+1
a-——— ——e e

Pn+1""Pn

) (26)

as a function of time ¢,. Here p, is the density calculated
at time 7, at a fixed height A. At'=t, ,—¢, is a fixed

(P-p)/(p,—py)

time (h)

FIG. 8. The density, scaled by its initial value p; and its final
value py, is shown as a function of time following a temperature
quench from T; —7,.=20 mK to T, —7.=10 mK applied at a
5-mm-long xenon sample. Each curve is labeled by the distance
measured in mm from the middle of the sample.
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FIG. 9. The value of a (see text for definition) is shown as a
function of time following the quench for different heights
chosen in Fig. 8. The inset shows the details a in the intermedi-
ate regime.

time interval, which can be as small as the time step 6¢'.
The formulas for a above is based on the supposition that
P=p,+Ce ™%, where p,, C, and a are unknown. The
smoothing procedure used in Fig. 9 is simply to average
m =9 successive values of a from Eq. (26), which is
equivalent to replacing the numerator in the logarithm by
Pm+n+1—Pm+n and At’ and mAt’.

From Fig. 9, it appears that a becomes close to con-
stant in time after about 7 h, indicating pure exponential
decay. However, it is apparent from the inset in Fig. 9
that o tends to vary slightly but distinctly with height,
making it difficult to assert that one single fundamental
mode comes to dominate the equilibration process in the
first 24 h.

Despite this difficulty, we might compare the effective
decay time 7,=1/a for ¢t >7 h with the decay time
7o=35.74 h derived for the zero-gravity case correspond-
ing to the same final temperature [1,4]. We find that 7,
varies between 2.82 and 3.45 h. Hence it appears that
gravity tends to reduce the equilibration time. At
T,=T,+10 mK, 7, is about a factor of 2 smaller than
T

IV. DISCUSSION AND REMARKS

The key to understanding the different time scales in-
volved during relaxation processes in critical fluids is un-
derstanding the fluid’s sensitivity to the various mecha-
nisms driving the dynamics. In the temperature quench
experiment that we have modeled, early adiabatic pro-
cesses act rapidly to accomplish most of the temperature
changes (in seconds), but induce only small density
changes in the interior of the fluid. The importance of
the adiabatic mechanism is in the strong coupling that it
creates between temperature changes occurring at the
fluid boundaries and the temperature response in the inte-
rior of the fluid [1-3,32]. It is evident that this coupling
is still strong even when gravity is present (see Figs. 2 and
4). On the other hand, most of the rearrangement of the
gravity-induced density profile is a nonadiabatic process,
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driven by the much slower process of heat diffusion asso-
ciated with tiny residual temperature variations. There-
fore, the equilibration time for density variations is of the
order of the diffusion time (hours).

The results in the present paper may help in interpret-
ing equilibration times in critical fluids as measured by
various experiments under similar boundary conditions,
assuming that convective flow may be neglected. In gen-
eral, we can distinguish two different groups of experi-
ments: (i) those that probe directly the temperature
changes and (ii) those that probe the density variations.
Examples of the first group are C, experiments, where
short response times in one-phase systems were observed,
corresponding to the fast adiabatic temperature responses
[8,13,34,35]. For the second group, we can identify inter-
ferometric techniques, capacitance-measurements meth-
ods, and direct visual observations [12,36—39].

For T>T,, C, measurements taken on *He by Dahl
and Moldover [8] near the critical point yielded upper
bounds on equilibration times somewhere under 6 s.
Similarly, Brown and Meyer [34] were unable in their
early work to draw any information about the thermal re-
laxation time from their C, measurement taken on *He in
one phase. These observations are consistent with the
mechanism of fast adiabatic temperature responses.
Nitsche and Straub [9,13] confirmed this short time in an
experiment performed in a TEXUS sounding rocket.
They compared the temperature at the boundary with
that at the center of a sample of SF¢ heated continuously
from T,—0.4 to T,+0.4 K. They found that the tem-
perature at the center of the fluid followed the tempera-
ture at the boundary regardless of the presence of gravity.

Recently, we have described a technique based on fluid
transmission that can probe the fast temperature changes
in critical xenon [5]. We used the fluid turbidity as a sen-
sitive probe to monitor the temperature response to small
heat pulses applied at the boundaries. We found very
short response times, limited only by the container’s glass
wall separating the heater from the fluid.

In contrast, Greer [36] observed long relaxation times
in her capacitance measurements taken on chlorine near
the critical point (T'> T,). These long times are related
to the density dynamics that are responsible for the
changes in the capacitance. Since these measurements in-
volve only overall density changes, it is not possible to
derive much information about the local density changes
during the stratification of the fluid in gravity. Similarly,
Straub [12] recorded long relaxation times in his study of
the dynamics of the gravity-induced density profile of
N,O (at T=T_,+25 mK). In his experiment, the fast ex-
pansion and compression of the fluid during his measure-
ments represent different boundary and initial conditions
from those applied so far in our calculations. Neverthe-
less, his measurements show that perturbations of the
density require a long time to relax even if the tempera-
ture returns quickly near its initial equilibration tempera-
ture. Unfortunately, we have not found any reported
measurements of relaxation times taken by inter-
ferometric techniques, which are extensively used to
study various properties of a fluid near its liquid-vapor
critical point. Actually, some of these techniques take

advantage of the gravity-induced density gradient in the
fluid to derive, for example, the equation of state of the
critical fluid [37-39]. Therefore, they are well suited to
provide more information on the density of dynamics.

While we have emphasized the contrast between the
fast temperature response and slow density changes in the
problem we have addressed, different behaviors can be
anticipated depending on the particular boundary condi-
tions applied to the fluid and the proximity to the critical
point. For example, Behringer, Onuki, and Meyer [10]
reanalyzed earlier measurements of thermal relaxation
times taken on >He near the critical point after including
the adiabatic term in the thermal diffusion equation,
without gravity. Interestingly, they compared two
different sets of data—data derived from conductivity
measurements [33] and data derived from C, measure-
ments [34] (calorimetiric)—which are taken under
different boundary and initial conditions. In the conduc-
tivity measurements (for which some care had been taken
to suppress convection), the experimental design permit-
ted the measurement of thermal diffusion times through
direct measurement of temperature differences. Agree-
ment of theory with experiment was good [10], but de-
graded approaching the critical point, presumably due to
the increased stratification caused by gravity. The equa-
tions derived here should be better adapted for including
not only the adiabatic mechanism but also the effect of
gravity.

For a correct interpretation of equilibration rate mea-
surements, care should be taken to identify the regime in
which the measurements are collected. For the example
studied in this paper, our computations suggest that the
adiabatic mechanism is effective just after the application
of the temperature quench. A purely diffusive mode
dominated by a single exponential will appear only after
many hours. Our finding of a long, transient, intermedi-
ate regime (more than 24 h), in which the density varia-
tions near the top and bottom of the cell apparently ex-
hibit exponential decay with different effective relaxation
times, appears to corroborate observations of a similar
phenomenon made by Zhong and Meyer [19-21]. Figure
10 specifically addresses this point. In a semilogarithmic

10° g
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time (h)
FIG. 10. Details of the first 6 h of Fig. 8.
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plot, linear sections of the density equilibration curves
strongly suggest an exponential behavior. However, the
differing effective decay times indicate that the late-stage
single-mode diffusive regime has not yet been reached (see
Fig. 9). It may turn out that many experimental mea-
surements fall in this intermediate regime and an inter-
pretation of the data as being in the diffusive regime is er-
roneous. This clarification is important, as discrepancies
may arise when comparing measured values with values
calculated based on a single-mode analysis.

It would be interesting to derive a simple, explicit ex-
pression that gives the duration of this intermediate re-
gime. For the zero-gravity case, Ferrell and co-workers
showed that the adiabatic regime has a nonexponential,
algebraic behavior that extends in time up to t =I'%¢, be-
fore late-stage diffusion dominates the equilibration [1,4].
Here we have t,=L%/4D(I'—1)?, D=A/p.c,, and
F=c,/c,. At T;=T,+10 mK and {p)=p, (our exam-
ple), we calculate I'*t; =2.04X10° s. This is about 10
times longer than the period up to the onset of our inter-
mediate regime, estimated from our computations (about
2.5X10*s; see Fig. 9). This suggests that, under gravity,
diffusion takes over the equilibration sooner than in the
zero-gravity situation.

In this present paper, we have focused on the one-
phase region, but some of our results may be pertinent for
understanding the dynamics of a two-phase system
(T <T,) when an interface appears. In a zero-gravity en-
vironment, one expects the liquid density p; to approach
the vapor density p, as T, is approached: (p;—p,)
~(T—T, ). In an earthbound experiment, however,
gravity acts to substantially increase the equilibrium den-
sity gradient very near 7,.. This should complicate data
analysis of density relaxation taken in two-phase systems
with gravity. The relaxation times observed will be sub-
ject to the same effects calculated here for one-phase sys-
tems, namely, large density variations relax very slowly
and reduce the effectiveness of the adiabatic mechanism
in accelerating the approach to equilibrium.

An interesting result obtained in the present calcula-
tions is the appearance of a small, almost linear tempera-
ture gradient at the beginning of the thermal equilibra-
tion process. This temperature gradient is absolutely
necessary to sustain the slow changes in the density
profile. The fluid appears to be in a state referred to
sometimes as a long-lived nonequilibrium state [5,40]. In
such a state, the critical fluid can have quite uniform den-
sity along its height. For example, such a situation can
be experimentally produced by thoroughly stirring the
fluid with convection [5,40]. In [40], Cannell noticed that
his light-scattering measurements taken on a sample of
SF¢ gave the same results (within experimental errors)
whether the fluid was in the nonequilibrium state or was
allowed to reach thermal equilibrium. This indicates that
the fluid temperature in the long-lived nonequilibrium
state is very close to the final equilibrium temperature, a
situation similar to what we have seen in the calculations
above (see Figs. 2 and 5). We have used a similar long-
lived nonequilibrium state in our heat pulse experiment
[5] to enhance the amplitude of the dynamic response, as
more fluid has density closer to p,.

HACENE BOUKARI, ROBERT L. PEGO, AND ROBERT W. GAMMON 52

Strikingly, the temperature gradient that is generated
in the bulk of fluid early in our calculation is negative,
but this is not expected to lead to the generation of con-
vective, multidimensional flows. The reason is that the
fluid’s compressibility stabilizes the stratification. As dis-
cussed by a number of authors, notably Gitterman [31],
and Jeffreys [30] much earlier, the appropriate Rayleigh
number for determining the onset of convection in a
compressible, viscous fluid involves not the temperature
gradient directly, but rather its excess over the “adiabatic
temperature gradient,” which makes the entropy gradient
zero [corresponding to the right-hand side of Eq. (25)].
As our calculations have suggested, this gives the experi-
menter some leeway in designing experiments that avoid
gravity-driven convective flows.

The system of equations (14)—(16) are an improvement
of the one-dimensional version of the equations derived in
[2,22]. They include not only the adiabatic effect but also
fluid motion due to expansion and contraction. As such,
the model allows for the density gradients that occur in
the final equilibrium state in a gravitational field. It will
be of interest to investigate systematically not only how
the system enters the late diffusive regime dominated by
the fundamental mode but how all the modes develop
during the equilibration. The present results do begin to
provide, however, insight into the dynamics of
stratification in one phase for a highly compressible, criti-
cal fluid under the influence of gravity. But we em-
phasize again that the system of equations (14)—(16) does
not account for multidimensional flows, which are a
strong possibility in many practical, three-dimensional
situations. It is not yet clear how three-dimensional
effects alter the overall dynamics under gravity, in gen-
eral.
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APPENDIX A

In order to see how the system of equations (3), (5), and
(6) can be appropriately reduced, we nondimensionalize
and scale the variables in a manner appropriate to a typi-
cal experiment as follows. The critical density, pressure,
and temperature are denoted p,, P,, and T, respectively.
Let z, be a characteristic length, 7, a characteristic time,
and u,=2z,/ty. Let ¢, be a characteristic heat capacity
and A, a characteristic thermal conductivity. Let
g0=2,/t3 and introduce the following nondimensional
variables and constants (nondimensional quantities are

indicated by an asterisk):
p=p.p*, P=P,(1+P,P*), T=T.(1+T,T*), (Al

z=zuz*, t=tot*, u=ugu*, (A2)
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cv:cocv*’ CPZCOCP*’ )"=}"0)"*7 g=g0g* ’ (A3)
* *
PSRN W "0 O ) 1 (A4)
p* [OP* [r* p* | OT* |p*

Above, P, and T are scales characterizing the nondi-
mensional deviation of the pressure and temperature
from critical. The nondimensional equations correspond-
ing to Egs. (3), (5), and (6) are

.DP* . DT*  du*

—a + =0, (A5)
“Tpre D 3t
Du* 1 3P*
222 O =M%t (A6)
Dt*  p* oz* &
pT* | ¢ ||3aT* | DP*
Dt* cx | |aP* |« Dt*
* *
— D 3 |,.9T (A7)
p*c,) 09z* oz*

Here the dimensionless groups M2 and D * are defined by

_ PG,
PcPO’

Ay to

M? (A8)

7 -
PcCo 2

D* is a nondimensional diffusivity and M resembles a
Mach number [24].

A typical flow regime in which we are interested is the
one considered in [2]. The fluid is xenon, with critical pa-
rameters p,=1.11X10* kg/m?, P,=5.84X10° Pa, and
T,=289.72 K. Gravity effects tend to be important
within 30 mK of T',. For this temperature range, it is ap-
propriate to take P,=6X10"% T,=10"% ¢,=3.3X10°
J/Kkg, and A,=2.5X10"! J/smK. For z, and t,,
we chose zo=10"3 m and t,=1 s. These yield the fol-
lowing estimate for the dimensionless parameters:
D*=6X107° ~ M?=3X1077, ¢}/cF=1.8X107%
g*=9.81X10% and (37*/3P*); ~1.

In the systems of equations (AS5)-(A7), one tries to
choose the scales so that the dimensionless variables
P*,T*,u* and their derivatives are of the order of 1.
The importance of each term in the dynamical equations
is determined by the dimensionless prefactor preceding it.
Our interest is in the density variation due to the pressure
gradient caused by gravity and the effect of the heat
diffusion to bring the system to equilibrium. The ac-
celeration term M?Du*/Dt* is by far the smallest term
(about two orders of magnitude smaller than the next
term). Furthermore, note the effect of considering longer
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time scales. As ¢, increases, M 2 decreases quadratically,
D* increases, and the group M2G does not change.
Thus, in the time range of interest to us in this paper, it
seems justifiable to neglect the acceleration term and it is
only this term that we have neglected (in addition to the
effects of viscosity) to obtain a reduced system of equa-
tions.

APPENDIX B

In this appendix we describe how we convert the pres-
sure and temperature (P,T) into their corresponding
values of r and 6 used in the restricted cubic model. In
that model, the dimensionless temperature increment and
pressure are expressed as

arr=T"Te L 1—p2e2 (B1)
T, ’
P/P,=PX(T)+rf6(1—6%)
+r2 %k {02(1—61)(1+c6*)—f(8)} . (B2)

Here P}(T) is an analytic function of temperature that
represents the pressure along the critical isochore
(p=p.). The rest is the nonclassical scaled part. In the
pressure, the function f(6) is expanded as a series in 6,

FO=fo+ [0+ 1,0 +fe6°+ -, (B3)

where the coefficients f, f,, f4, and f¢ are listed in
Table I. We take P*(T)=(1+5.92AT*) (see [27] and
references therein).

For a given set of values (P, T), we wish to find the
zero of the function g(r,0) defined as

g(r,0)=P,—PX(T)—rPa6(1—6?)
—r2 %k {62(1—6*)(1+c6*)—f(0)} , (B4)

with the condition that AT*=(T,—T,)/T,=r(1—b26?)
is fixed. For this purpose, we apply the Newton-Raphson
numerical method. First, we express r in terms of 6 via
r=AT*/(1—b%0%) and substitute into the function
g(r,0), which becomes a function of € only. Then, we
find g’(8), the derivative of g(6) with respect to 6. Final-
ly, we solve the equation g(0)=0 using the iteration

0,+1=6,—g(6,)/8'(6,) .

To start the iteration, the initial 6 value is set close to
1/b.
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